
SETTING UP A VIRTUAL STUDIO
WITH CONDUCTOR AND SHOTGUN

Jesse Lehrman | Senior Pipeline Developer, Conductor Technologies

Carlos Robles | Senior Devops Engineer, Conductor Technologies

WWW.CONDUCTORTECH.COM 2021

http://conductortech.com
http://conductortech.com

CONTENTS

Introduction

 Components

 Virtual Workstation

 Cloud Storage

 Production Management System

 Pipeline Services

 Rendering

 Cloud Providers

Workstation

Storage

Production Management System

Pipeline

 Shotgun Infrastructure

 Configuration

 Deploying the Conductor API

	 	 Modifications

 Shotgun Event Daemon

 Webhooks

 Pipeline Services

 submit_maya_render_to_conductor.py

 create_version.py

 submit_nuke_template_to_conductor.py

Conclusion

3

 4

 4

4

4

 4

 4

 4

5

5

6

6

6

6

 7

 8

 9

 12

 12

12

13

13

15

http://conductortech.com

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

3

INTRODUCTION

As the number of services offered by the major cloud providers expands, along with 3rd-
party marketplace services, migrating a CG studio’s pipeline into the cloud becomes more
and more compelling. The mushrooming of services also increases the barrier of entry as
knowledge of the cloud services landscape becomes crucial. As cloud services move away
from the traditional bare-metal and virtualization techniques of on-premise infrastructure, it
becomes increasingly difficult for those without a deep understanding of the cloud land-
scape to map a path to cloud services.

The goal of this whitepaper is to provide a working example of how a key piece of a CG
studio’s pipeline can be implemented entirely in the cloud.

The example used is a typical workflow of publishing and rendering a lighting scene (along
with its precomp) to be reviewed via Shotgun, leveraging the Shotgun Toolkit:

http://conductortech.com

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

4

Components

Before gettings started, it’s important to have an overview of all the pieces of the puzzle:

Virtual Workstation
The virtual workstation removes the need for an artist to have physical access to
expensive hardware. They effectively rent a machine that suits their requirements. The
artist is only required to have access to a basic workstation (aka thin-client) and a
sufficient internet connection.

Cloud Storage
Cloud storage will replace the shared file server that most studios have on-site.

Production Management System
There’s not much change as all the popular systems (Shotgun, FTrack, etc…) are already
available as cloud services

Pipeline Services
We’re going to show how to take a service (the Shotgun event daemon) that traditionally
runs on a local server (or VM) and port to run on a specific AWS service allowing us to
take full advantage of the service’s benefits.

Rendering
Despite marketing claims, no cloud provider provides infinite scalability. Conductor runs
on top of multiple cloud providers and by leveraging multiple years of R&D and expe-
rience, Conductor’s orchestration is able to scale to more render nodes than any other
service.

Cloud Providers

The three major cloud providers; Google, Amazon and Microsoft offer comparable products.
While most (if not all) of this whitepaper can be implemented in one of them, the paper uses
Amazon’s Web Services (AWS) for concrete examples.

Unfortunately, there is little common terminology across the three major providers, even
though they largely offer the same set of services. It’s left to the reader to map this guide
onto one of the other cloud providers.

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

5

WORKSTATION

Workstation selection is straightforward. If using Teradici’s Cloud Access Software (recom-
mended) as the remote connection service, it’s easiest to use their AMI which bundles the
license and is set-up with NVidia drivers and CentOS 7.x. All that’s needed is to install the
DCC’s of your choice. Unfortunately, there’s currently no AMI’s that include DCC packages.
These would be the next steps to properly configure your workstation for use:

1. Install s3Fuse and auto-mount your cloud storage
2. Install the DCC’s of your choice (and licenses)
3. Install the Shotgun Toolkit (SgTk)
4. Install the Conductor Client Tools

Once you have set-up the workstation for your needs, you can save the set-up as your own
custom AMI so that it’s easy to spin-up multiple instances.

STORAGE

Selecting the correct storage option is crucial. Not only must the storage be accessible from
the various components but it must also be performant and suitable for all its uses. Examin-
ing all the various storage options is beyond the scope of this whitepaper. This whitepaper
will concentrate on the features needed from a storage option and the performance it pro-
vides.

Due to how most DCC’s and tools are designed, it’s imperative that the storage option be
presented as a local file system.

A cost effective way to get started, is to use object storage (S3 on AWS) and s3Fuse. s3Fuse
will allow you to mount any object storage filesystem as a local file-system.

https://aws.amazon.com/marketplace/pp/prodview-yjdn554yaqvem?qid=1603470235375&sr=0-2&ref_=srh_res_product_title

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

6

PRODUCTION MANAGEMENT SYSTEM

Since Shotgun is a hosted service, no effort is needed to make it cloud-friendly. In some cas-
es you might need to analyze Shotgun’s security settings so that it can be accessed via the
virtual workstation and other AWS services.

PIPELINE

For this whitepaper, we’ll use the Shotgun Toolkit (SgTk) as the toolset for asset manage-
ment. We’ll walk through the configuration changes that are needed to successfully connect
it to Conductor so that renders will be submitted automatically.

We’ll also deploy the Shotgun event daemon - which is responsible for automating many
pipeline processes - onto AWS ECS (Elastic Container Storage). ECS provides the advantage
of deploying Docker containers with ease and allowing services to be scaled as needed.

Shotgun Infrastructure

Configuration

We’ll rely on Shotgun’s descriptors to configure the toolkit. For ease of use, we’ll setup
two configurations (both described as descriptors):

1. A local developer sandbox for testing and debugging
2. A distributed configuration for production (we’ll be using Primary)

Since we’ll be using git to store the configuration, the setup can be performed from any
machine. Ideally it has the relevant DCC’s installed - but it’s not a requirement.

https://developer.shotgunsoftware.com/tk-core/descriptor.html

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

7

1. Follow the instructions to clone a configuration from your Primary (or other) config.
Download the cloned config, create a new git repo and push it to the remote. You can
also start from the config in one of the default repos.

Both configurations will be pulled from a git repository.

The first configuration, MyDevSandbox points to a drive location - which is a git clone of
the Primary configuration. This allows for much quicker iterations than using a remote
git repository when developing.

For more details on setting-up and configuring the SgTk, see the documentation.

Deploying the Conductor API

By adding hooks for the tk-multi-publish2 app below, we’ll need a mechanism to
deploy the Conductor Python Client API.

It’s best to deploy the Conductor API and its dependencies to shared storage so that it’s
accessible by all workstations.

Download the source of the of the latest release from:
https://github.com/AtomicConductor/conductor_client/releases/latest

Once the archive is extracted, use the requirements.txt to install the necessary
dependencies:

pip install --target <target_dir> --requirement
<path_to_conductor_api>/requirements.txt

https://support.shotgunsoftware.com/hc/en-us/articles/219033168-Configuration-staging-and-rollout#:~:text=In%20Shotgun%2C%20each%20project%20has,toolkit%20configuration%20can%20be%20found.
https://github.com/shotgunsoftware/tk-config-default2
https://developer.shotgunsoftware.com/tk-core/index.html
https://github.com/AtomicConductor/conductor_client/releases/latest

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

8

At the top of conductor_collector.py in the virtual studio guide repo, set
CONDUCTOR_CLIENT_TOOLS_PATH to the root path to the Conductor API. Ensure that
the two subsequent lines add the Conductor API and its python dependencies to
sys.path

Modifications

The key modification to the Shotgun Toolkit is adding a new collector to the tk-multi-
publish2 app. This new collector conductor_collector.py will extend how the
publish app scrapes the Maya scene for dependencies by leveraging Conductor’s depen-
dency scanner. This ensures that all files required for a render have been added to the
PublishedFile entity table. Out of the box, the tk-multi-publish2 app has a very
narrow dependency scanner in Maya.

conductor_collector.py inherits from the default MayaSessionCollector

A sample of how this can be done can be seen here.

To have conductor_collector.py be used by the tk-multi-publish2 app in Maya,
the sgtk-config will need to be updated:

sgtk-config/env/includes/settings/tk-multi-publish2.yml:

https://github.com/AtomicConductor/tk-maya/blob/5abc227a2609953c7baac774a0b49447ffe7ab39/hooks/tk-multi-publish2/basic/collector.py
https://github.com/ConductorTechnologies/virtual_studio_guide_samples
https://github.com/ConductorTechnologies/virtual_studio_guide_samples/blob/main/sgtk-config/hooks/tk-multi-publish2/conductor_collector.py
https://github.com/shotgunsoftware/tk-config-default2/blob/master/env/includes/settings/tk-multi-publish2.yml#L196-L216
https://github.com/AtomicConductor/tk-maya/blob/5abc227a2609953c7baac774a0b49447ffe7ab39/hooks/tk-multi-publish2/basic/collector.py

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

9

Here, the shot step is being updated. The collector will also have to be added to all other
steps that you intend to render from. All classes that conductor_collector.py
inherits from precede it (separated with colons). This is a requirement for
sgtk.get_hook_baseclass() to work properly.

NOTE

Shotgun Event Daemon

Deploying the Shotgun event daemon to a cloud service is a key component of this
infrastructure. The Shotgun event daemon allows for automation. See below for an
explanation of why the daemon was chosen over the new Webhooks.

Instead of deploying the daemon to an instance and running it in the traditional sense,
we made use of AWS’s Elastic Container Storage Fargate (ECS) cluster. This serverless,
managed service removes the need to manage and monitor the computing resources
required to run Docker containers. It also simplifies deployment. If the daemon is being
overwhelmed, it’s trivial to increase the resources so that it can crunch through the event
queue quicker.

In all other respects, the Shotgun event daemon can be treated no differently than if it
were running locally on-prem.

To build, deploy and run the Shotgun event daemon completely in the cloud, there are a
few basic steps to automate the process:

1. Create a Dockerfile that builds a container that can run the daemon.
2. Using a CI/CD system (in our case, Codeship), write the steps to deploy the

container to the AWS container registry.

At that point, ECS can be manually configured to pull the Shotgun event daemon con-
tainer. However, we take the additional step of leveraging Hashicorp’s Terraform to
automate the creation of the infrastructure and services.

Having a complete list of dependencies stored in the PublishedFile entity table is essential
to the process. When jobs are submitted to Conductor, the dependencies will be pulled from
this table.

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

10

The Shotgun event daemon has a critical feature which enables it to resume from the
last processed event even if it is unexpectedly shut down. This is accomplished by dump-
ing details of the last processed event to a location on disk.

This presents a problem when using Fargate as there is no persistence between re-
launches of the daemon - the data on disk will be lost. There are several approaches to
mitigate this. We settled on attaching an EFS volume, which avoids altering the Shotgun
event daemon code, provides a better place to deploy plugins and also gives us a place
to persistently store the logs from the daemon.

Creating and attaching the EFS volume isn’t complicated but there are multiple compo-
nents involved. Familiarizing yourself with EFS, Security Groups and IAM Roles is strongly
recommended before proceeding.

Attaching an EFS volume to the shotgun Daemon

An EFS volume needs to be created with an Access Point. Access Points allow other AWS
services to access the EFS volume. That Access Point then needs a Security Group at-
tached to it. A Security Group is essentially a firewall rule that defines what sources can
access which ports. A source can be an IP or another Security Group. We’re only con-
cerned with inbound rules as outbound traffic tends to be left wide-open.

It’s important to note that all this happens within the same Virtual Private Cloud (VPC),
which is a mini-network within the AWS ecosystem.

https://aws.amazon.com/efs/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

11

1. Create a new Security Group for the EFS volume that will allow incoming NFS
connections from the default security group for the VPC.

2. Create the EFS Volume. The default options are fine. You’ll want to ensure that it’s in
the same VPC as your ECS Cluster.

3. Create access points for the EFS Volume:

a. Open up the details for the EFS and select the Network tab and then click on
Manage.

b. Ensure that the correct VPC is selected.

c. Click on the Add mount target button. The Availability Zone and Subnet ID must
be the same as the ECS Cluster. Select the Security Group you created in Step #1

d. Click the Save button.

The EFS volume is now ready to be attached to the Fargate service. This is accomplished
via the Terraform code.

NOTE

In the diagram above and the steps below, we refer to various entities by their names -
however you’ll have to use the entities ID’s in the AWS console when entering values.

https://github.com/ConductorTechnologies/virtual_studio_guide_samples/tree/main/terraformWebhooks

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

12

Webhooks

For this integration we chose to use the Shotgun event daemon over Webhooks for a
variety of reasons:

1. Currently, the industry has greater familiarity with the Shotgun event daemon,
allowing for an easier transition of existing plugins

2. Migrating a traditional on-prem service to a managed cloud-service is a good
learning exercise, allowing us to introduce new concepts.

3. Webhooks still require the connections to run somewhere (it could also be a
server-less environment), so it isn’t necessarily any faster to setup.

4. Webhooks are still in beta.

Ultimately running the Shotgun event daemon on ECS Fargate, is very similar to creating
and managing our own Webhooks system. It may or may not be the right path for your
studio. Read Shotgun’s Webhooks documentation for a more in-depth comparison.

Now that all the infrastructure is set up for our integration, we can move on to actually
getting it to do something. In this section we’ll deploy a couple of plugins for the event
daemon to automate the submission of renders to Conductor as well as make some
changes to the Shotgun schema.

• submit_maya_render_to_conductor.py

• create_version.py

• submit_nuke_template_to_conductor.py

Pipeline Services

submit_maya_render_to_conductor.py

This is a plugin that will run whenever a Maya lighting scene is published (see the script
for more details); It submits a job to Conductor to render (and publish the images) a
published Maya scene.

https://developer.shotgunsoftware.com/3d448f5e/
https://github.com/ConductorTechnologies/virtual_studio_guide_samples/blob/main/shotgun_daemon/plugins/submit_maya_render_to_conductor.py

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

13

It will query Shotgun for the scene files dependencies (stored in the PublishedFile
table), copy the Maya scene and all its dependencies from the S3 storage bucket and
submit them to Conductor. It will also generate all the meta-data needed to publish the
render in the PublishedFile entity, store that meta-data in a .json file and upload it
as part of the job so that it can be used to register the publish in the post-job command.

One novel enhancement of the Conductor job submitter script is the addition of a post-
task and a post-job command. These are not built-in features of Conductor.

create_version.py

This is a generic plugin that will create a new Shotgun Version entity and associated
media for review from an image sequence. This is triggered whenever a new image se-
quence is published. This allows for the automated creation of media that’s reviewable
directly in Shotgun.

The plugin will grab the frames from the S3 bucket, use ffmpeg to generate a compati-
ble MP4, create the Version entity (attaching the MP4) and setting the status to “Pending
Review”.

create_version.py will automatically run once the lighting and comp renders are
published.

submit_nuke_template_to_conductor.py

This plugin is very similar to submit_maya_render_to_conductor.py. The main
difference is that it’s triggered by the publish of a 3D render. It uses that 3D render to
generate a pre-comp with Nuke.

Like its sibling, it starts by pulling the frames from the S3 bucket. It also pulls a Nuke
template file and all of its dependencies. The template is set up so that its read nodes
reference command-line arguments passed to the Nuke command. This is a very use-
ful feature of Nuke. See the official documentation and the sample template for more
details. While the template is hard-coded in the plugin, querying Shotgun for a specific
template would be more pragmatic.

Here, in addition to the post-job and task commands, we introduce a pre-task command.
This ensures that the output path for the Nuke write node exists.

https://github.com/ConductorTechnologies/virtual_studio_guide_samples/blob/main/shotgun_daemon/plugins/create_version.py
https://github.com/ConductorTechnologies/virtual_studio_guide_samples/blob/main/shotgun_daemon/plugins/submit_nuke_template_to_conductor.py
https://learn.foundry.com/nuke/content/comp_environment/configuring_nuke/command_line_operations.html#Examples
https://github.com/ConductorTechnologies/virtual_studio_guide_samples/blob/main/shotgun_daemon/plugins/nuke_template.nk

SETTING UP A VIRTUAL STUDIO WITH CONDUCTOR AND SHOTGUN

14

As in its sibling script, the post-task and post-job commands are used to transfer the
frames and register the publish. These actions ultimately cause the create_version.py
plugin to be executed.

http://conductortech.com

CONCLUSION

This guide has demonstrated how it’s possible to move a piece of a studio’s pipeline
entirely in the cloud and how to remove on-prem infrastructure from the process.
While not trivial, most of the concepts in this guide can be applied to an entire
studio’s pipeline, resulting in an efficient and well engineered virtual studio.

By leveraging existing cloud services such as Conductor and Shotgun and building
knowledge of the managed services offered by the cloud providers, cutting the cord
to on-prem infrastructure not only becomes an option with a realistic timeframe but
also cost-efficient compared to a DIY solution.

For more information on this, or other related topics:

contact info@conductortech.com

or visit docs.conductortech.com

mailto:info%40conductortech.com?subject=Conductor%20Shotgun%20Whitepaper
http://docs.conductortech.com
http://conductortech.com

