
mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Rescue
Mission

Accomplished

Inspired by Robin Eisenberg
 @eisenbergrobin
 @robineisenberg

Hello! Today we’re going to talk about how to assess legacy Rails projects that are in
rough shape and figure out if we should save them and how to do it. This talk is
written to be accessible for anyone who is faced with legacy code and wants to figure
out incremental steps to refactor it into a delight to work with. There may be some
things you don’t understand if you’re really early in your career but most of what we
talk about will be useful, regardless of your level.

My name is Mercedes Bernard. My pronouns are she/her. And I’m the VP of Delivery
at a digital consultancy in Chicago called Tandem.

mercedesbernard.com@mercedescodes

mercedesbernard.com/speaking/rescue-mission

If you are someone who likes to follow along with slides, I’ve put them on my website.
The speaker notes will have everything I’m saying if that’s helpful to you, and it might
make it easier to follow some of the links and tools I’ll share.

mercedesbernard.com@mercedescodes

I had a recent client bring me 4 code repositories that were all in rough shape. They were
undocumented and couldn’t reliably be set up in a local dev environment. They were not
containerized. There were multiple required dependencies that were not managed using
any sort of package manager and had to be installed and configured manually. The
reference data and seeds were out of date and threw lots of errors when you tried to run
them. And there were rake tasks sprinkled all over the place for adding other reference
data that you couldn’t tell if you were supposed to use them or if they had been put there
for one-off use cases.

None of the repos had any CI or CD. There was no documented way to deploy them. And
any time a change was made, a lot of unintended side effects were introduced so the
client lacked trust in any change or deployment and tried to avoid them at all costs.

2 of these repos were core to their business and had many users onboarded. They were
generating revenue consistently. The other 2 weren’t as vital and had started as proofs of
concept.

The client wanted these 4 repositories stabilized so that they could start adding new
features and continue building off what they had. Their main concern was cost. They were
a startup with a short runway that was trying to raise another round of funding, and they
didn’t have a lot of money to invest so they wanted to find the most cost effective way to
get their system in a place where they could market it to investors and continue to grow
their business.

We had to decide whether we could salvage these projects or if we would have to tell

them that they weren’t worth saving and should be scrapped. And for what we could
salvage, we had to figure out the best way to do that–balancing both cost and long-term
stability.

This is a practical, not philosophical talk. We’re going to focus on how to make these
decisions and how to complete rescue missions. All of the ideas we’ll cover are relevant to
any tech stack but the tools I’ll share are specifically for Rails projects.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Gain an empathetic
understanding

If you are given a rescue mission and are trying to figure out “should I stabilize this
codebase or should I start over,” the best thing you can do is try to understand the
context and current state of the system. It’s impossible to find the best solution
forward without as full an understanding of the problem as you can get.

Codebases never become legacy through intentional bad decisions. There are always
constraints and limitations placed on the humans who were writing the code before
you, that you might not know about.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

How did we get here?

● Investing more in marketing?

● Layoffs and loss of context?

● Contractors?

● Early-career devs without mentorship?

● New business direction?

To build your empathetic understanding of what factors led to the current state of the
project, take time to talk to stakeholders to understand the business and finances and
how they have or have not changed over time.

● Maybe the company needed to invest more in marketing to try to find
customers but that meant that they couldn’t afford as large of a team to work
on the code as they needed.

● Maybe they had to reduce the size of the team and layoffs meant that a lot of
the knowledge left with those folks.

● Maybe they could only afford to hire contractors who didn’t thoroughly
understand the business.

● Maybe their team was made up of early-career devs who didn’t have a lot of
experience in the tech stack and had no mentorship to guide them so all of
their choices were the best they could make with the information they had
available.

● Maybe the business went in a new direction and everyone is still learning
about the new position and industry.

Those last 3 are what had happened with my client’s rescue mission. A group of
contractors had built the projects when they were greenfield and a couple early-career
devs inherited them and did their best. Then the startup went in a new direction when
they gained a better understanding of their market and the entire organization was still
figuring out what that meant.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Project
management

triangle

Good

Fast Cheap

It’s also helpful to understand the main stakeholders’ priorities when trying to figure
out what decisions led to where we are today. The project management triangle is a
common heuristic for understanding the constraints for almost all types of projects,
not just software, and you’ve probably heard it before, “Good, fast, cheap–pick 2.”

If a team or organization consistently prioritizes the same 2 constraints, you’re going
to start having problems in the gap left by the third constraint.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Project
management

triangle

Good

Fast Cheap

If you always choose good and fast, you could quickly run out of money.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Project
management

triangle

Good

Fast Cheap

If you always choose good and cheap, you may never get to market in time to
capitalize on your idea.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Project
management

triangle

Good

Fast Cheap

And if you always choose fast and cheap, you may have some extreme quality
issues.

This is why it’s ok to incur some technical debt on projects. Sometimes, the best
decision for the business is to choose fast and cheap in order to meet timeline or
budget constraints. And deciding how to balance project management constraints is a
big part of managing and paying down technical debt.

However, for my recent rescue mission, it was clear that the organization did not
balance project constraints. They always chose to prioritize cost and timeline at the
expense of their product quality. This resulted in a “kick the can down the road”
strategy until the projects got to the point where they had to be rescued.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Audit the existing state of the
system

Taking the time to understand the business and the decisions behind the current state
of the application allows you to remember the humans who built it and is key to the
“empathetic” part in “gain an empathetic understanding.” But now we’re going to go
over how to get the “understanding” part.

When you inherit code that you didn’t write, especially entire applications or systems
(not just features), it can be daunting and hard to know where to start. And when you
not only have to understand the code but also identify its weak spots and figure out
how to stabilize it, it can be downright overwhelming.

When I know I have a rescue project in front of me, these are the steps I take to
understand the scope of the mission. Full disclosure, this can be time-consuming.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Can you run
the project

locally?

First, try to get the project up and running locally. In a best case scenario, the project
is containerized and this is a 5-10 minute process. On a rescue project, I’ve never
encountered a best case scenario.

Hopefully there is some documentation to get started. If not, you’ll have to rely on
industry standard practices for the language and framework you’re working in. On a
Rails project, you know you’re going to start with `bundle install`. This isn’t always
enough but if you aren’t able to get the project running in 30 minutes without
documentation, that’s a valuable data point that the issues in this codebase may be
bigger than what anyone expected because there are unknown unknowns.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Version
support

Then look up and document for yourself the language and framework version that this
project is running on

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Version support

● Ruby version

○ Ruby Maintenance Branches: current maintenance statuses

● Rails version

○ Rubygems: list of all Rails versions released

○ Rails Guides: explains the Rails maintenance policy

○ Rails blog: info on what’s included in each release

○ endoflife.date: a simple table for end of life and version support

For a Rails project, what version of Ruby is the project running? Check both your
`.ruby-version` file and your Gemfile. What is the maintenance status of that version?
Is it supported? Is it going to reach end of life soon? Did its EOL date already pass?
The Ruby Maintenance Branches documentation will tell you the current maintenance
status of the various Ruby branches.

Then check those same things for Rails. Look in your Gemfile (or Gemfile.lock if the
project isn’t strictly enforcing a Rails version) and see what version you’re running and
check the maintenance status for that version.

Rubygems has a list of all Rails versions released, Rails Guides explains the Rails
maintenance policy, the Rails blog includes info on what’s in each release, and
endoflife.date is a great little website that provides a simple table to track end of life
and version support.

https://www.ruby-lang.org/en/downloads/branches/
https://rubygems.org/gems/rails/versions
https://guides.rubyonrails.org/maintenance_policy.html
https://weblog.rubyonrails.org/releases/
https://endoflife.date/rails
https://www.ruby-lang.org/en/downloads/branches/
https://rubygems.org/gems/rails/versions
https://guides.rubyonrails.org/maintenance_policy.html
https://weblog.rubyonrails.org/releases/
https://endoflife.date/rails

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Version support

● Postgres

● Gems

○ bundle outdated to find outdated gems

And if there are other really important packages and dependencies, take a look at
those. For example, what Postgres version is the app running on?

You can also use `bundle outdated` to find gems that have updates available. You
won’t necessarily have to upgrade all the gems but it can give you a good sense of
where the project is at. You should pay special attention to the critical dependencies
when deciding what to upgrade.

When we inherited our rescue mission, the Rails version had reached EOL 2 years
prior and the Ruby version had reached EOL a few months prior. So we knew that
we’d definitely have to upgrade those if we decided to stabilize these applications.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Security
vulnerabilities

If your language and/or framework have reached EOL, they’re not receiving security
patches anymore. But even if they aren’t EOL, there’s still a high chance of lurking
vulnerabilities if things haven’t been kept up to date. You’ll want to make sure you do
a security audit so you know what you’re working with and how much work you’ll need
to do to get things secure.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Security vulnerabilities

● Static analysis

○ Brakeman

● Check your certs

● Data encryption

● Authenticaton and authorization

● Sensitive credentials

● Helpful Rails security audit list

Security is an entire discipline unto itself and may not be your bread and butter. We
can’t specialize in all the things. So if you need to do a security audit and security is
not your specialization, here are some tools and tips I like to use on a Rails project to
make that easier.

● Brakeman - A static analysis security vulnerability scanner for Ruby on Rails
applications

● Check your certs! Is the web traffic over TLS? Is there an SSL cert in place?
● Is data that should be encrypted (i.e. passwords) encrypted?
● Is there authentication and authorization for resources that should be private

for users?
● Where are sensitive credentials for the system stored? Make sure they aren’t

in the source code or checked into source control anywhere

There’s probably a lot more things to be aware of, I’m not a security specialist either.
But with static analysis and some general web security know-how, you can get a
sense for how vulnerable the application is and how much time you may need to
dedicate to remediating security issues. I’ve included a Rails security audit list as well
to help.

https://github.com/presidentbeef/brakeman
https://github.com/hardhatdigital/rails-security-audit
https://github.com/presidentbeef/brakeman

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Data

After getting a general lay of the land, we should look at the data.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Data model

● Does it make sense conceptually?

● Referential integrity

○ Are the associations in your models enforced through foreign
keys in the database?

○ Are the foreign keys required unless the association is optional?

● Normalization

● Model associations

When I’m talking about looking at the data, I mostly mean the data model. In a Rails
app, we’re typically dealing with relational databases so that’s what I’m going to focus
on.

The first thing I think is important to look at in the data model is also the most
general–can you understand it? And I mean this on the most basic level, does it make
sense conceptually or does it leave you scratching your head?

This is a good gut check to get a sense for how challenging and time-consuming it’s
going to be to work with as you dig into the other parts of the code.

Once you have a feeling about how understandable the data model is, take a look at
referential integrity. Are the associations in your models enforced through foreign keys
in the database? Are the foreign keys required unless the association is optional? I’ve
seen Rails projects in the past that rely exclusively on model associations and don’t
add foreign keys to enforce them.

If you have strong referential integrity, meaning the answer to both of those questions
was yes, you can have higher trust in the data that if you had to migrate it, you would
be able to without a lot of headaches managing edge cases or error cases because
the records that are referenced actually exist.

Last, take a look at how normalized the data is. Does the level of normalization make
sense? In a relational database (which we’re using in most Rails apps), we want a

high level of normalization meaning we want to minimize data redundancy.
Normalization is why we don’t store everything in one table with data duplicated
between records (think if we tried to flatten a has many relationship). It’s also why we
have has_many through associations rather than storing multiple foreign keys
everywhere to get those direct relationships.

Sometimes there may be performance reasons to intentionally denormalize some
data but most of the time, we prioritize data integrity and a higher level of
normalization means you can trust your data more.

mercedesbernard.com@mercedescodes

dbdiagram

There are 2 tools I like to use to get a quick visual representation of the data model.

The first is dbdiagram which is a web app that you can upload the `schema.rb` file to.
Because dbdiagram uses your database schema, the resulting visual will tell you if
you have referential integrity in the database. Can you see the foreign key
relationships between tables?

https://dbdiagram.io/
https://dbdiagram.io/

mercedesbernard.com@mercedescodes

This diagram can also start to tell you about the level of normalization you have. If you
see lots of foreign key relationships that seem to be duplicating a has-many
association (like in this small subset of relationships), then your data is not normalized
and you have some data redundancy.

For normalization, you also want to pay attention to duplicated columns across
records that could be refactored into their own table but that requires more manual
investigation than this diagram can give you.

mercedesbernard.com@mercedescodes

Rails ERD

The other tool I like to use for evaluating a Rails data model is Rails ERD which is a
gem that generates a diagram from the Rails model associations. It has a lot of
customization options but it will show you a data model built from the associations in
the application code. This is helpful for checking if the foreign key relationships in the
database match the associations in the model. I often find that there are more
relationships in the ERD generated from model associations than in the ERD
generated from the schema which tells me that there are missing foreign key
relationships in the database.

As you can see from the last few diagrams I have shown from our rescue mission
project, I mostly just learned that the data model was a mess. There were so many
unnecessary relationships throughout the database and the application code. Even
though there was technically referential integrity, I couldn’t tell if it matched the logic
that was modeled in the application code. And there were things duplicated
everywhere so I didn’t have a lot of trust that foreign keys throughout the code were
properly maintained in sync with the other relationships due to the lack of has_many
through relationships (which are modeled as dotted lines in this ERD diagram).

https://github.com/voormedia/rails-erd
https://github.com/voormedia/rails-erd

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Code

After digging through the data layer, we’re going to finally look at the application code.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Test coverage

Start by looking at the test coverage within the application. Are there tests? Are they
well-written? Do they test real things? For example, if you have a controller test, is it
testing the shape of the returned response or just that it’s a 200?

Auditing the test coverage in an application tells you the risk factor for
changes/refactors. The less test coverage there is, the higher your risk that you’ll
introduce unintended regressions.

Good test coverage also serves as amazing developer documentation to tell you what
a feature is intended to do and how to use it within the code.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Test coverage
simplecov

With a Rails project, you can use a tool like simple-cov to get a coverage percentage
and identify paths in the code that are not tested.

On my rescue project, there were no tests. It was no wonder that the client was afraid
to make a change because there was no feedback loop to catch if a change broke
something in the code.

When there’s no test coverage, you should budget time when stabilizing to add test
coverage. In my opinion, this is non-negotiable. The alternative is far too expensive.

https://github.com/simplecov-ruby/simplecov

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Static analysis

We’ve talked about static analysis during the security audit and a little bit when
looking at test coverage but static analysis is super helpful for a dev unfamiliar with an
entire codebase. Static analysis is when we examine code without running it usually
trying to measure its quality in some way. And there are lots of tools to help us do that.

You can learn what parts of the code are complex and will be hard to understand,
which parts change a lot (and if any of those are also the complicated parts), which
parts are duplicated and more. When taken as a full picture, all of this can tell you
how easy it will be to work with this code.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

● Rubocop: static code analyzer and formatter

○ How idiomatic is the code?

● Reek: measure “code smells”

○ What areas of the code might be hard to maintain?

● Flog: measures assignments, branches, and calls

○ How hard is this code to test?

Static analysis

On a Rails projects, some tools you can use for this are
● Rubocop: How idiomatic is the code?
● Reek: What areas of the code might be hard to maintain?
● Flog: How hard is this code to test?
● Flay: Where is there code duplication?
● Turbulence: Where are the good candidates for refactoring?
● RubyCritic if you want a single report to wrap up some of the gems above

When you find areas of the code that keep popping up during your analysis, high
complexity, high churn, lots of duplication, you can add that to your list as priorities for
refactoring once the project is stable.

https://github.com/rubocop/rubocop
https://github.com/troessner/reek
https://github.com/seattlerb/flog

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Static analysis

● Flay: finds areas of the code that are similar, i.e. not DRY

○ What parts of the code are similar to each other?

● Turbulence: evaluate code complexity and churn

○ Where are the high churn, high complexity parts of the code?

● RubyCritic: Wrapper around Reek, Flog, and Flay

On a Rails projects, some tools you can use for this are
● Rubocop: How idiomatic is the code?
● Reek: What areas of the code might be hard to maintain?
● Flog: How hard is this code to test?
● Flay: Where is there code duplication?
● Turbulence: Where are the good candidates for refactoring?
● RubyCritic if you want a single report to wrap up some of the gems above

When you find areas of the code that keep popping up during your analysis, high
complexity, high churn, lots of duplication, you can add that to your list as priorities for
refactoring once the project is stable.

https://github.com/seattlerb/flay
https://github.com/chad/turbulence
https://github.com/whitesmith/RubyCritic

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Unused code

Another metric to look at in a code base is to try to find unused code. I have a lot of
clients who don’t want to delete deprecated code because they like to have a record
of it despite having source control. But keeping unused code around is an expensive
maintenance cost. As the codebase evolves, your unused code may break tests (if
you have any) as database constraints or associations change. And that code may
confuse developers who think that they need to refactor and keep this code in a
ready-state despite being deprecated. Unused code can give you a lot of false
negatives during your audit and future stabilization.

If you find unused code, add that to your list to remove. We don’t want to invest in it
any longer.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Developer Experience

Finally, the last couple pieces to audit are related to developer experience. Happier
devs are more productive devs and when we have a code base we feel comfortable
working with, we tend to be happier :)

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Error
monitoring

First up, is there error monitoring within the system? If something goes wrong in one
of your deployed environments, how would you know?

When you’re thinking about stabilizing an application that is in production and
generating revenue, causing issues or outages for users during incremental updates
is a big problem. And rescue mission projects aren’t usually very resilient. So you’ll
want to know as soon as something goes wrong so you have as much time as
possible to roll back or fix it.

If there is no error monitoring, make sure that gets added to your list as a high priority
item to resolve.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Deployment
process

Speaking of resilience, how easy is it to deploy the application? How easy is it to roll
back to the previous state in the event of regression?

Most projects these days have some sort of CI/CD pipeline but that’s not always the
case and it’s good to understand how changes make their way to production. What is
the deployment strategy? What is the branching strategy? Is this all documented?
And maybe even most basic of all, can this application be deployed?

Hopefully all those answers positive and your life will be easy. But if not, then you
have something to prioritize in your stabilization work.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Edge case
requirements

Finally, get a sense for edge cases that you should be aware of before you embark on
the project. One that has burned me in the past on a different project was that we had
to support an older version of Internet Explorer and didn’t realize it until we were
pretty far into upgrading frontend packages and finding all the things we broke was a
challenge, especially the styling.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Make a plan

Whew, that was a lot. But now that you have all of this information, you’re able to
make a plan and decide on what are the best next steps.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Refactor Rewrite

The first thing you have to decide is whether or not the application is salvageable.
And let me start by saying 9 times out of 10, it is.

I’ve seen a lot of teams and clients choose to rewrite an entire application over
refactoring. And I think this happens for 2 main reasons. One being that I don’t think
teams are given the time to invest in understanding the current state of an application
when making this decision. As I was going through all the different things to look at, if
you were thinking “this is too much” or “I’d never have time to dig into all this” then
you might be on this kind of team. With all of the unknowns and ambiguity around
what’s in the application, where the problems are, and where the stable bits are, it’s
hard to feel like there’s any incremental path forward. It feels much more manageable
to write code from scratch rather than make incremental improvements to someone
else’s code. Writing your own code feels safer.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Refactor Rewrite

The other main reason I’ve seen teams prefer rewrites over refactors is that as an
industry we are serial under-estimators. We’ve all had those moments of, it will only
take a day and then 4 days later, we’re still working on the same thing. Rewriting an
application from scratch always (ALWAYS) takes longer than anyone thinks. There
are features we forgot existed, the data migration is more tedious and trickier than we
thought, there is new tech or patterns we play with that we decide we don’t like and
we end up refactoring the new thing as we go, and styling takes longer than any dev
predicts (we have to stop giving CSS the short end of the stick).

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Refactor Rewrite

Now, I know I’m saying all of this but without research studies or hard numbers to
back it up. There’s a little bit of trust in this talk too. Based on my experience as a
consultant for over 9 years, I’ve never seen a rewrite project land without going
significantly over time and over budget. And I’ve only ever seen one repository where
I whole-heartedly recommended rewriting instead of refactoring.

Of the 4 repositories my client brought me to save, we refactored and stabilized 3 of
them. The fourth repo was not making them any revenue, did not have active users,
no longer met their business needs after they had a better understanding of the
market, and was built on a hand-rolled React Native library that hadn’t been
maintained in years and was in a state of deadlock due to strictly enforced package
versions meaning that we couldn’t upgrade anything without also upgrading that
package which was impossible. Given that there were no users and no business
case, it didn’t make sense to invest in this app at all and we recommended that they
don’t rewrite it but instead take time to research what value they could get from a
mobile app and then write that app.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Make your
roadmap

If you went through all the audit steps before and have a list of things to
address–automate deploys, upgrade the language version, patch security
vulnerabilities, add error monitoring, clean up the data model–you have the start of
your roadmap.

It’s time to take that list and put them in priority order. Your highest priority items are
going to be those which will enable the team to ship working code easily. It’s
impossible to make incremental improvements to an application if there’s no easy way
to get code out the door. That friction will result in more things being batched in every
release which increases the surface area for regressions and will continue to erode
trust in the application.

If the project doesn’t have automated deployment workflow, that should be really high
on your list if not the most important.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

It will be high

Create a
realistic

estimate

After you have your prioritized roadmap of the work needed to stabilize the
application, use it to make an estimate. After the audit, the team should have an
understanding of what needs to be done and you’ll have it broken down in your list.
Go through and create realistic estimates including time for manual regression
testing. Your estimate will be high. This isn’t going to be a sprint of stabilization. That’s
why it’s a rescue project. And that’s ok.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Stakeholder
education!

Once you have the work identified, prioritized, and estimated, it’s time for stakeholder
education. It’s really important not to skip this step. In order for the team to have the
time they need to stabilize the application and to ensure success, all stakeholders
need to understand the stabilization work.

First, it’s important to explain why the issues are a problem. Non-technical folks may
not understand why investing time in creating a stable CI/CD pipeline is important and
may want to deprioritize it because “we’ve gotten code to production before.” Explain
how automated tests and deploys mean that the developers can ship code more
quickly with these tools.

If you have to spend a lot of time re-working the data model, explain the risks of data
migration when there isn’t data integrity or long-term consequences of denormalized
data.

When you’re explaining the parts of the roadmap and their purposes, try to keep in
mind what your audience’s values are. If they care about time and budget, frame the
purpose and need for the work to show how it will maximize future budget. If they care
about the customer experience and are concerned about not getting new features,
frame your argument to show how increased stability and lack of regressions will
increase customer trust and lead to a better experience.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Clearly set
expectations

When you’re stabilizing a rescue project, you may not be able to add new features.
Actually, let me rephrase, you shouldn’t add new features while stabilizing a project.
So the last step of stakeholder education is clearly setting expectations about when
they can get new features they may want. And as the project starts to get better and
better, they’ll become more excited and may not want to wait for you to finish your
work.

Prepare a milestone in the roadmap for when the project will be in a good place and
the team can start balancing further stabilization work with new features. Share that
milestone with your stakeholders. Then when they start asking for things, you have
something concrete to point to that was agreed upon up front.

For my rescue project, my stakeholders obviously cared a lot about budget. They
wanted everything as cheap as possible. When advocating for this refactor of their
projects rather than rewrites, I explained how they would be saving money. When they
first saw the stabilization estimate, they thought they could get an entirely new
application for the same price, but we had some frank conversations about how their
tendency to sacrifice quality got them into this state so it was time to invest in
well-written code to get them stable software they could continue to build on.

That “continue to build on” part was key because besides budget, adding new
features was their other highest priority. They had a list of things they wanted so they
could market their product to investors and raise another round of funding. When I
was explaining the benefits of stabilizing their projects, I explained how a high-quality

foundation would also allow devs to build features quickly because they didn’t have to
wade through the cruft; there would be shorter feedback loops. They were a little
skeptical but quick delivery was a huge selling point for them.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Get to work

Once you have a plan for stabilization and you have stakeholder buy-in, it’s time to
get to work.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Possible roadmap

1. Working dev environment

2. Automated CI/CD

3. Error monitoring

4. Security vulnerabilities

5. Test coverage

6. Upgrades

7. Incremental refactors

For our rescue project, our prioritized roadmap looked something like this. Yours may
look different! Depending on what is important to you and your team as well as the
current state of the project, you may have upgrades higher on the list or you may not
have automated CI/CD on yours if your project already has a working CI pipeline.

For us, the project was being deployed via Heroku and even though the Ruby and
Rails versions had reached EOL, there was still a viable Heroku stack for them so we
worried about other items before upgrading so that we’d have test coverage to catch if
the upgrades broke anything.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Stick to your
plan

It’s going to be challenging to stick to the plan you made as you get your fingers in the
code. Your team may see code they want to clean up or glaring bugs they want to fix,
but it’s important to be methodical and organized as you stabilize the project. You put
a lot of thought into the best way to stabilize the application, so it’s important that you
don’t try to spin too many plates at once.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Error
monitoring

Remember when we were talking before about how rescue projects tend not to be
very resilient? So we need to find easy, low-friction strategies to add resilience early in
the stabilization process.

Adding error monitoring is one of those low-hanging fruits. It won’t make it easier to
resolve a problem, but it will quickly give you feedback if a regression or outage
occurs. If your project doesn’t have error monitoring, make sure you add this early.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Test coverage

When you get to the point that you are adding test coverage, it may feel
counterintuitive but test the bugs. We’re not ready yet to make intentional behavior
changes because we don’t have strategies in place to catch regressions. Even though
it feels bad to leave broken code, make sure you test the bugs. You can add info to
the Rspec context block that this is bug behavior and should be fixed.

When you’re adding tests, make sure you agree as a team what your desired
coverage is. 100% coverage would be ideal to give you confidence in catching
unintended behavior changes, especially if you are not the team/developer that wrote
the code, but this isn’t necessarily realistic. Pick a percentage and strive for that in all
the files you test.

Timebox your time spent on this task and focus on the critical path (user flows,
revenue generating flows, etc). If you have features that are almost never used, they
are less important for you to test and if you run out of time, it’s ok.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Deploy early
and often

As you resolve security vulnerabilities and complete your upgrades, be sure that you
are deploying those changes early and often. Smaller deploys are better. If you
deploy 3 changes a day, that’s better than 1 deploy a week with 15 changes. When a
deploy is small, you can have a lot of confidence that you know what caused a
regression if you find one. And rolling back small deploys are often easier because
there’s less side effects in small deploys. That’s the whole selling point for CI/CD
pipelines, right? You don’t need me to tell you how great lots of small deploys are :)

If you are at the point in your stabilization plan where you are refactoring and making
database changes, you often need multiple deploys to get those changes to
production anyway.

For example, if you want to move data from a deprecated table or column to a more
appropriate place, you’ll usually do one deploy to add the new table/column and a
rake task or migration that copies the data from the old location to the new location.
Then you can QA and make sure that the application code using the new location
looks good. Once it does, you do a second deploy to remove the old table or column.
And QA once more.

This is why having an easy to use deployment workflow is so important.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Incremental
refactors

Related to small deploys are incremental refactors. We can only do small deploys if
we make small changes. Now that we should have some test coverage, we should try
to make small, isolated changes as much as possible.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Choose your
refactoring

strategy

And when refactoring, you have to choose your approach. Do you want to refactor
layer by layer? Focusing on the data layer, then the application later, and the UI last?

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Choose your
refactoring

strategy

Or do you want to go domain by domain within the code instead? Maybe focus on
user management then search then reporting, etc.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Choose your
refactoring

strategy

On our project, we did a combo of both. We had a super complicated, denormalized
data model (remember those diagrams from earlier??) so we would pick one domain,
start at the database and refactor layer by layer from db through business logic to
presentation layer with many many small deploys until that domain was stable. Then
we’d pick the next domain and do the same thing.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Lessons learned

So what lessons did we learn?

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Delete unused
code

I mentioned unused code while we were auditing but I learned about the maintenance
cost of it the hard way.

If the code serves no purpose, delete it. You have source control if you ever want to
revisit it. Thank it for its service and then let it go. Keeping a lot of unused code
around can increase regressions, your need for test coverage, and bits of the code
that would have to be touched if you refactor associations, method names, etc.

There is no good reason to keep this extra cognitive load in the code base. If no one
has to know what it does because it’s never used, get rid of it.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Code logistics

As your team is working through all of this stabilization work, you want to make sure
you’re keeping track of your code logistics. Which branches are running on what
version? Have upgrades been merged into feature branches? When was a database
migration deployed? Was the migration rake task run? Having frequent, small deploys
makes this easier. Long-running branches makes this harder. But we don’t live in a
perfect world so make sure you are paying attention to these things because a
long-running branch is inevitable at some point.

The worst thing that could happen is that you don’t realize data hasn’t been migrated
before you deploy the next migration that drops that table. Then you have to rollback
and restore your last database backup. Not the end of the world, but definitely a little
stressful and not super fun.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Final takeaways

mercedesbernard.com@mercedescodes

Prevent rescue
missions

We should try our hardest to prevent rescue missions. Technical debt is a reality of
working with software and like any investment, sometimes it makes sense to incur
some tech debt in order to achieve larger goals. As long as the investment is
intentional and made with full awareness of the cost, then it can be a good decision.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Prevent future rescue missions

● Always leave the code better than when you found it

● Clearly name functions and variables

● Make use of service objects

● Add foreign keys and database constraints

● Use model validations

● Always add tests for new functionality

● Backfill tests for existing code that you're using in new features

However, we shouldn’t be cutting corners and racking up tech debt willy-nilly.
Advocating for code quality can be a challenge when there is pressure from business
stakeholders to always be shipping but the alternative is worse. Advocate for quality
software using shared language that aligns with stakeholders’ values: time, budget,
future extensibility for new features, customer experience, etc. And then in your work,
continue to make small incremental investments in your code base, like clear naming,
liberal use of service objects, backfilling tests, etc to prevent it from needing to be
rescued later.

mercedesbernard.com@mercedescodes

If the project fails,
it is not your fault

We can audit everything, make a plan, do the work, and sometimes the business will
ultimately decide that it’s no longer worth the investment. Or maybe the team just runs
out of allotted time due to unforeseen challenges. It’s ok. You did not fail. The
application got into this place without you and you didn’t cause it to fail.

mercedesbernard.com@mercedescodes mercedesbernard.com@mercedescodes

Thank you!

