
mercedesbernard.com@mercedescodes

Coaching through coding

Hello! Today we’re going to talk about finding opportunities for coaching and
mentorship in the daily technical activities of our work as individual contributors. This
talk is written for senior+ engineers, senior, principal, staff engineers, etc. But I hope
everybody here today will find at least one new strategy to bring to their team to
create a more welcome learning environment for everyone regardless of level.

My name is Mercedes Bernard. My pronouns are she/her. And I’m a Principal
software engineer/engineering manager with a digital consultancy in Chicago called
Tandem.

mercedesbernard.com@mercedescodes

mercedesbernard.com/speaking/coaching-through-coding

@mercedescodes

#_rc_coaching-through-coding

If you would like to follow along, you can find my slides on my website and I also
tweeted out a link right before this talk if that’s easier.

Feel free to Tweet at me, live-tweet the talk, or shoot me messages in Slack. I’ll be
doing a virtual Q&A right after this talk and will catch up with all of you then.

mercedesbernard.com@mercedescodes

Individual Contributor

People Manager

As we progress in our careers, we’re often met with a fork in our career path. Do we
want to progress into people management or do we want to become a technical
expert and stay on the individual contributor (IC) track?

For anyone who isn’t familiar, “Individual contributor” is the term used to describe the
role of a software engineer who contributes their deep technical skills and ability to a
team but doesn’t have people management responsibilities.

Personally, I find this distinction between people management and individual
contributor somewhat limiting. I think folks who manage people can still be technical.
And I think people who strive for deep technical knowledge still have a responsibility
to share that knowledge with others.

mercedesbernard.com@mercedescodes

What if I told you that instead of a fork in the road, the choice to pursue a
management or IC role is really like deciding whether you want to change into the bus
lane or stay in the bike lane?

Hear me out.

mercedesbernard.com@mercedescodes

Debuggin

Abstraction

Unit tests

When we go into people management, we’re responsible for supporting the career
growth of many different people at different stages in their careers. It’s kind of like
you’re driving a bus and helping your team get to where they’re going.

When they need to work on a skill, they can get off at that stop and invest time in
honing that skill. Then when they’re ready, you pick them up on your next route
through and mentor them on possible next steps they could take. And they’ll get off at
another stop when they find another skill they want to grow and invest in.

A good manager shows you where you can go and helps you get there. They find
opportunities for you and offer directions if you need them.

mercedesbernard.com@mercedescodes

Being an IC is more like commuting on your bike. On your bike commute, you can
take the quickest route to get to your personal, desired destination. You can find all of
the shortcuts and all of the convenient detours to avoid tricky intersections.

It might be more effort for you to bike to work than take the bus but you can take a
fast, straightforward route that works for you.

mercedesbernard.com@mercedescodes

The 10x
developer

Often, it’s not in the team’s best interest for one person to get from point A to point B
as quickly as possible. As ICs, our success is often measured by the technical
problems we solve.

I think our industry has taken the “individual” part of individual contributor too far,
assuming that a top performer is someone who can do the work of 10 others rather
than someone who can enable and empower the work of 10 others successfully.

I take heart in the fact that the 10x developer has become a meme at this point. But
there are still too many people responsible for building teams that are looking for their
unicorn.

Team success is marked by continuous learning and growth. And our senior ICs
should support the team success by finding ways to contribute to everyone’s
professional development and learning.

mercedesbernard.com@mercedescodes

Sometimes the most enjoyable commute is one you take with someone. I’m
proposing that we start taking more tandem bike rides together, slowing down just a
bit to ensure that the whole team succeeds.

mercedesbernard.com@mercedescodes

Mentorship vs. Coaching

Throughout this talk, I’ll be using the terms mentorship and coaching. “Mentorship” is
a fairly common concept that’s tossed around a lot in our industry and we’re starting
to hear about “coaching” more and more. They both fall under the mentorship
umbrella, but there is a little nuance that I think is important to call out.

mercedesbernard.com@mercedescodes

Mentorship
Relationship oriented. Long term. Sharing

advice and personal experience to influence
future growth.

When we hear the term “mentorship,” a lot of us tend to think about 1:1 conversations
over a cup of coffee or tea where the mentor tends to do most of the talking.

This is because mentorship is very relationship-oriented. It is reliant on getting to
know one another well in order to share goals and offer advice. Conversations like
these require a lot of trust and vulnerability, so mentorship relationships tend to be
more long-term.

mercedesbernard.com@mercedescodes

Coaching
Performance oriented. Short term. Teaching
and providing feedback to improve current

skills or acquire new skills.

Coaching, on the other hand, is less about the future and more grounded in the
present. Instead of offering advice for potential goals and career growth, coaching
fosters the growth of current skills by providing feedback and guidance for the task at
hand.

Because coaching is more skills-focused, it doesn’t require as much of the long-term
commitment for relationship building. This makes coaching an incredibly powerful tool
that can be used in many different interactions.

While managers support the career growth of their team through mentorship,
everyone has the opportunity to support their team’s technical skill growth with
coaching.

mercedesbernard.com@mercedescodes

As a senior+ developer, we write a lot of code but we also have a whole variety of
other technical responsibilities that we participate in. And every single one of those is
an opportunity to coach someone and level-up their skills. I’m going to walk through
examples starting with very code-heavy activities and moving to less code-heavy
activities.

mercedesbernard.com@mercedescodes

Pair programming

Pair programming is a wonderful coaching tool when approached correctly.
Collaborating on a piece of code with a less experienced team member provides a
safe learning environment. You can provide suggestions and feedback without going
into full Teacher mode which keeps the session comfortable and incredibly valuable.

mercedesbernard.com@mercedescodes

Navigating

As a senior+ engineer, you should spend a lot of your pairing time navigating.

How do you decide if you should be navigating on a specific task? Tasks that may be
too challenging for your pair to implement solo or that may solicit a lot of code review
feedback are good candidates for navigating to help them to level up their ability to
work on complex tickets. I tend to think about complex stories as those that touch
many layers of your system but it may also be ones that require a lot of domain
context or are using a tricky design pattern or some other scenario specific to your
project.

In the navigator role, you have the opportunity to coach about code architecture and
organization. And you also leave your pair in control of the session as the driver.
Power dynamics during pairing are real, whether they’re based in gender, race,
organization hierarchy, personality differences, or other factors. Given the reality of
our industry, the power differential usually skews to privilege the more senior
engineer. By having your pair drive, you can create a safe pairing space by setting
expectations that they control the pace and they can stop the session to ask
questions or get more clarity any time they want it.

While you’re navigating, stay focused on the big picture thinking. Let the driver decide
on naming and syntax. Be ready to help where needed but let them focus on the
details. This can be especially helpful for someone early in their career to get
comfortable making decisions between 2 similar implementations (should I use a
`.map` or an `each`) or to get the muscle memory for certain things we take for

granted like creating Rails migrations or spec files.

And as they are making decisions, you can provide feedback and context to model
thinking through the tradeoffs between choices.

Where you take a more active role in the pair session is deciding how the individual
pieces of code the driver is writing will fit together. You can coach them on deciding
when to create an abstraction or when to make a service object for easier readability
or maintenance. Hearing how you make your architecture decisions and how you put
the pieces together will strengthen their architecture skills.

mercedesbernard.com@mercedescodes

Driving

This might be counterintuitive but as a senior+ engineer, I think you should try to
spend 50% of your time driving during pair sessions.

When should you be driving? Tasks that would be a stretch for your pair to implement
solo are good candidates. And when I say stretch, I mean within their scope of skills
but something they would be challenged by: a new pattern they haven’t used before
but exists within the codebase or a problem they haven’t solved before but is similar
to something else they’ve done. Driving on these types of tasks is a good way to
foster your pair’s technical thinking and communication by providing support in that
stretch space.

Other good candidates for driving are areas of the code that your pair is more familiar
with than you are. As senior+ engineers, we need to be comfortable recognizing the
expertise of our team members and celebrating it. This does wonders for combatting
imposter syndrome and leveling the playing field so that everyone on the team feels
safe and comfortable sharing opinions and lending expertise in conversations.

However! When I say drive, I mean the very traditional pair programming definition of
driving where you are concerned with the smaller issues at hand: syntax and naming.
This makes space for your pair to practice their technical communication skills.
Vocabulary is really hard in software engineering and we all need to practice
explaining our technical ideas to become skilled at this type of communication. We
also need the practice to be able to identify what we don’t know and how to ask
questions to help us find solutions.

When you are driving, resist the urge to fill silences or “give them the answer”. Use
questions to understand what the navigator wants to do next and mirror their
statements to check for your understanding. Provide them with the vocabulary if they
get stuck and use pseudocode liberally to capture the navigator’s ideas. Sometimes
seeing code can help people better articulate what they’re thinking.

As you’re driving, explain why you are naming things the way you are or how you’re
making decisions about which lines of code you’re writing or why you’re passing the
parameters you are. This is an opportunity for you to coach on readability and
simplicity to help the next developer understand your code.

If you find yourself taking too much control of the pairing session and your pair just
watching you code, you should pause.

Are you navigating so much because this task is too complex and not a good stretch
opportunity? If so, talk to your pair and ask to switch to navigating so that you’re both
engaged in the session.

Are you navigating because it’s hard to let go of control? Take a break, grab a drink of
water, and when you start pairing again, acknowledge that you were navigating too
much, apologize and be more aware as you continue. It takes practice and no one’s
perfect. Recognizing when you’re falling into this pattern will help you break the habit.

mercedesbernard.com@mercedescodes

Debugging

Debugging sessions tend to blur the line between driver and navigator a bit more than
stories since neither of you may know what’s happening or what’s causing the issue.

If you are in the navigator role during a debugging session, you can explain how
you’re interpreting the symptoms that you’re seeing: error messages, odd behavior,
steps to reproduce, data discrepancies, etc. You can lend your expertise by pointing
the driver where to look and then describing why you think something is or isn’t
important to continue investigating.

When you’re driving, your pair can practice critical thinking and problem-solving skills
since they’ll be reading error messages, interpreting their meaning, and directing you
where to look for the cause of the issue. This is incredibly valuable because these are
the kinds of skills that aren’t taught in most education programs. Having your pair
make decisions about what to investigate next makes it easier for them to remember
next time that it might be a data issue or to isolate whether the bug is happening on
the client or server by checking the network tab.

My personal preference during a debugging session is to have my pair navigate.

I was recently pairing with an apprentice and they were driving while we were
debugging an interesting React bug. They were so interested in “fixing the problem”
that they were making changes faster than the hot-reloading could catch up and
within a couple minutes, I had no idea which change we were testing in the browser
because Webpack was still rebuilding… something… In that moment, I asked them to

pause and explain why they made the last change did. We laughed because they
were kind of doing a “throw it at the wall and see what sticks” approach but it wasn’t
super helpful because we couldn’t keep track of what they had tried or why they were
trying it. We swapped roles in the pairing session and I was able to have them
navigate and explain what changes they wanted to make and we were able to be
more systematic and isolate the bug.

In my experience, early career devs try to move through debugging steps really
quickly because they feel pressure to “find the answer.” As the driver, you can slow
them down a bit and make sure that you are methodical as you are checking your
assumptions and trying to reproduce the issue.

mercedesbernard.com@mercedescodes

Code reviews

Code reviews can be intimidating. Going into Github (or your source control tool of
choice) and seeing that big red “Changes requested” can be discouraging if not
treated with care. Without proper consideration, the feedback given lacks context and
can be less than helpful. But when prioritized as a coaching tool, code reviews
provide some unique opportunities for sharing knowledge and developing technical
skills.

Some of the benefits of code reviews compared to pairing are that they can be
asynchronous so you don’t have to align your calendars which can be especially
challenging now that most of us are remote and many teams are juggling timezones.

 And if you are using a tool such as Github’s pull requests, code reviews also serve as
long-lived written documentation and feedback that the reviewee and others on the
team can refer back to.

mercedesbernard.com@mercedescodes

Specific
feedback

When providing feedback about something that you think should be changed, make
sure that you are specific about the reasons why. Instead of using vague terms or
talking about “better,” explain what the benefit your proposed change will have.
Explaining the benefits and potential tradeoffs and why you prefer the proposed
solution models technical decision-making skills for the reviewee.

mercedesbernard.com@mercedescodes

Without ever sharing the reasoning that goes into a decision, it’s hard for someone to
learn the various considerations to think about when they are coding. Taking this little
extra time to model this behavior helps them develop these skills when they are
making their own implementation decisions next time.

mercedesbernard.com@mercedescodes

It’s also important to balance prescriptive requested changes with open-ended
questions from both a kindness and a coaching perspective. Code is subjective and
there is no “right” way to do it, open-ended questions allow you to make suggestions
without forcing someone into your choices. They are also a useful coaching tool to
stretch someone’s skills as they progress in their career. Rather than providing an
answer for them, you can prod them to think about something they might not have
considered, such as performance. Pointing out nested iterations and asking, “How
might we reduce the nesting levels here?” provides them some guideposts to think
through alternative implementations.

Open-ended questions are more process-oriented than results-oriented. They
facilitate a dialog about the code and make space for a larger conversation which
paves the way for more coaching opportunities through pairing or implementation
planning.

mercedesbernard.com@mercedescodes

Positive
feedback

Code reviews aren’t only for requesting changes and picking apart code. There is
always something positive to find while doing a code review. It can be a well-written
test, a great variable name, or just the evidence of progress that someone’s coding
skills are leveling up, such as their methods are getting clearer and easier to
understand.

mercedesbernard.com@mercedescodes

It’s important to share positive feedback so you reinforce the learning and growth
that’s occurred. A small comment about how great this variable is because I could tell
exactly what it was from the name or about how helpful the code comments were are
great reminders for the reviewee that other people will read and use this code and
that naming and documentation are important skills.

mercedesbernard.com@mercedescodes

Be intentional
with your PR

Finally, giving feedback in a PR isn’t the only way to use code review tools. You can
also use them proactively to add comments to code that you’ve written to guide and
coach your team.

First, make sure your PR description is helpful. Make sure it not only explains the
high-level change you made but why you made the change. What is the use case or
the added benefit that this change will give the user? What bug behavior does this
resolve? Provide context so your reviewers can review more than just the lines of
code present, but could also think about possible enhancements.

mercedesbernard.com@mercedescodes

And provide links to helpful documentation. If you used Stack Overflow answers to
help you find a solution, link to them. If you found yourself digging deep into
documentation to find an answer, link to it. If you know you’re using a specific design
pattern, explain it and why you chose it, and maybe link to a helpful blog post in case
someone wants to learn more about it.

As you do this more and more, closed PRs become treasure troves of knowledge that
can be used by the present team to expand their skills or by future team members to
gain an understanding of legacy code changes that might not be intuitive upon first
glance.

By proactively sharing documentation, you’re also showing that everyone has to look
things up and it’s ok not to have an answer. Success is measured by finding
answers, not by having them. And linking to relevant documentation can help your
team become more comfortable reading docs and more skilled at determining what is
and isn’t helpful documentation which will increase their efficiency.

mercedesbernard.com@mercedescodes

If your PR is still especially meaty, don’t be afraid to go through a code review for
yourself first and leave comments on tricky bits of code or configuration explaining
what they do.

I recently had a PR that was focused on improving performance for one of our key
use cases and it was especially complex because our client’s on-prem database is
Oracle which is a non-standard choice for Rails. Some of our go-to Active Record
strategies weren’t available in the Oracle adapter and we couldn’t add extra indexes
to their database so I had to get creative. I went through and explained my choices in
the comments and what each part was doing so that it would be easier for reviewers
to follow the diff and understand what they were looking at.

mercedesbernard.com@mercedescodes

When someone just skims your code and does a “LGTM” (looks good to me)
approval, no one benefits. And the more questions you can prompt on your code, the
more opportunities you have to make sure that everyone on the team is on board with
the implementation and understands the choices made. Everyone wins with more
questions so find ways to encourage your team to dig into the code you write so you
can share insights with them.

mercedesbernard.com@mercedescodes

No-code technical tasks

When we aren’t writing code, that doesn’t mean we’re not still engaging in technical
work. There is a lot to learn and share from the code-adjacent tasks that we do every
day.

mercedesbernard.com@mercedescodes

Estimating

Estimating is a really hard skill to learn since estimates are very subjective and
everyone approaches them differently.

During an estimation meeting when someone estimates low and you estimate high,
have them explain why they think the task is low effort or complexity. Understand and
acknowledge where they’re coming from. And then explain why you estimated high.
This is a good opportunity to explain non-obvious considerations or remind the team
about all the different layers of the application this functionality will touch.

Sometimes when we’re early in our career, we tend to oversimplify tasks in our head,
forgetting that we need to migrate data or that there is no API for this UI yet or that the
stakeholder always waits until the last minute to change their mind so we should start
to anticipate that pattern.

Sharing all of your estimation considerations can help your team start to broaden their
thinking when they’re estimating and consider things that they haven’t before.

And opening up the estimating process for conversation also makes space for your
team to share their expertise with you. Sometimes you’ll learn about a part of the
code base that they are more familiar with. When they practice pushing back on your
assumptions by explaining why your estimate is too high because you’re not
considering code reuse or other similar patterns already in the code base, they are
flexing those muscles in a safe space and growing for when they might need to use
them with stakeholders later.

mercedesbernard.com@mercedescodes

Status
updates

Status updates (in stand up or other meetings) are a great place to share with the
team what you’ve tried and what did or didn’t work. Sharing things that didn’t work is
just as important as sharing what did because it shows how you approach a problem.
Learning how to problem solve and learning new problem-solving strategies is key to
success in our work.

You can also coach your team on timeboxing by explaining when you knew it was
time to change tactics and try something different which will help them learn to
manage their own time and lead to a more productive team.

Sharing your status updates creates space for people to express interest in work that
they aren’t involved in and gives you the opportunity to include them in it. This helps
make sure that everyone on the team is getting the chance to develop a variety of
skills and also helps build your awareness of each team member’s specific interests
so you can sponsor them for opportunities that align.

mercedesbernard.com@mercedescodes

Architecture
diagrams

And other documentation

As developers, we hate documentation. I don’t know very many people who enjoy
taking the time to write it well and it often gets deprioritized in favor of more code. But
creating architecture diagrams and functional documentation is a valuable opportunity
for pairing. It can help your team see the big picture of the entire project and
encourage everybody to remember your users which increases our empathy when
we’re building it.

Creating documentation helps solidify what they know about the system and creates
opportunities to ask questions about the things they don’t know. Increased confidence
in their knowledge of the system they work in every day increases comfort and safety
for them to ask more open-ended questions for why parts of the system were built
that way.

And documentation doesn’t just come at the end of a project or feature :) If you are
creating diagrams at the start of the project to think through system configurations,
you have the opportunity to discuss the pros and cons of each approach and help
your team understand why we might choose one approach over another.

On my team, we’ve been talking a lot about the constraints of our current project and
when those constraints make it appropriate for us to use a microservice, and when a
microservice may increase our maintenance effort without any added benefit.

For example, our current client has a large legacy system for managing their data
made of up many many different databases with multiple different database

management systems underneath. And they’ve been known in the past to change
which database they’d like us to query for critical data with little warning. So rather
than spend time configuring Rails to handle multiple databases and try to figure out
how to manage multiple ActiveRecord adapters, we’ve chosen to use some selective
microservices to manage database connections. Being able to talk through these
constraints and how they lead us to the microservice decision has been really
productive and led to many additional architecture talks that will help on future
projects.

Engaging in conversations about architecture and infrastructure considerations will
deepen your team’s understanding of those concepts that they will be able to bring
with them to their next project.

mercedesbernard.com@mercedescodes

Research and
spiking

Finally, pair with someone on the team when you’re doing research or investigating a
spike. I’ve said it before but it’s worth emphasizing: being able to share how you
research and make decisions is really beneficial to your team.

We rarely learn these skills in any code school or college program and have to learn
by doing. Sharing your tips and what you’ve learned over the years by researching
with them will help them develop these skills faster.

Think about the last time you went Googling for an answer to a tricky technical
question. How were you able to glance at the first 3 Stack Overflow questions and
know that they weren’t helpful to your specific use case? When you look at
documentation, how long do you spend digging before you realize that the feature you
are looking for either doesn’t exist or is undocumented? How do you determine when
it’s worth cracking open the source code of an open-source library to find the method
parameter you’re looking for because it was alluded to in their docs but never
explained sufficiently? These are all things that come with experience and we can
save our team time and provide helpful guidance for them to learn this kind of
intuition.

One of my favorite tricks, when I’m stuck trying to figure out how to use a library, is to
go to their source code and check out their test suite (hopefully they have one!). Tests
can be a quick and easy source of documentation to see a variety of ways to invoke
the library and can help you find your use case faster and with less trial and error.

Pairing while researching and looking for questions also helps create a more level
environment where you and your pair can be confused and learn together. This is
great for trust and relationship building and also boosting resilience so that imposter
syndrome doesn’t kick in the next time your team member doesn’t have an answer.
Create a welcome space for people to say “I don’t know, let me go find out.”

mercedesbernard.com@mercedescodes

Share joy in learning

At the end of the day, I think the most important coaching tool is to just share joy in
learning with the rest of your team. To be successful in tech, we need to be
continuously learning.

No matter how small something you learned is, tell your team about it. Get excited
that you hooked up a radio button in a framework you’ve never used before. Share
that feeling of accomplishment when you finally identified that ridiculous edge case in
the legacy system you’re integrating with. Show off a silly side project you’re making.
Wow your team with a new hobby you picked up. We don’t have to be experts all the
time. Our jobs are fun because we get to learn and solve problems all day long, share
that with your teams.

mercedesbernard.com@mercedescodes

Your commute becomes more enjoyable when you share it with someone, so does
learning and growing.

We don’t all want to be bus drivers with the responsibility of helping to get our team
members to the next stop on their career, but that doesn’t mean we can’t travel with
them for a little while and still find opportunities to support their career growth from our
own bike seats.

We should think of our technical work like riding a tandem bike and look for people to
share a ride with for a little while.

mercedesbernard.com@mercedescodes

Thank you
#_rc_coaching-through-coding

