
mercedesbernard.com@mercedescodes @mercedes

Fun, Friendly
Computer Science

Hello! Today we’re here to talk about Fun, Friendly Computer Science. This talk is
going to be computer science quick hits. We’re going to cover 7 topics in about 30
minutes. So because we don’t have very much time, this talk will mainly focus on
fundamental and introductory object-oriented programming concepts. But there’s a
whole world of other CS things to learn if you want to explore more.

If you have some familiarity with loops, array, and classes, you’ll be able to follow
along with this talk!

My name is Mercedes Bernard. My pronouns are she/her. And I’m a senior software
engineer and engineering manager with a digital consultancy in Chicago called
Tandem.

mercedesbernard.com@mercedescodes @mercedes

Why?

My background is in traditional, CS. I have a BS in CS. But the longer I’m in this
industry, the more I realize that there is a lot that I learned that I never use. If you
came into software from a non-traditional path, you may never have had the chance
to learn this stuff. But you’ll still be interviewed on it.

My goal with this talk is to show you that these topics that are used in interviews and
sometimes used for gatekeeping aren’t intimidating and also aren’t really that
important because a) you probably already know it and just don’t have the words to
explain it and b) you really don’t use it very often.

You’ll walk away from this talk with a high level understanding of a bunch of different
topics as well as metaphors that you can use to explain them and examples that you
can refer to later if you need them.

If you already know everything in this talk, that’s great! But you’ll probably still find
something useful in explaining this to those you mentor or teach.

mercedesbernard.com@mercedescodes @mercedes

mercedesbernard.com/speaking/fun-friendly-cs

If you are someone who likes to reference slides or speaker notes while I’m talking,
I’ve posted the slides for this talk here. I also tweeted out a link right before I got
started so you can also find it on my Twitter profile.

mercedesbernard.com@mercedescodes @mercedes

github.com/mercedesb/fun_friendly_cs_python

There will be code samples in this talk and you can find them all in this repo. Be sure
to check out the commits because each commit corresponds to one of the topics we’ll
cover here today.

The project runs and there’s a simple UI that you can interact with if you are someone
who learns by doing more than reading code.

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

Concepts

mercedesbernard.com@mercedescodes @mercedes

Big O Notation

Cooking with ratios is when you don't memorize recipes but instead memorize the
ratios of ingredients. The amount of ingredients you need changes in proportion to
how much of the food you want to make. For example, cupcakes follow a 4:3:2:1
ratio.

Big O Notation measures relative complexity of a function or algorithm. Most often this
is measuring running time but it could also be used to measure memory consumption,
stack depth, and other resources. We’re going to focus on running time since in an
interview, that’s what they’re usually asking about. The actual input size is
unimportant because we want to measure the proportional
complexity of the logic.

This measurement is language/hardware/time agnostic and is relative to the code’s
input size.

We also talk about it according to worst case scenario. Sometimes in different sort
and search algorithms you get lucky and the collection is nearly sorted or the object is
near the beginning of your iteration but when we’re talking about complexity, we want
to plan for the worst case scenario.

mercedesbernard.com@mercedescodes @mercedes

O(1)
def combine_butter_and_sugar(self, batches):

 steps = []

 butter = {

 "ingredient": self.recipe_ratios["butter"],

 "amount": batches * self.recipe_ratios["butter"]["number"]

 }

 sugar = {

 "ingredient": self.recipe_ratios["sugar"],

 "amount": batches * self.recipe_ratios["sugar"]["number"]

 }

 steps.append(self.beat_with_mixer([butter, sugar], 3))

 steps.append("Combine butter and sugar: O(1)")

 return "
".join(steps)

O(1) = Constant running time regardless of input size

mercedesbernard.com@mercedescodes @mercedes

O(n)

def add_eggs(self, batches):

 steps = []

 one_egg = { "ingredient": self.recipe_ratios["eggs"],

"amount": 1 }

 butter_mixture = { "ingredient": "butter mixture" }

 amount = batches * self.recipe_ratios["eggs"]["number"]

 for _ in range(amount):

 step = self.beat_with_mixer([one_egg, butter_mixture], 1)

 steps.append(step)

 steps.append("Added eggs: O(n)")

 return "
".join(steps)

O(n) = Running time proportional to input size and running time increases linearly

mercedesbernard.com@mercedescodes @mercedes

O(n2)
def combine_flour_mixture_and_milk_and_butter_mixture(self,

batches):

 steps = []

 # abbreviated for slides

 steps.append(self.beat_with_mixer([butter_mixture,

flour_mixture], 1))

 for _batch in range(batches):

 for _portion in range(batches):

 steps.append(self.beat_with_mixer([butter_mixture, milk],

1))

 steps.append(self.beat_with_mixer([butter_mixture,

flour_mixture], 1))

 steps.append("Slowly combined milk, flour mixture, and butter

mixture: O(n^2)")

 return "
".join(steps)

O(n^2) = Running time proportional to the square of the input size. This is common in
nested iterations.

mercedesbernard.com@mercedescodes @mercedes

O(2n)
def fibonacci_frosting(self, batches):

 number_to_frost = self.calculate_fibonacci_number(batches)

 return f"Iced the fibonacci number {number_to_frost} to all

of the cupcakes: O(2^n)"

def calculate_fibonacci_number(self, number):

 if number <= 1:

 print("Fibonacci base case!")

 return number

 else:

 print(f"Adding fibonacci numbers {number} and {number -

1}")

 return self.calculate_fibonacci_number(number - 1) +

self.calculate_fibonacci_number(number - 2)

O(2^n) = Running time grows exponentially with the size of the input. For example,
calculating Fibonacci recursively

mercedesbernard.com@mercedescodes @mercedes

O(logn)

Divide and conquer
algorithms such as binary

search

O(log n) = This is kinda the opposite of O(2^n).

mercedesbernard.com@mercedescodes @mercedes

Big O Uses

Interviews
Comparing the performance of 2 possible solutions
Having a shared language

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

Set theory

Venn diagrams are a great way to think about set theory. A set is a data structure
similar to arrays or lists but it is an unordered collection of objects with no duplicates.

Sets are more interesting for what we can do on them. These operations form the
basis of set theory.

mercedesbernard.com@mercedescodes @mercedes

Union: X ∪ Y
All of the cute accounts

Union - X ∪ Y The stuff that exists in X OR Y

mercedesbernard.com@mercedescodes @mercedes

Intersection: X ∩ Y
Accounts featuring cute

dogs and cats

Intersection X ∩ Y - The stuff that exists in X AND Y

mercedesbernard.com@mercedescodes @mercedes

Difference: X - Y
Accounts featuring only cute

dogs (no cats allowed)

Difference - X - Y The stuff that only exists in X

mercedesbernard.com@mercedescodes @mercedes

Relative
Complement:

Y \ X
Accounts featuring only cute

cats (no dogs allowed)

Relative complement Y \ X (same as Y - X) The stuff that only exists in Y

mercedesbernard.com@mercedescodes @mercedes

Symmetric
Difference: X △ Y

Accounts featuring either
dogs or cats, but not both

(no cross species friendships
here)

Symmetric difference (disjunctive union) X △ Y
Same as (X ∖ Y) ∪ (Y ∖ X).
The stuff that exists in only X and the stuff that exists in only Y but none of the stuff
that exists in both

mercedesbernard.com@mercedescodes @mercedes

Set Theory Uses

Set theory is the foundation of relational databases
Website filters

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

Recursion

Russian nesting dolls are a great metaphor for recursion, because each doll is the
same except for its size. The dolls continue to open until you get to the smallest child
which does not open. When you reach the smallest child, your reverse the process,
closing each doll one by one in reverse order.

Recursion is the process in which a function calls itself directly or indirectly. And the
function that is doing this calling of itself is called a recursive function. Everything that
you do recursively you can also do in a loop.

When writing a recursive function, we don’t want it to continue calling itself infinitely so
we have to set up a condition where it exists the nesting and returns a finite value.
This is called the base case. The smallest doll in Russian nesting dolls is like the base
case.

When you’re writing a recursive function, the base case is usually the easiest place to
start.

mercedesbernard.com@mercedescodes @mercedes

def count(self):

 return self.count_nested_dolls(self.big_doll)

def count_nested_dolls(self, doll):

 child = doll.open()

 # base case

 if child is None:

 return 1

 return self.count_nested_dolls(child) + 1

mercedesbernard.com@mercedescodes @mercedes

Recursion Uses

Navigation paths on a website

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

Data Structures

mercedesbernard.com@mercedescodes @mercedes

Linked List

When you are following a scavenger hunt, you start with the first clue and must follow
each clue sequentially one at a time. Because you have no way of knowing where the
nth clue is when you start, you must follow the hunt from clue to clue to clue.

A scavenger hunt is a good metaphor for a linked list. A linked list is a data structure
characterized by sequential data access and no random access. This is unlike arrays.
In arrays, because all of the data is stored in contiguous locations in memory, you can
do simple addition and subtraction to find the memory location of the data at the nth
node. For example, array[3] is just 3 memory
locations from array[0]. Linked lists on the other hand, do not need contiguous
memory allocated. Each node in a linked list points to where the next node is located.

Because of the memory allocation, a linked list will have no wasted space because it
can grow and shrink dynamically whereas traditionally an array always needs to be
allocated to maximum size (or copied to a new array if it needs to grow). We tend to
forget this when working with Javascript since JS Arrays behave more like ArrayList.

However, because a linked list node needs to store its data and a reference to the
next node, it does take up a bit more space than an array of the same data.

Linked lists have fast insertion and deletion if its at the head or tail. But to insert into
the middle of a linked list is O(n) because we need to loop through the list to the place
we want to insert, update the previous nodes pointer to the inserted node and update

the inserted nodes pointer to the next node.

mercedesbernard.com@mercedescodes @mercedes

def add(self, data):

 new_node = LinkedListNode.objects.create(data=data)

 if self.head is None:

 self.head = new_node

 else:

 self.tail.next = new_node

 self.tail.save()

 self.tail = new_node

 self.save()

 return new_node

mercedesbernard.com@mercedescodes @mercedes

head tail def add(self, data):

 new_node = LinkedListNode.objects.create(data=data)

 if self.head is None:

 self.head = new_node

 else:

 self.tail.next = new_node

 self.tail.save()

 self.tail = new_node

 self.save()

 return new_node

mercedesbernard.com@mercedescodes @mercedes

head tail def add(self, data):

 new_node = LinkedListNode.objects.create(data=data)

 if self.head is None:

 self.head = new_node

 else:

 self.tail.next = new_node

 self.tail.save()

 self.tail = new_node

 self.save()

 return new_node

mercedesbernard.com@mercedescodes @mercedes

head tail def add(self, data):

 new_node = LinkedListNode.objects.create(data=data)

 if self.head is None:

 self.head = new_node

 else:

 self.tail.next = new_node

 self.tail.save()

 self.tail = new_node

 self.save()

 return new_node

mercedesbernard.com@mercedescodes @mercedes

def remove(self):

 if self.head is None:

 return self.head

 removed = self.head

 self.head = self.head.next

 self.save()

 removed.next = None

 removed.save()

 return removed

head tail

mercedesbernard.com@mercedescodes @mercedes

head tail def remove(self):

 if self.head is None:

 return self.head

 removed = self.head

 self.head = self.head.next

 self.save()

 removed.next = None

 removed.save()

 return removed

mercedesbernard.com@mercedescodes @mercedes

head tail def remove(self):

 if self.head is None:

 return self.head

 removed = self.head

 self.head = self.head.next

 self.save()

 removed.next = None

 removed.save()

 return removed

mercedesbernard.com@mercedescodes @mercedes

def insert(self, data, index):
 if index < 0:
 return None

 new_node = LinkedListNode.objects.create(data=data)

 if index == 0:
 new_node.next = self.head
 self.head = new_node
 self.save()
 else:
 current = self.head
 previous = None
 i = 0

 while current is not None and i < index:
 previous = current
 current = current.next
 i += 1

 # found where to insert the new node
 if current is not None:
 previous.next = new_node
 new_node.next = current
 previous.save()
 new_node.save()
 elif previous == self.tail:
 self.add(data)

 return new_node

head tail

mercedesbernard.com@mercedescodes @mercedes

head tail

def insert(self, data, index):
 if index < 0:
 return None

 new_node = LinkedListNode.objects.create(data=data)

 if index == 0:
 new_node.next = self.head
 self.head = new_node
 self.save()
 else:
 current = self.head
 previous = None
 i = 0

 while current is not None and i < index:
 previous = current
 current = current.next
 i += 1

 # found where to insert the new node
 if current is not None:
 previous.next = new_node
 new_node.next = current
 previous.save()
 new_node.save()
 elif previous == self.tail:
 self.add(data)

 return new_node

mercedesbernard.com@mercedescodes @mercedes

head tail

def insert(self, data, index):
 if index < 0:
 return None

 new_node = LinkedListNode.objects.create(data=data)

 if index == 0:
 new_node.next = self.head
 self.head = new_node
 self.save()
 else:
 current = self.head
 previous = None
 i = 0

 while current is not None and i < index:
 previous = current
 current = current.next
 i += 1

 # found where to insert the new node
 if current is not None:
 previous.next = new_node
 new_node.next = current
 previous.save()
 new_node.save()
 elif previous == self.tail:
 self.add(data)

 return new_node

mercedesbernard.com@mercedescodes @mercedes

head tail

def insert(self, data, index):
 if index < 0:
 return None

 new_node = LinkedListNode.objects.create(data=data)

 if index == 0:
 new_node.next = self.head
 self.head = new_node
 self.save()
 else:
 current = self.head
 previous = None
 i = 0

 while current is not None and i < index:
 previous = current
 current = current.next
 i += 1

 # found where to insert the new node
 if current is not None:
 previous.next = new_node
 new_node.next = current
 previous.save()
 new_node.save()
 elif previous == self.tail:
 self.add(data)

 return new_node

mercedesbernard.com@mercedescodes @mercedes

Linked List Uses

When you don’t know the size of the data ahead of time and you don’t need efficient
random access.

Implementing your own stack or queue… but would you really? Probably not since
most languages and frameworks have these data structures built for you already. We
don’t want to reinvent the wheel.

Blockchain

Doubly linked list
Playlist

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

Stack

A PEZ dispenser is wonderful visualization of a stack. When you fill it with candy, you
are pushing the candy from the top down and when you eat the candy, you pop a
piece of the top of the literal stack of pieces one at a time.

A stack data structure behaves the same way. Stacks are characterized by last in, first
out (LIFO) data access. When implemented as a linked list, adding and removing
from the stack are O(1).

mercedesbernard.com@mercedescodes @mercedes

def push(self, data):

 new_node = LinkedListNode.objects.create(data=data)

 if self.head is not None:

 new_node.next = self.head

 new_node.save()

 self.head = new_node

 self.save()

 return new_node

def pop(self):

 popped = self.head

 self.head = self.head.next

 self.save()

 popped.next = None

 popped.save()

 return popped

mercedesbernard.com@mercedescodes @mercedes

Stack Uses

When you want to enforce LIFO data access.
Browser back button
Undo/redo feature
Checking for balanced delimiters in a string (parentheses, quotes, HTML tags, etc)

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

Queue

Waiting in line, or as the British call it queuing up, is a literal
visualization of a queue. The first person in line is the first person out of line. And new
folks joining the line (should) always join at the back.

A queue data structure behaves the same way. Queues are characterized by first in,
first out (FIFO) data access. When implemented as a linked list, enqueuing and
dequeuing from the queue are O(1).

mercedesbernard.com@mercedescodes @mercedes

def enqueue(self, data):

 new_node = LinkedListNode.objects.create(data=data)
 if self.head is None:

 self.head = new_node

 else:

 self.tail.next = new_node

 self.tail.save()

 self.tail = new_node

 self.save()

 return new_node

def dequeue(self):

 dequeued = self.head

 self.head = self.head.next

 self.save()

 dequeued.next = None

 dequeued.save()

 return dequeued

mercedesbernard.com@mercedescodes @mercedes

Queue Uses

When you want to enforce FIFO data access.
Processing jobs asynchronously but in the order they were scheduled

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

Tree

If you're a big Harry Potter fan, you probably enjoyed the end of the fourth book that
featured a giant maze full of magical obstacles. The first person to the center of the
maze won the Triwizard cup. When you are completing a maze, you are often faced
with choices about whether to go left or right or in some cases continue straight down
the center path.

Modeling these choices can be done using a tree data structure. Unlike linked lists,
stacks, or queues, trees are useful to model hierarchical data. Think file systems or
organization charts. In a tree data structure, there is a root node that has 1 to many
children (in much the same way that a linked list stores a reference to the next node
in the list).

To access other nodes in the tree, you must traverse through the nodes.

mercedesbernard.com@mercedescodes @mercedes

Harry Potter & the Triwizard
Maze

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

Breadth first search is when you traverse the nodes one level at a time, visiting all the
nodes on level 1, then level 2 and so on. In the case of a maze, BFS is the worst way
to get to the center quickly.

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

mercedesbernard.com@mercedescodes @mercedes

Breadth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

Depth first search is when you traverse the nodes as deep as possible from one side
of the tree to the other. In a maze, DFS is the best way to get to the center quickly but
you can see here that the villain in the book laid a trap for Harry in the center of the
maze and purposefully set up the maze so that even Cedric’s best route would be
worse than Harry’s worst route.

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Depth First Search

mercedesbernard.com@mercedescodes @mercedes

Tree Uses

There are many many types of trees that are out of scope for this talk but the most
common you’ll hear about are binary trees (of which there are also many types).
Binary trees are trees where the nodes have at most 2 children.

Binary trees on their own aren’t super useful but there are many types of binary trees
that have further constraints making them more useful. For example, a binary search
tree.

mercedesbernard.com@mercedescodes @mercedes

Agenda

1. Concepts
○ Big O notation

○ Set theory

○ Recursion

2. Data structures
○ Linked list

○ Stack

○ Queue

○ Tree

mercedesbernard.com@mercedescodes @mercedes

mercedesbernard.com/speaking

mercedesbernard.com@mercedescodes @mercedes

Thank you

