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This whitepaper will discuss the technical foundation of trust necessary to establish proper 

security within an Internet of Things (IoT) ecosystem. It will identify the trust attributes necessary 

to create a root of trust within an IoT device.  It will also outline how secure elements, cryptogra-

phy, immutable code, secure boot, and isolated environments are used to achieve the attributes 

of trust. Lastly, the paper will outline the common implementations of hardware roots of trust 

including the Trusted Execution Environment, Trusted Platform Module, Hardware Security 

Module, Device Identifier Composition Engine, and Smartcards.

IoT devices have unique characteristics that make them susceptible to security and privacy 

risk.  These include a price-sensitive market, long device lifetimes, and the fact that most IoT 

devices exist outside a defined security parameter.  Unfortunately, many manufacturers have 

been willing to trade production cost, consumer convenience, and time to market with the 

implementation cost, design complexity, and additional time required to properly implement 

secure IoT product ecosystems.

Recent headlines of privacy stealing cameras, IoT zombie botnets, and smart car hacking 

underscore the importance of implementing security at the earliest stages of the product 

lifecycle.  In two recent surveys, consumers expressed their expectation that security should 

be built into IoT products.

Foundations are an important principle, not only in architectural design but in security as well.  

A southern folk children’s song called The Wise Man and the Foolish Man illustrates the 

importance of stable foundations.  The lyrics describe the manner in which two men built their 

homes, with the first man building his structure on a firm foundation made of rock while the 

second man choosing to build on an unstable foundation made of sand.  At first, both 

structures appear to be equally matched; that is until the rain comes and washes away the 

sand from under the second house.
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A strong foundation for IoT devices is important given long device lifespans.  In many cases, an 

IoT device’s lifetime is based on the battery lifetime, which can last between three to ten years 

(D’mello, 2019).  In industrial settings, where equipment is expected to last twenty to thirty years, 

the lifetime of sensors and actuators is even more pronounced (Hanna, 2016).  These long 

device lifetimes increase the likelihood that vulnerabilities will eventually be discovered, if not 

within the product or sensor itself, then within the greater ecosystem where the product is 

deployed.  Without proper lifecycle management planning, these risks will go unmitigated.

Many IoT devices exist outside a defined security perimeter and may require special threat 

assessments in order to determine how to best address security requirements.  In industrial 

settings, devices may be physically difficult to reach because they are embedded in manufac-

turing equipment or installed in geographically remote locations.  In commercial settings, some 

products, such as point of sale devices, can be so ubiquitous that it makes manual software 

updates timely and arduous to schedule.  In consumer settings, devices may be installed on 

insecure or unstable networks, requiring security best practices to be configured as default 

factory settings.

A January 2020 ADT survey found that 92% of consumers feel companies should take measures 

to protect customer data and information (ADT, 2019), and a December 2019 survey found that 

87% of IoT consumers expect their device to be secured by the manufacturer (Business Wire, 

2019).  Both of these are strong indicators that consumers expect manufacturers to address the 

unique security requirements of IoT products before they purchase them.

However, while consumers expect greater security and privacy, it is not always easy for 

manufacturers to add it because consumers have rarely been willing to pay for it.  On this topic, 

Brian Krebs stated, “Years of experience has shown that consumers are not interested in paying 

a huge premium for security when a comparable product with the features they want is avail-

able much more cheaply” (Krebs, 2018).  This might explain the disconnect in a February 2020 

PwC survey, which found that 90% of business leaders recognize that gaining customer trust will 

lead to a competitive advantage; however, less than half consider security and privacy to be a 

top priority (Mendoza, 2020).

IoT Foundations of Trust
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Roots of trust generally are found in hardware as software solutions are not robust enough.  

There are solutions on the market today that claim to be able to establish a proper root of trust 

using software solutions; however, those claims are not in scope for this paper.  The National 

Institute of Standards and Technology (NIST) addresses hardware and software roots of trust in 

NIST SP-164.  “Hardware [Roots of Trust] are preferred over software [Roots of Trust] due to their 

immutability, smaller attack surfaces, and more reliable behavior. They can provide a higher 

degree of assurance that they can be relied upon to perform their trusted function or functions” 

(Chen et al., 2012).

The Latin root word ver means truth.  This root word can be seen throughout the English language 

in different words such as very, verily, verify, verdict, and verification.  The fact that so many different 

words are required to communicate a simple concept underscores the difficulty of achieving that 

goal.  Many of the same challenges exist in the technical world. 

To solve these challenges, security architects and engineers attempt to create a strong foundation 

known as a “root of trust”.  A root of trust acts as an undeniable source of truth – a starting condition 

that can always be trusted.  Roots of trust are technical implementations of the conceptual 

attributes of trust above and can be implemented as hardware or software.

Root of Trust

These unique characteristics of IoT devices require proper foundations on which to build trustful 

IoT ecosystems where devices, mobile and cloud applications, and data can be secured.  In his 

article Building security, privacy and trust in IoT deployments, Ashwin Krishman stated, “The T in 

IoT doesn't stand for trust, but it's a critical component of any IoT deployment.”  Ashwin is correct.  

Establishing trust is essential to developing device security and instituting privacy.

From a conceptual standpoint, trust implies several key attributes:

•  Identity and authentication – a device can be verified to be what it claims to be

•  Integrity – a device, including its firmware, software, and data have not been modified

•  Authorization – only proper access is granted  

•  Confidentiality – secrets can remain secret 

•  Accounting – output is within expected parameters

IoT Foundations of Trust
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Secure Elements

A secure element is an autonomous microprocessor chip that supports security services such 

as certificate storage, signing, verification, encryption, and hashing.  These tamper-resistant 

silicon chips act as companion devices to standard processors and provide important 

defense-in-depth technology that is used to implement trust attributes.  For example, private 

keys that are stored in secure elements can be hardware locked so that they are inaccessible 

from both physical probing and logical attack.

External

One of the main advantages of external secure elements is their wide interoperability with other 

chips.  Although external secure elements can be paired with many different microprocessors, 

implementation is not always a simple process.  Each microprocessor will require custom driver 

integration with the secure element in order to interact properly with the environment.  This 

custom integration should be planned for in the overall IoT project in terms of time, resources, 

and cost.

There are two basic types of secure hardware chip architectures: external and integrated.  

External chip architecture pairs a microprocessor with a separate secure element.  An integrated 

chip architecture includes normal processing activities along with secure processing in the 

same silicon chip.  Both individual product security requirements and cost often drive the 

architecture choice.

A root of trust is typically defined as having the following core technical components:

•  Secure Element

•  Cryptographic functions

•  Immutable code

•  Secure Boot

•  Isolated Environments

IoT Foundations of Trust
Whitepaper
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When using these secure elements, there are security requirements that need to be considered 

during the design stage.  The primary security consideration is the external communication 

channel between the processor and the secure element.  As the diagram below indicates, this 

channel oftentimes runs unsecured between both physical elements.  This vulnerability can be 

exploited by a threat actor through either physical or side-channel attacks to reveal 

cryptographic secrets or intellectual property (Sabev, 2017).

As with any secure element design, careful consideration will need to be given to the provisioning 

process if contract manufacturers are used.  A secure process will need to be designed to provision 

the chip with the necessary cryptographic keys, identities, and secrets without exposing them 

during the manufacturing process.  Additionally, steps will need to be taken to protect intellectual 

property, such as firmware and application code.

Integrated

System on a Chip (SoC) architecture has been around since at least 1970 when Hamilton Pulsar 

unveiled the first “Wrist Computer” watch on the Johnny Carson Show (Computer History 

Museum, 2020).  SoC implementations have evolved over the years from wristwatches to 

embedded systems and mobile computing.

Figure 1: Basic secure element design
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This technology can be combined with artificial intelligence, machine learning, and neural 

network technology to create edge computing, which has broad implications in IoT ecosystem 

architecture (Garibay, 2017).

Modern SOC designs combine many components of traditional computing hardware and 

software on a single chip.  In her article entitled What is an SoC? A Basic Definition, Scharon 

Harding, Senior Editor at Tom's Hardware, explained the three basic types of System on a Chip 

as being those that use a microcontroller, which constitutes a chip with the CPU, RAM, ROM, 

and potentially other components, those that use a microprocessor, which is a chip with a CPU 

only, and those that are designed for specific applications, which may or may not use a micro-

processor or microcontroller (Harding, 2019).

SoC implementations do not necessarily have security built-in.  For secure implementations, a 

SoC can be combined with a secure element, such as a Hardware Security Module (HSM), to 

establish a secure root of trust.  This enables each device state to be secured from being 

powered down to device initiation, throughout the boot process, and during normal operations.

Figure 2: System on a Chip
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Device manufacturers have several options available for using PKI, from setting up a proprietary 

environment to leasing PKI services from an established vendor.  A risk assessment should be 

conducted before deciding which model to use; however, cost usually dictates that companies 

will use an established Certificate Authority instead of standing up one of their own.  Regardless 

of choice, consideration should be given to rotating certificates and keys, especially if the device 

is expected to have a long lifetime.

While simple root of trust implementations can have a symmetric key embedded in a micropro-

cessor, most implementations utilize Public Key Infrastructure (PKI).  PKI is a technology used to 

establish strong identity and device authentication.  It relies on asymmetric encryption to create 

trust anchors.

Hardware accelerators are often used to enhance the performance of cryptographic functions.  

These coprocessors are more efficient than general-purpose processors.  This paper will later 

outline how these are used in hardware implementations of roots of trust such as TTE, TPM, 

HSM, DICE, and Smartcards

Cryptographic keys and certificates are generally programmed into the IoT device during the 

manufacturing process to create trust anchors.  NIST defines a trust anchor as “A public or 

symmetric key that is trusted because it is directly built into hardware or software, or securely 

provisioned via out-of-band means, rather than because it is vouched for by another trusted 

entity (e.g. in a public key certificate)” (NIST, 2015).  Much like ships use an anchor to keep from 

drifting at sea, IoT devices can use trust anchors to keep their identity from being lost in the 

endless ocean of the Internet.

Cryptography

Cryptography is used to achieve many of the trust attributes.  Although cryptography is typically 

associated with protecting confidentiality by withholding secrets, it also enables a wider array of 

security services.  Through asymmetric encryption, cryptography can be used to establish identity 

and provide authentication services for firmware and updates.  With symmetric encryption, cryp-

tography can be used for secure communication.  Finally, with hashing algorithms, cryptography 

can be used to prove integrity of bootloaders, kernels, hypervisors, operating systems, and 

applications prior to execution.

IoT Foundations of Trust
Whitepaper
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IoT device identities can be created either during the manufacturing process or in the field.  If 

device identity is created in the manufacturing process, this typically occurs when crytographic 

keys are injected into a onetime programmable secure element.  Care needs to be taken to 

ensure this process is secure, including the secure handling of keys, secrets, and intellectual 

property.

If the supply chain cannot be trusted to securely inject keys, or the process is cost-prohibitive 

due to limited production runs, then cloud-based field provisioning may be a suitable option.  

Cloud-based provisioning allows for remote identity creation after the device has entered the 

field.  This relies on the creation of a minimal bootstrap during production, which can be used 

by the cloud service, to properly authenticate and authorize the device.

Identity

Identity is one of the key trust attributes.  It is important that each device in the IoT ecosystem be 

uniquely recognized; however, establishing device identity for a sea of ubiquitous devices has not 

always been easy.  PKI is changing that through the use of digital certificates, the new defacto 

standard for IoT device identity.  Digital certificates provide a unique electronic identity that can be 

easily authenticated.  If certificates are compromised, they can be revoked by a central authority, 

thus preventing device identity theft.

Authentication | Symmetric Key

With symmetric keys, the same key that is used to encrypt is also used to decrypt.  Symmetric 

encryption is very fast compared to asymmetric alternatives.  Encryption speed is the main 

advantage of using this type of encryption, especially when large amounts of data need to be 

processed.  The use of symmetric encryption significantly reduces the cost of IoT authentication 

and streamlines the device provisioning process; although, not without some hurdles. 

There are several problems with symmetric encryption.  One of the main problems with using 

symmetric cryptography in an IoT ecosystem is key distribution, or rather, the lack of a defined 

process to securely distribute keys.  Without an internal mechanism to distribute its keys 

securely, symmetric encryption relies on an out of band key distribution model.

IoT Foundations of Trust
Whitepaper
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Another problem is key management.  As the number of IoT devices increase in an ecosystem, 

the number of symmetric keys also increase.  This is generally represented mathematically 

with the following equation: n(n-1)/2 where n equals the number of devices in the ecosystem.  

For example, if ten devices are added to the ecosystem that all need to communicate with 

each other, then 10(10-1)/2 would equal 45 different keys that would need to be distributed 

and managed.

The last issue with symmetric encryption is that it only supports confidentiality.  While this is a 

trust attribute, it is a single attribute.  Asymmetric encryption provides authenticity and 

nonrepudiation, along with confidentiality.  With symmetric encryption, there is no certain way 

to tie a cryptographic operation back to a single entity, since by definition, more than one 

entity has ownership of the key.

Reliance on symmetric encryption could indirectly lead to insecure practices.  For example, to 

resolve key distribution issues, a company may decide to embed a non-unique symmetric key 

directly in the silicon of each device, relying on the hardware security to protect it.  While this 

obviously reduces complexity during the device provisioning process, it leaves the entire IoT 

ecosystem vulnerable because the strength of the entire ecosystem is only as strong as its 

weakest point.  A successful attack and compromise of the shared key would lead to the 

exposure of the entire ecosystem.

Authentication | Public Key Infrastructure 

PKI is a system of hardware roots of trusts, software, and policies to create, manage, distribute, 

and revoke X.509 digital certificates.  PKI is used for a myriad of reasons, including encrypting 

web traffic from e-commerce and emails as well as securing Virtual Private Network (VPN) 

connections.  Over the last several years, PKI has risen to become a popular mechanism for 

securing IoT environments.

 This creates a vulnerability that the key can be stolen either during transit to other devices in 

the ecosystem or during the device provisioning process that occurs offsite at the contract 

manufacturer.

IoT Foundations of Trust
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PKI is based on asymmetric cryptography, which uses two mathematically linked keys for 

encryption and decryption.  One key is private, and the value is only known by the key owner.  

The other key is public, and no effort is made to hide the key’s value.  Items encrypted by one 

key can only be decrypted by the other key in the linked key pair.

Because asymmetric encryption is slower than symmetric encryption, it is not generally used 

to encrypt large amounts of data.  If a large amount of data needs to be encrypted and sent 

between two devices, usually an asymmetric algorithm will be used to securely exchange a 

symmetric key that both devices know.  Once the exchange has completed, the encryption 

will occur using a symmetric algorithm.

Digital certificates are used to establish trust between two entities.  This occurs because both 

entities trust an independent third party who vouches for the identity of one of the entities.  

This trusted source is called a Certificate Authority (CA).  Before issuing a new certificate, the 

CA performs a strong verification of the identity of the requesting entity who will own the 

certificate.  The certificate contains identifying information about the entity, such as their name 

and email, along with their new public key.  The new certificate is then digitally signed with the 

CA’s private key to prove authenticity.

PKI provides IoT devices in the ecosystem with a mechanism for both mutual authentication 

and secure updates.  IoT devices can authenticate servers within the IoT ecosystem to ensure 

that updates and other key services are authentic.  Servers and services can use IoT 

certificates to ensure devices are authorized to communicate, request and receive services, 

and to update data.

PKI use within IoT is not without challenges.  Many devices manufacturers have to rely on 

external vendors to serve as Certificate Authorities.  Since many IoT devices have long 

lifetimes, certificate lifecycle management will need to be considered during the product 

design stage.  If a device manufacturer chooses to stand up their own CA to provide PKI 

services, then that environment will need to be provisioned and maintained outside of a 

specific IoT product lifecycle.

IoT Foundations of Trust
Whitepaper
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Immutable code allows the device to be reset to a known good configuration.  If the device is 

compromised due to malware then being able to reset the device to a condition that can be 

trusted is very valuable.  This is especially true since many IoT devices are deployed into 

hostile environments.

Not all immutability is desirable, and when applied to the wrong control, it can have disastrous 

effects.  For example, hardcoding immutable credentials into the device is worse than not 

having any credentials because it gives a false sense of security.  Making all device code and 

applications immutable would inhibit the secure update process and prevent vulnerabilities 

from being patched.

Immutable Code

Immutable code is used to achieve trust attributes as well.  Injecting boot code into the device 

during the manufacturing process creates a durable software anchor of trust, which is firmly 

rooted in hardware.  Since the initial code cannot be changed after device provisioning, the 

software can be used as a known good starting place.  Immutable code is also used to verify 

other steps in the boot process and to create a transitive chain of trust.

Secure Boot

Secure boot is an important core component of establishing a root of trust.  Secure boot helps 

an IoT device become resistant to attack by ensuring the system will only boot using trusted 

firmware.  It also protects the confidentiality of intellectual property such as firmware code and 

embedded software.

Immutability creates a state that cannot be easily changed.  Immutable code occurs when code 

is burned into the silicon chip or stored in a manner in which only an appropriate cryptographic 

key can be used to change the code.  Code protected by immutability properties is typically run 

directly after a device is powered on or a reset occurs and is used as a component of secure 

boot.  If the software used to initialize the device during the first stage of booting is vulnerable to 

manipulation, then no other stage can be trusted.

IoT Foundations of Trust
Whitepaper
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Developed properly, secure boot establishes a mechanism for trusted remediation.  In cases 

of device compromise or failure, the device can reset itself by booting to a known good state.  

This mechanism relies on both immutable starting code stored in a secure location and the 

ability to verify the trustworthiness of the next code before it is executed.  A strong foundation 

of trust is vital to establishing a transitive chain of trust, where the trustworthiness of a latter 

section of the system builds upon the trustworthiness of the preceding section.

Isolated Environments

Isolation is also an important technical concept for achieving trust attributes and establishing a 

root of trust.  Isolating data, code, and execution environments helps to establish device integrity 

and confidentiality, and ensures that only authorized transactions occur.  Isolation can occur 

within a single processor, such as a Trusted Execution Environment (TEE) implementation. 

It can also occur with a dedicated security hardware module such as an HSM embedded in a 

microcontroller or a SoC, or as a Trusted Platform Module (TPM) in which the security hardware 

module is paired with a microchip.

Figure 3: Transitive chain of trust built from trusted hardware and extending

throughout the device (Qin, Chang, Shen, & Gao).
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Isolation is also essential in building a layered defense.  Establishing multiple roots of trust 

allows different entities, including chip providers, Original Equipment Manufacturers (OEM), 

service providers, and end users to manage their own security domains.  This process uses 

isolation and strong hardware security to enforce security boundaries around entities while 

only allowing approved actions (Levine, Strong Security, 2019).

Implementations of Hardware Root of Trust

There are two general classes of hardware roots of trust: fixed-function and programmable 

(Levine, Will the Real Root, 2019).  Fixed-function hardware roots of trust are characterized as 

being state-based with limited basic cryptographic functionality such as encrypting, decrypting, 

and signature verification.  Later updates or changes to these functions is not possible. Program-

mable roots of trust are characterized as being able to perform higher-level cryptographic functions 

in addition to the more basic ones provided by their more limited fixed-function counterpart.  This is 

due to the inclusion of a silicon chip, which allows the system to be changed over time 

(Rambus Press, 2019).

Figure 4: Multiple Roots of Trust [Based on the following drawing: (Levine, Will the Real Root, 2019)]
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There are different hardware implementations of root of trust.  This paper will identify the most 

commonly used ones in IoT ecosystems and compare and contrast them.  This includes the 

Trusted Execution Environment, Trusted Platform Module, Hardware Security Module, Device 

Identifier Composition Engine, and Smartcards.

Programmable roots of trust allow for maximum flexibility when services and operations need to be 

performed in a trusted execution environment.  Even if a product is released with a minimal amount of 

services, systems should be created so that additional functionality can be built-in.  These changes 

may include extending cryptographic functions, performing secure software updates, provisioning 

additional identities, or changing cloud configuration data.

Trusted Execution Environment
A TEE is an isolated processing environment that separates secure resources from non-secure 

resources.  A well-designed TEE will consist of the following security principles: secure boot, 

operating system isolation, application isolation, controlled access to hardware, and a tamper - 

resistant secure element capable of protecting cryptographic secrets and executing code 

securely (Secure Technology Alliance, 2018).  Together, these principles enable a TEE to create 

an environment where trusted applications and data are separated from their untrusted 

counterparts.

Software running on a non-secure processor allows other applications or individuals with root 

access to investigate or manipulate the code and data running on the device.  TEE addresses 

this vulnerability by enforcing confidentiality and integrity during program execution.  The TEE 

divides the device into two trust zones, a “Normal World” and a “Secure World”.  The Normal 

World represents the non-secure hardware and untrusted software on the device while the 

Secure World represents the protected hardware and trusted software. This isolation boundary 

prevents trusted resources from intermingling with untrusted or other trusted resources 

(Prado, 2020).

Trusted applications and data are isolated from untrusted applications outside the TEE and 

other trusted applications inside the TEE.  This means that secrets and private data that is 

processed or stored in one security domain cannot be accessed from another security 

domain.  This isolation also creates device stability because one application cannot impact 

the performance of another one (Simon & Stumann, 2019).

IoT Foundations of Trust
Whitepaper
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ARM Trusted Zone

ARM Trusted Zone is an implementation of TEE as an optional hardware security extension 

available for ARM processors.  TrustedZone implements a secure world and non-secure world 

for code, memory, and peripherals and includes secure boot to establish a root of trust. There 

is currently wide support for this across many ARM processors.

TEE Secure Boot

TEE secure boot ensures the device boots to a trusted state.  The process begins with the 

Boot ROM, which is considered a trusted starting point because it is provisioned with the OEM 

boot code and installed by the manufacturer.  The Boot ROM verifies the bootloader image 

and signature before loading.  If correct, the bootloader is allowed to execute.  The bootloader 

then executes its code, and before turning over control of the device to the Trusted OS, the 

bootloader verifies the Trusted OS image and signature.  If correct, the Trusted OS is allowed 

to execute.  The Trusted OS then launches Trusted Apps within the secure world and the Rich 

OS bootloader in the insecure environment within the normal world (Felton, 2019).

Figure 5: TEE Secure Boot Process [Based on the following drawing: (Felton, 2019)]
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The example above illustrates a TEE with an operating system and user-installed applications.  

While some IoT devices may have this level of complexity designed in them, many IoT devices 

do not have a fully developed operating system or allow for user-installed applications. Device 

OEMs may also use the TEE as a hardened execution environment for the firmware to interface 

directly with hardware.  It is important to note that a TEE does not create as strong of a root of 

trust as found in specialized hardware-based roots of trust such as TPM, HSM, or Smartcards 

(Simon & Stumann, 2019).

Trusted Platform Module (TPM)

The Trusted Computing Group created the Trusted Platform Module (TPM) and released it 

for use in 2003.  TPM specifications are more restrictive than TEE (Simon & Stumann, 2019) 

because they are designed for specific security processing workloads.  TPMs are widely 

used and have been deployed on nearly every computer in the last decade and support a 

variety of applications from disk encryption to VPNs.

TPM chips have to be physically added to the system during manufacturing.  Unlike HSMs, 

TPMs cannot be retroactively added to systems, nor can they be removed at a later time, 

because the chip is usually soldered to the motherboard.  This design requirement under-

scores the importance of designing security in from the beginning of the product lifecycle.

One of the vulnerabilities of secure elements is the unsecured communication path between 

the processor and the secure element.  TPM is a secure element implementation that estab-

lishes trust and enables secure communications.  This solves some of the communication 

vulnerabilities of a basic secure element since TPM adheres to a set of security protocols 

that govern secure communication between the components.

One of the design considerations for TPM is that it is passive.  It is not designed to run in the 

background constantly monitoring the security of the system.  To utilize the capabilities of 

the secure chip, interaction has to occur between the TPM and the processor (Singer, 2019).  

In other words, the TPM functionality has to be actively called in order to be utilized.

IoT Foundations of Trust
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The main purpose of the TPM is to protect the host platform.  It offers secure storage for 

cryptographic keys, protected execution of cryptographic functions, and attestation of both 

the TPM and the host platform.  It does this by measuring software to determine validity 

(Singer, 2019).

TPM does not offer a secure boot process; however, it relies on secure boot provided by the 

system.  To secure the boot process, the initial boot process “needs to perform a minimum 

level of initialization to verify the next piece of boot code before handing off to that code” 

(The Chromium Projects, 2020).  This initial code is stored in protected memory.

TPM uses endorsement keys and storage root keys.  An endorsement key is a unique RSA key 

burned into the silicon chip during production.  This key is used to encrypt data.  The storage 

key is an RSA key created by the TPM when configuring ownership and is used to protect 

other key material generated by the TPM.  While the endorsement key cannot be removed, 

the storage key can be.

Measured Boot

TPM supports a process called measured boot.  Also referred to as a trusted boot, this 

process measures each of the components in the next stage of the boot process to verify the 

component’s integrity.  The overall purpose of a measured boot is to detect unauthorized 

software or configurations.

Figure 6: TPM Boot Process [Based on following drawings: (Fedorkow, 2015), (Boneh et al., 2020), (Stamm et al., 2008)]
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The TPM measured boot process begins when the device is booted.  The first action TPM 

takes is to conduct a self-test.  When completed, the Core Root of Trust Measurement 

(CRTM) will measure the BIOS and send the hash value to the memory location 0 in the 

Platform Configuration Register (PCR) bank.  The PCR acts as a retainer for measurements 

which represent a safe boot process.  The PCR will then verify that the measurements are 

correct.  If the measurements do not match, then a rollback procedure is called to return the 

module to the Last Known Good and move to the next measurement step.  This process 

continues with the TPM measuring the boot loader next and then the next component and 

so forth, with each preceding component in the boot chain describing the following compo-

nent until the device has successfully booted (Russinovich et al., 2012).

Unlike a secure boot process, a measured boot does not inhibit the usage of the system.  

The TPM process tracks the last known good state of the system.  Advanced implementations 

can roll back modules that have aberrations from previous measurements.  An IoT device’s 

ability to “self-heal” by rolling back to the last known good state is a vital attribute, especially 

when most IoT devices are deployed outside of a defined security perimeter (Digi-Key, 2015).

Figure 7: Measured Boot Decision Process [Based on the following drawing: (Trusted Computing Group, 2014)]
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Hardware Security Module (HSM)

The term HSM is used to describe “secure hardware that does not adhere to a specific security 

protocol” (Microsoft, 2017); however, true HSMs are standards-based and are formally validated 

against the FIPS 140-2 standard.  Like TPMs and smartcards, HSMs provide cryptographic services 

and secure storage of cryptographic material.  They handle the full range of cryptographic key 

management from provisioning, managing, and storing keys to key archival and deletion. 

These devices also maintain their secrets in a hardened tamper-resistant physical and 

logical vault.

Unlike TPM, both HSM and TEE chips can be programmed for general purpose use; however, 

HSM implementations are usually orders of magnitude more expensive than TEE chips (Simon 

& Stumann, 2019).  HSMs are physical devices that offload cryptographic functionality from 

general-purpose processors.  They can be a single-chip or multi-chip implementation.  

Multi-chip HSM implementations can be standalone and portable such as a PCIe card or a 

USB dongle, or they can be integrated as part of a System on a Chip.

HSMs serve many different purposes that are not always apparent.  For example, when 

individuals browse encrypted websites, the HTTPS protocol that protects the communication 

between the client and server works because the Certificate Authority uses an HSM as a root 

of trust for storing its private key (CA/Browser Forum, 2020).  HSMs are also used as payment 

card systems, banking systems, and cryptocurrency wallets.

HSMs provide a means to ensure identity is properly injected into a device. Identity is 

fundamental to IoT security and a building block for security within the larger IoT ecosystem. 

Being able to identify a smart lightbulb from a smart thermostat is understandably important; 

however, authenticating and authorizing two individual smart lightbulbs of the same model is 

more valuable.  Finally, being able to identify smart lightbulb running authorized updates from 

a smart lightbulb running malware may be the most beneficial.

HSMs also help protect against counterfeiting.   Many times a developer will have to deliver 

their intellectual property to a contract manufacturer to have the code injected into IoT device.
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HSMs ensure the integrity and confidentiality of IoT firmware and application code during the 

manufacturing process by protecting secrets stored in physically remote third-party-owned 

hardware.  This prevents critical intellectual property from being reverse-engineered into 

competing products.

Cloud HSM

Cloud Hardware Security Modules are HSM appliances that achieve trust attributes by 

implementing a cloud-based root of trust.  Cloud providers offer products that are scalable 

and fully managed, with services such as cryptographic operations and secure storage for 

cryptographic keys. These services are designed to meet regulatory requirements and 

contractual agreements such as FIPS 140-2 Level 3, which is required for electronic 

payments, document signing, and operating as a public Certificate Authority.

Secure Boot

To fully protect a system, the device has to be protected in all states, including when the 

device is powered off, during the boot process, while receiving updates, and when running 

in normal operational mode.  HSMs support secure boot in order to create a mechanism 

where only trusted code is loaded and executed during the initial system boot process while 

also preventing the disclosure of embedded code.  Secure boot is an important defense in 

depth control because it assumes the device will eventually be compromised and provides 

a mechanism to reset the device back to a known good state in a manner that can also 

provide proper attestation after device reset (Povey, 2017).

HSM secure boot uses asymmetric encryption and PKI to implement digital signatures in 

order to establish chains of trust throughout the device boot cycle.  Digital signatures use 

private keys, which are kept secret and never distributed, and public keys, which are freely 

disseminated.  Both public and private keys are mathematically linked; however, one key 

cannot be calculated by studying the contents of the other key.
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To set up secure boot properly, the OEM will use its private key to create a digital signature of 

the software that will be used by the device during the boot process (Young, 2018).  During the 

manufacturing process, these signatures, along with the first stage bootloader code, are stored 

on device hardware in non-writable protected memory.  This process creates a root of trust for 

the device.

During boot, the device loads the trusted code stored during the manufacturing process.

 The cryptographic system then uses the public key in BIOS to compare the signature of the 

second stage bootloader with the second stage bootloader code (Fedorkow, 2015).  If the 

comparison matches, then the system determines the second stage bootloader can be 

trusted, and the boot process moves forward to the next stage.  This signing and verification 

continue throughout the boot process from the firmware and bootloader to the kernel and 

modules, creating a secure chain of trust (Trudel-Lapierre, 2017).

Both measured boot and secure boot rely on an established root of trust to build a chain of 

trust.  As described in the previous section, secure boot works by using cryptographic keys to 

check the signature of the firmware, boot loader, kernel, and modules.  If the signature is 

invalid, the boot process halts.  Since the OEM’s private key is used to create the signature, the 

secure boot has limited usability beyond these first stages in the boot process.  For example, it 

would be onerous to expect the OEM to sign system configuration files (Fedorkow, 2015).

Figure 8: Secure Boot Chain of Trust [Based on the following drawing: (West, 2017)]

First Stage
Bootloader

Second Stage
Bootloader

Kernel

Signature

Key Key Key

Signature Signature

IoT Foundations of Trust
Whitepaper



- 22 - www.cybrary.it

Unlike secure boot, measured boot does not inhibit the boot process.  As the name implies, 

measured boot creates a process to measure and store the hash of an object in a chain of 

trust.  Compared to secure boot, this measurement process provides more granularity in what 

objects can be evaluated, for example, allowing for measurement of configuration files 

(Fedorkow, 2015).

Figure 9: DICE Lightweight Secure Boot [Based on the following drawing: (Trusted Computing Group, 2018)]
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These devices work by connecting to a reader through physical contact or remotely via 

radiofrequency.  Data is stored in non-volatile memory of the Smartcard, which is activated 

when an external power source is supplied.  Smartcard architecture uses either a secure 

memory integrated chip or a secure microcontroller.
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DICE is started at power-on or device reset and has exclusive read access to the UDS.  The 

first step in the process begins by taking a measure of the first mutable code.  This computed 

measure and the UDS are passed through a one-way function to create a Compound Device 

Identifier (CDI).  A hardware latching mechanism is engaged to prevent read access to the 

UDS.  The UDS is then securely erased from memory.  The CDI is then passed to the next layer 

of the secure boot process along with control of the boot process.  Each subsequent layer 

receives a secret from the preceding layer and generates a new secret for the next layer 

(Trusted Computing Group, 2018).

DICE employs three techniques to limit access to the UDS.  First, hardware uses a power-on 

latch to disable read-access to the UDS prior to executing firmware.  Second, cryptographic 

one-way functions are used to protect the UDS.  Third, the CDI is based on the first mutable 

code used (England et al., 2015).

The first technique protects the confidentiality of the UDE by ensuring it cannot be accessed 

after it is used to create the CDI.  The second technique prevents the UDE from being scraped 

from memory or derived by reverse-engineering the CDI (assuming the underlying cryptography 

is sound).  The third technique prevents malware from revealing the device keys since the act 

of injecting the malware code will change the CDI.  The third technique also ensures that valid 

updates to address vulnerabilities, which would reveal the UDI, automatically force device 

rekeying (England et al., 2015).

Smartcards

Smartcards are single-chip cryptographic solutions, generally optimized for performance 

(Rosenau, 2018), and used when strong authentication is required.  In an IoT environment, Smart-

cards can be used to authenticate a user to a device or application within the IoT ecosystem.  

This would add another layer of defense to the overall security and privacy of the system.
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Secure memory chips are less secure than secure microcontrollers.  Secure memory chips 

share some of the same characteristics as TPM in regards to cryptography and secure storage 

(Rosenau, 2018).  Symmetric encryption is used to protect data in transit from the card to the 

reader.  While some secure memory chips protect against unauthorized read, most are used in 

applications with minimal data protection requirements (Smart Card Alliance, 2008).

Secure microcontrollers offer more functionality because they combine the chip with additional 

hardware, such as RAM, ROM, and I/O units, along with operating code.  Secure microcontrollers 

are dissimilar to TPMs in that they have an independent operating system and can execute 

dynamic applications that enable them to interact intelligently with a reader (Rosenau, 2018).  

They also support advanced cryptographic functions that allow this type of smartcard to utilize 

symmetric and asymmetric cryptography (Smart Card Alliance, 2008).

Summary

Proper security within an IoT ecosystem is achieved by creating a foundation and environment 

where trust attributes can be established.  This occurs through proper use of secure elements, 

cryptography, immutable code, secure boot, and isolated environments.  IoT manufacturers 

can deliver secure devices across industrial, commercial, and consumer markets by designing 

security into products and appropriately using common implementations of hardware roots of 

trust, including Trusted Execution Environment, Trusted Platform Module, Hardware Security 

Module, Device Identifier Composition Engine, and Smartcards.
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