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How Artificial Intelligence Is  
Advancing Plant Biology 
To meet the pressing challenges of a changing climate and growing population, plant biologists, 
breeders, and farmers are harnessing a slew of new technologies. From the lab, to the greenhouse, 
to the field, advances in next generation sequencing (NGS), wireless sensors, and unmanned 
aerial vehicles are accelerating discovery and reducing the time from idea to commercial 
implementation. The critical capability that enables scientists to make sense of the wealth of data 
generated by these technologies and design effective strategies is artificial intelligence (AI). 

As a partner to leading agricultural biotechnology companies, Benchling is proud to help 
customers manage lab operations and information, so that their data is ready to fuel critical 
AI-driven insights. In this white paper, we celebrate recent advances that AI has brought to 
agricultural plant biology.
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In the past year we’ve seen a number of papers where AI is helping plant 
biologists automate labor intensive processes, especially in planted fields. 
In these applications, AI is used primarily to automate image analysis for 
biovolume measurement [1, 2], identification of plant parts such as maize 
tassels [3], biochemical parameter measurement [4, 5, 6] or disease detection 
[7-10] in the field, and to screen seeds and seedlings for desirable qualities [6, 
11], germination [12], or disease [13].

Automating labor intensive processes

Goals

While each of these studies has different ultimate end-goals, the use of AI is meant 
to help growers make better-informed decisions as quickly as possible, whether it’s 
to compare the growth of different strains and different conditions in the field, to 
find the most promising seeds or seedlings to plant, or to identify diseased plants 
as early as possible so that outbreaks can be prevented with fewer plants needing 
to be destroyed.

Challenges and solutions

These studies highlight two different types of challenges for AI and machine vision, namely image 
segmentation and object classification. 

Image segmentation: Through a combination of more affordable camera and data storage 
capabilities with well-developed machine learning (ML) algorithms, scientists are expanding 
automated image analysis from the well-controlled conditions of the lab to the highly variable 
conditions in the field. Because the goal is to ultimately create a system that can be used by 
growers using their own cameras, potentially even phone cameras, the analysis needs to be able 
to handle images taken at multiple angles, multiple heights, and under different environmental 
conditions. 
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To meet these challenges, the majority of studies expanded on the “regions with convolutional 
neural networks” (R-CNN) approach to increase the accuracy of pixel assignment and object 
identification [1, 3, 9, 10]. Colorado, et al [2], took a semi-manual image segmentation algorithm, 
GrabCut, and removed the manual component by using an unsupervised ML approach—a 
Montecarlo-sampled K-means segmentation—to create two binary masks to segment the image 
with further refinement using Guided Filtering. 

Object classification: A number of the image analysis studies bypassed the problem of image 
segmentation by using either manual or semi-manual segmentation methods [6, 7, 8]. Others 
relied on spectral data [4, 5], which does not require image segmentation. 

Neural network approaches were used in many of these papers, with Sabanci [13] using artificial 
bee colony (ABC) optimization in artificial neural networks (ANN) and extreme learning machine 
algorithms to detect sunn pest disease in wheat kernels, Boulent, et al [7] using convolutional 
neural networks and fully convolutional neural networks to detect flavescence dorée symptoms in 
grapevines, and Sibiya and Sumbwanyambe [8] moving beyond disease detection to classify plants 
by disease severity using a convolutional neural networks algorithm.

Ahmed, et al [6], combined X-ray analysis of seedlings with different deep learning approaches 
to develop a model that could predict successful germination based on the internal morphology 
of the seed. They compared deep learning approaches—simple ConvNet, AlexNet, VGG-19, 
ResNet-50, and ResNet-101—to more conventional classifiers and found that the ResNet-50 
outperformed all other classifiers with a predictive accuracy of 87.3%.

Siedliska, et al [4], asked if ML analysis of hyperspectral imaging data can differentiate plants from 
four different phosphorus (P) treatments. They compared backpropagation neural networks, 
random forests, naive Bayes, and support vector machines (SVM) approaches and obtained the 
best predictions using a random forests approach.

D’Odorico, et al [5], developed an ML model using a random forests approach that was able to  
rapidly assess plant stress (Fv/Fm) in 6000 conifer seedlings.
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Both image segmentation and object classification: Masteling, et al [12], developed an 
automated assay to screen for potential herbicides by discriminating between germinated 
and ungerminated seeds of the parasitic weed Striga. This study used YOLOv3 for both image 
segmentation and classification and chose this method over others due to its ability to be used on 
computers without a specialized GPU. 

Another study [11] demonstrated the accessibility of ML by using the free interactive ML toolkit 
Ilastik [14], which performs image segmentation based on a random forests classifier, to identify 
soybean seeds and seedlings in images, classify seeds based on appearance, identify vigorously 
growing seedlings, and correlate seed appearance with growth potential. 
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Genomic selection (GS) holds the promise of accelerating crop improvement 
by helping breeders more accurately identify the crosses that will yield the 
desired traits based on data from genome-wide genotyping. To achieve the 
high marker density needed for GS, genotyping is typically done using next 
generation sequencing (NGS), an approach called genotyping by sequencing 
(GBS). 

GS/genomic prediction (GP) typically relies on linear or Bayesian methods and it is unclear how 
much benefit AI can provide over conventional methods. Recent published studies do not resolve 
this question, although they add more examples of where AI can enhance prediction accuracy, as 
well as examples where it does not.

Powering genomic selection/genomic 
prediction

Goals

Ultimately, the use of GS should lead to faster, cheaper, and less labor-intensive 
crop improvement than conventional breeding methods. Whether AI can improve 
the accuracy of GP compared to conventional methods remains to be seen, 
although at this point the question is more likely to be “under which conditions can 
AI improve GP accuracy,” rather than simply “should AI be used for GP?”

Challenges and solutions

While GS has positively impacted livestock breeding, the cost versus benefit equation has lagged 
for agricultural crops [15]. One reason is the higher intrinsic value of individuals in livestock 
breeding. Two more are the added complexities that spring from the polyploid genomes possessed 
by many agriculturally important crops as well as the highly variable interaction between genetics 
and the environment that impacts crops more than livestock. 
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To increase the accuracy of GP, many agricultural researchers are exploring different AI-based 
approaches [16, 17-20, 21-23, 24]. For example, Toda, et al [24], used standard linear regression 
methods for GP and then explicitly accounted for environmental effects by integrating either 
a deterministic crop growth model or an ML approach using a random forests algorithm. Both 
deterministic and ML approaches delivered modest increases in biomass prediction accuracy over 
the conventional linear methods. 

That said, the research in 2020 has not resolved the question of how useful or when to use AI for 
GS. Several papers found that conventional linear methods outperformed ML and deep learning 
(DL) approaches [20,22-23]. Zingaretti, et al [22], found that convolutional neural networks (CNNs) 
outperformed conventional approaches only in situations with strong epistasis, and Pook, et 
al [20], who used localized CNNs, found that ML could not outperform linear models when the 
training set was small.

Interestingly, the papers that did show an improvement in prediction accuracy relied on different 
algorithms. While the specifics of each study—the traits and species assessed—are critical to 
the analysis, it’s worth noting which approaches were successful, namely random forests [18, 21, 
24], multilayer perceptron (MLP) [16], Bayes regularized neural networks [19], SVM [21], and an 
ensemble approach that used support vector regression (SVR), kernel ridge regression, and  
elastic net [17].  
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One way to increase the power of GS is to build larger phenomic and 
envirotypic databases, and integrate these databases with genotype 
information. In the past, building phenomic and envirotypic databases has 
been labor intensive. However, the lower costs and wider access of machine 
vision, multispectral imaging, mobile phone cameras, and drone technologies 
is making daily environmental and phenotypic measurements possible with 
the help of AI [25]. 

In addition, AI approaches are being used in studies where extensive measurements already exist 
and the goal is to understand which parameters are most predictive of growth in response to 

different environmental conditions [26,27].

Understanding environmental impacts

Goals

Here, AI is used to enhance understanding when processes are highly complex and 
governed by multiple parameters, providing insight into which measurements are 
most predictive of the desired trait or how different parameters interact to affect 
the desired trait.
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Challenges and solutions

As discussed above, GS is challenged by the lack of detailed information on environmental 
conditions. Jin, et al [26], demonstrate just how powerful that information can be by leveraging a 
highly detailed set of data collected over ten years on almond orchards in California. Taking into 
account light interception, climate information, almond yield, cultivar, and other environmental 
and crop management conditions, they built a model using a random forests algorithm that 
was able to explain 82% of yield variation, with ~60% of that variability due to changes in light 
interception.
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Coulibali, et al [27], use a similar approach with potato, leveraging data dating back to 1979 to 
build a predictive model that could explain how fertilization regime—nitrogen, phosphorus, 
potassium—interact with weather, soils, and land management impact tuber yield and quality 
(defined as size and specific gravity). Overall, their models had moderate predictive ability (R2 > 
0.7), with Gaussian processes algorithms providing the best performance.

Yoosefzadeh-Najafabadi, et al [25], tackled a different problem, predicting soybean yield based on 
hyperspectral measurements of plants at an early stage of development, to help breeders choose 
promising plants earlier in the strain development process. They used an ensemble stacking 
approach that incorporated random forest, MLP, and SVM, and achieved 87 - 93% prediction 
accuracy, depending on the number of variables used.

And Saffariha, et al [28], generated data on Salvia limbata seed germination under different 
temperature, draught, salinity, and pH conditions to build a predictive model. They found that the 
MLP algorithm performed better than a linear regression model, with R2 > 0.9.



Throughout history, plants have been used medicinally in addition to 
providing basic nutritional requirements. An increasing number of agricultural 
biotechnology companies are turning to in vitro plant culture to shorten 
improvement times or even to bypass field growth. However, developing a 
robust in vitro plant culture process can be challenging due to the complex 
interactions of hormones and minerals. A number of researchers are using 
AI to help identify optimum growth conditions [29, 30, 31], to maximize 
secondary metabolite production [32], and to optimize Agrobacterium-
mediated genetic transformation [33].

Optimizing in vitro plant culture and 
transformation

Goals

AI is being used to reduce the time it takes to develop optimal conditions for in vitro 
plant culture, secondary metabolite production, and genetic transformation with 
agrobacteria.

Challenges and solutions

Optimizing growth: Both Garcia-Perez, et al [29], and Hameg, et al [30], use ANN and neurofuzzy 
logic (FormRules® v.4.03 software (Intelligensys LTD, UK)) to generate easy to understand “IF-
THEN” statements that relate a specific factor with a response. Hameg, et al [30], also build on 
this information and use ANN combined with genetic algorithms (INForm® v5.01 (Intelligensys 
Ltd., United Kingdom)) to predict new mineral media formulations that also significantly enhanced 
growth of their target species, kiwiberry (Actinidia arguta).
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Hesami, et al [31], compare two different ML methods for optimizing culture conditions for 
chrysanthemum embryogenesis, MLP and SVR. They found the best predictive accuracy 
with SVR using non-dominated sorting genetic algorithm-II (NSGA-II) and achieved a somatic 
embryogenesis rate of 99.09%. 

Maximizing secondary metabolite production: Salehi, et al [32], explored the use of a general 
regression neural network-fruit fly optimization algorithm (GRNN-FOA) and a MLP-genetic 
algorithm (MLP-GA) to find optimal conditions for the production of paclitaxel, an anticancer 
agent, in Corylus avellana. Fungal elicitors can upregulate production of paclitaxel in in vitro 
culture, and Salehi, et al [32], wanted to quickly find the combination of four input conditions 
that would maximize paclitaxel production. In their studies, the GRNN-FOA provided the best 
concordance between predicted and experimental growth data.

Optimizing Agrobacterium-mediated transformation: Just as with the earlier studies searching for 
optimal growth media and secondary metabolite production, AI is proving to be a valuable tool for 
optimizing Agrobacterium-mediated genetic transformation. Hesami, et al [33], evaluated three 
ML approaches individually—MLP, adaptive neuro-fuzzy inference system (ANFIS), and radial 
basis function (RBF)—and as a combined ensemble linked to a fruit fly optimization algorithm 
(FOA) to optimize Agrobacterium-mediated transformation of chrysanthemum based on 11 input 
conditions. As one might expect, the ensemble-FOA performed better than each method alone, 
with a maximum transformation efficiency of 37.54%.
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AI is delivering tremendous benefits for agricultural biotech researchers, rapidly assessing the 
phenotype of individuals in planted fields, accelerating genetic gain, disambiguating the effects 
of different environmental and genetic parameters on growth, and accelerating optimization of 
complex, multi-input processes such as in vitro growth and bacterial transformation. 

Benchling is proud to help teams like these manage their data and streamline the preparation 
and transfer of critical information from the Benchling Life Sciences R&D Cloud to the AI analysis 
platform and back. With Benchling’s expert implementation teams and cloud-based solution, 
Benchling can help any agricultural biotech lab unify much of their current lab operations into a 
single software platform that efficiently and effectively feeds into any AI analysis pipeline.

Conclusion
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Benchling is a cloud-based platform that supports your entire R&D process from early research to late-
stage development by delivering a wide range of functionalities, flexible integration and configuration, 
and user-friendly, easy-to-navigate software that is compatible with your R&D workflows.  

With Benchling, you get a seamless solution for sample tracking, inventory management, 
regulatory compliance, instrument integration, process management, and reporting and analytics. 
All of these applications share the same configurable data model, so they can be accessed through 
a single database—making teams more connected and productive. 

Benchling Applications:

A Unified Platform for a New Era in 
Life Sciences

Notebook: The most user-friendly electronic lab notebook in the industry —  
reduce time to data entry by 85% with the first cloud-based notebook built for 
modern life science.

Molecular Biology: A comprehensive molecular biology suite of 10+ tools in one 
collaborative environment—build, share, and record DNA and amino acid sequences 
in one unified platform.

Registry: A convenient and easy-to-use registration system built from the ground up 
for large molecule R&D—model biological entities and easily enter and extract the 
data you need.

Inventory: Laboratory inventory management—track the locations of vials, wells, 
batches, and more, and automatically link results to them.

Requests: A single system for request submission and fulfillment—track request 
progress in real-time and optimize resource allocation. 

Workflows: A digital process management platform for early research through 
development—organize any scientific workflow into trackable stages and test new 
variations to optimize your outputs. 

Benchling: How Artificial Intelligence Is Advancing Plant Biology 



Insights: Easy-to-configure dashboards and reports provide a full view of R&D—
everyone from scientists and managers to executives can have customized 
dashboards to deliver the answers that they need. 

Benchling Platform:

Lab Automation: Synchronize informatics and instrumentation to drive efficiency and 
maximize the potential of your full suite of molecular laboratory tools.

Validated Cloud: Unify R&D teams for easier collaboration and data management to 
accelerate time-to-market while meeting compliance requirements with a modern 
cloud architecture and enterprise-grade security.

Codeless Configuration: Configure and reconfigure workflows without a single line of 
code so you can quickly adapt and align to your evolving R&D process, resulting in  
rapid prototyping, full deployment, and fast time to value.

Developer Platform: Integrate any instrument, software, and/or database with Benchling 
to centralize your data and enable automation. Equipped with APIs, Events, and Data 
Warehouse, so you can connect Benchling to existing IT infrastructure with ease.

“We can look at a plant and simultaneously know not only 
the plasmid we used, but it’s exact sequence and dozens 
of aspects about it. This takes us from using Benchling as 

a plant inventory system to Benchling as a fully integrated 
biotechnology pipeline.”

Nathaniel Graham, Molecular Biology Scientist, Pairwise Plants

Join over 300,000 scientists using Benchling to power life science R&D. 
Request a Demo.
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