
Important Note

This tutorial describes the functionality and API of FactSet's internal Quant Engine Service. FactSet clients interact with the public Quant
Engine API, which delegates work to the internal Quant Engine Service, but provides a somewhat different API request format and adds a
few additional behaviors like request queueing and batching several "calculations" in one request.

The API request examples in this document use the internal API format. To interact with the public Quant Engine API, consult the
specification and documentation provided on FactSet's developer portal at https://developer.factset.com/api-catalog/quant-engine-api

Overview

The Quant Engine Service allows you to retrieve data sets from FactSet's content databases. These data sets are then organized as a date,
formula, identifier data cube and stored for analysis by tools such as Python Pandas, R, and others.

A data cube is created by generating a set of dates, a universe of identifiers on each date, and then evaluating FactSet formulas for each
identifier on each date. There are a number of ways to define each of these inputs. The universe can be defined using a list of identifiers, a
universe limiting screening code, or by a universal screen document. The formulas can be screening codes, FQL codes, or universal screen
parameters. You can mix and match. For example, you can define the universe using a universal screen document, and then use that universe
to fetch not only parameters from that universal screen, but also screening and FQL codes.

Note that the term data cube is intended as a useful mental model. It is not a true cube in the mathematical sense of the word. There are three
dimensions, date, formula, and identifier, but the size of the universe dimension is not fixed. If the universe is defined by a screening formula
or a universal screen, the size and composition of the universe dimension can vary from one date to another. Additionally, the type of the
elements stored in the cube is different for each formula. Elements can be scalar floats, integers, and strings, or one-dimensional arrays of
scalars.

Once the data cube is created, it is stored for a short amount of time, and can be queried without having to retrieve the data from scratch. The
Quant Engine Service returns the data as a Data Frame serialized using the Apache Feather format. This format is natively understood by
Python Pandas and R.

To generate the data cube, you send a POST request containing a JSON object that defines the input parameters. This document describes the
structure of this object and the meaning of various attributes.

Overall Structure

The body of the POST request is a JSON object with a mandatory data attribute, and an optional meta attribute. The data attribute contains
the date, universe, and formula definitions. The optional meta attribute contains various options that modify the overall behavior of the data
generation process.

{

 "data" :

 {

 "dates" : { ... },

 "universe" : { ... },

 "formulas" : [...]

 },

 "meta" :

 {

 ...

 }

}

Defining the Time Series

The top level dates attribute defines how the time series is generated. There are two ways to define it, as a list of dates, or as a FactSet date
range. The source attribute specifies the method to be used.

Note that failure to generate the time series, either due to an invalid specification, or to a system problem, is a fatal error. The data set can't
be created without a valid list of dates.

List of Dates

Set the source attribute to dateList, and provide a list of dates in the in the dates array attribute. The dates must use the ISO date format,
however the time portion of the date is not used. The most typical format is YYYYMMDD or YYYY-MM-DD. Note that FactSet relative dates
or date math are NOT supported when specifying individual dates. You must also provide a calendar and frequency attributes since these
affect date feelback behavior when evaluating formulas.

 "dates" :

 {

 "source" : "dateList",

 "calendar" : "FIVEDAY",

 "frequency" : "D",

 "dates" : [

 "20050701",

 "2005-07-02",

 "2005-07-03",

 "20050704",

https://developer.factset.com/api-catalog/quant-engine-api

 "2005-07-05"

]

 }

FactSet Date Range

Another way to specify the time series is by using a FactSet date range. This is exactly analogous to the way you define a date range in FQL
formulas and FactSet applications. Set the source attribute to fdsDate. Then specify a startdate, an enddate, a frequency, and a
calendar. A list of dates will be generated from that specification. The FQL formula DATE_YYYYMMDD is used to generate the dates.

The startdate and enddate attributes may use either the ISO date format, or FactSet relative date and date math format.

 "dates" :

 {

 "source" : "fdsDate",

 "startdate" : "0",

 "enddate" : "-30D",

 "frequency" : "D",

 "calendar" : "FIVEDAY"

 }

Overriding the Universal Screen Calendar

If your universe is defined using a screen document (see below), the calendar you specified in the dates object could be different from the
calendar set in your universal screen document. This may lead to inconsistencies in the data. For example, your FQL formulas might be
fetched using the calendar FIVEDAY specified in the dates object, but your universal screen parameters will be fetched using the
SEVENDAY calendar set in the screening document.

By default the Quant Engine Service will override the screen document calendar with the one you specified in the dates object. To turn off
the override, you can set the optional overrideUniversalScreenCalendar attribute to false. For example

 "dates" :

 {

 "source" : "fdsDate",

 "startdate" : "0",

 "enddate" : "-30D",

 "frequency" : "D",

 "calendar" : "FIVEDAY"

 "overrideUniversalScreenCalendar": false

 }

Defining the Universe

The top level universe attribute defines how the universe is generated. There are three ways to specify the universe. You can use a

List of identifiers
Universe limiting screening code
Universal screen document

The source attribute specifies the method to be used.

Recall that the universe is generated in the context of a specific date, so that an identifierUniverse will be the same for every date, but the
set of identifiers produced by a screeningExpressionUniverse can vary from one date to another. Note that failure to generate a universe
for any date is considered to be a fatal error. The data set can't be created without a valid universe on all dates.

Identifier Universe

Set the source attribute to identifierUniverse and provide a valid list of identifiers. You must also specify the universeType.
Currently only two universe types are supported, EQUITY and DEBT. Identifiers can be tickers, cusips, sedols, or FactSet identifiers. The type
of identifiers accepted may vary depending on your CACCESS entitlements.

 "universe" :

 {

 "source" : "identifierUniverse",

 "universeType" : "EQUITY",

 "identifiers" : [

 "AAPL",

 "MSFT",

 "IBM"

]

 }

Screening Expression Universe

Set the source attribute to screeningExpressionUniverse and provide a valid universeExpr. This can be any logical screening code that
limits the universe. You must also specify the universeType. Currently only two universe types are supported, EQUITY and DEBT. This type
of universe definition accepts an optional securityExpr attribute that allows you to specify an alternative way to name securities. If your
universe expression returns cusips as identifiers, you may want to choose TICKER instead as the identifier that will be used in the data set.
The value of securityExpr is currently limited to

* TICKER

* CUSIP

* SEDOL

* AVAIL(FI_IDENTIFIER(CUSIP),FI_IDENTIFIER(DEFAULT_ID))

* AVAIL(FSYM_SECURITY_PERM_ID("DEFAULT"), CUSIP)'

The last two identifier expressions are useful for DEBT universes.

 "universe" :

 {

 "source" : "screeningExpressionUniverse",

 "universeExpr" : "ISON_DOW",

 "universeType" : "EQUITY",

 "securityExpr" : "TICKER"

 }

Universal Screen Universe

You may use a Universal Screen document as the source of the universe. Set the source attribute to universalScreenUniverse and provide
a valid screen. This must be a fully qualified FactSet screen document name. The screen will be calculated on each date, and the universe of
identifiers will be the securities that passed the screen. When using this type of universe, all the universe properties such as the universe type,
the kind of identifier, and so on, are completely determined by the Universal Screen document. You can only modify them by modifying the
Universal Screen document itself.

 "universe" :

 {

 "source" : "universalScreenUniverse",

 "screen" : "Personal:/Screens/TestScreen"

 }

Note that if the screen is not using an EQUITY universe, it will be interpreted as DEBT for the purposes of evaluating content formulas.

Defining the Formulas

The top level formulas attribute of the request specifies an array of formulas to evaluate. There are three ways to define a formula. You can
use a screening expression, an FQL expression, or a Universal Screen parameter reference. Note that unlike date and universe generation
errors, failure to evaluate an individual formula is not a fatal error. Such formulas will be represented by an array of float NaN values in the
data set. String missing values will be represented by a None (Null) value. The error status of each formula is recored in the data set.

Screening Expressions

Set the source attribute to screeningExpression and provide a valid screening expr. This can be any valid screening code, including codes
that return arrays (see the Array Valued Formulas section for details). You must also specify the name attribute. Screening codes can be long
and complex, and the name is used as an alias when displaying the data set. Note that currently all name values must be unique due to the
limitations of the data serialization format we use. This restriction will be removed in the future. If your names are not unique, they will be
deduplicated by adding a . suffix.

 "formulas" :

 [

 {

 "source" : "screeningExpression",

 "expr" : "P_PRICE",

 "name" : "Price"

 },

 {

 "source" : "screeningExpression",

 "expr" : "FF_DIV_YLD",

 "name" : "Dividend Yield"

 },

 {

 "source" : "screeningExpression",

 "expr" : "FG_GICS_SECTOR",

 "name" : "Sector"

 }

]

FQL Formulas

Set the source attribute to fqlExpression and provide a valid FQL expr. You must also specify the name attribute. Actual FQL codes can
be long and complex, and the name is used as an alias when displaying the data set. Note that currently all name values must be unique due to
the limitations of the data serialization format we use. This restriction will be removed in the future. If your names are not unique, they will
be deduplicated by adding a . suffix.

FactSet FQL formulas vary widely in the types of arguments they take and the kinds of values they produce. The Quant Engine Service only
works with FQL formulas that are compatible with the data "cube" model. In short, they must take a date argument, a universe of identifiers,
and produce a value for each (date, identifier) combination (see the Notes on FQL Formulas section for more details). This value must be a
scalar or an 1-dimensional array.

The identifiers are provided to the FQL formula automatically based on the universe you defined. You have to make sure the FQL expression
works for those identifiers.

However, the presence and position of the date arguments can't be deduced automatically since it depends on the particular FQL formula.
You have to provide a hint by inserting placeholders into the formula text indicating the position of the date arguments. The placeholders are
#DATE, which indicates the postion of the start and end arguments, and #FREQ which indicates the position of the frequency argument. In the
example below the OS_TOP_HLDR_POS code demonstrates the use of these placeholders. When fetching data, these placeholders are replaced
with the appropriate values based on the time series definition.

Note that for some formulas the date argument is not required or is implicit, such as the FG_GICS_SECTOR code below. Such formulas are
allowed, but make sure to check they produce "data cube" compatible values.

Be careful with the #FREQ argument. Some formulas don't work with all possible frequencies, check each formula's documentation.

 "formulas": [

 {

 "source": "fqlExpression",

 "expr": "OS_TOP_HLDR_POS(ALL,#DATE,#DATE,#FREQ,,S,SEC)",

 "name": "Top Holder Positions"

 },

 {

 "source": "fqlExpression",

 "expr": "FG_GICS_SECTOR",

 "name": "Sector"

 },

]

FQL Formulas and the NOW argument

Some FQL formulas like P_PRICE accept the NOW argument. The Quant Engine Service is designed to work with historical data only, and any
formulas that return intraday data are NOT supported. You will not be prevented from using NOW in your formulas, but beware that the
results are undefined. The Quant Engine Service works by chunking requests by date, and occasionally by a universe subset. Therse requests
are then processed in parallel at different times, potentially separated by minutes. A formula like P_PRICE(NOW) is a function of fetch time,
NOT the backtest date, and therefore different chunks may contain different values for P_PRICE(NOW).

FQL Formulas and FQL Formula Attributes

The Quant Engine Service does NOT support FQL Formula attributes. You will not be prevented from using FQL attributes, but beware
that the results are undefined. Some attributes might work, but others will result in errors.

FQL Formula Return Type Hint

The Quant Engine Service attempts to automatically determine if an FQL formula returns a scalar or a 1-dimensional array for a given
identifier and date. However, due to the diversity of FQL formulas in FactSet, sometimes the heuristic fails, and the Quant Engine Service
guesses incorrectly, causing an error. This occurs most commonly with FQL formulas that return arrays. Therefore it is good practice to
specify a return type hint for such formulas. Set the isArrayReturnType attribute of such FQL formulas to true, and Quant Engine will treat
the return as an array. Note that it is NOT correct to set this hint to true for formulas that do not actually produce arrays. That will result in
an error.

In the example below, the price formula returns an array of prices. Since we know for a fact that this formula produces arrays, we can
explicitly say so and avoid potential edge cases.

{

 "data" :

 {

 "universe" :

 {

 "source" : "identifierUniverse",

 "universeType" : "EQUITY",

 "identifiers" : [

 "03748R74",

 "S8112735"

]

 },

 "dates" :

 {

 "source" : "dateList",

 "calendar" : "FIVEDAY",

 "frequency" : "D",

 "dates" : [

 "20050701"

]

 },

 "formulas" :

 [

 {

 "source" : "fqlExpression",

 "expr" : "P_PRICE(#DATE,#DATE-5D,#FREQ)",

 "name" : "Price",

 "isArrayReturnType" : true

 }

]

 }

}

And here's the data

 DATE UNIVERSE Price

20050701 03748R74 [52.40118, 52.247963, 51.903217, 51.328648, 51.137115, 50.894524]

20050701 S8112735 [nan]

DATE object

UNIVERSE object

Price object

dtype: object

Screening and FQL Formulas with Date Offsets

Recall that each formula is fetched in the context of a particular backtest date. The optional dateOffset attribute can be used to modify the
backtest date for that particular formula. The value of this argument must be a FactSet relative date modifier such as +5M or -1AY. When a
formula containing a dateOffset is evaluated:

The universe comes from the current backtest date
The data is stored under the current backtest date
But the fetch date is the current backtest date modified by the date offset

Using the screening formula P_PRICE, and assuming a current backtest date of 20050701

 "formulas" :

 [

 {

 "source" : "screeningExpression",

 "expr" : "P_PRICE",

 "name" : "Price"

 },

 {

 "source" : "screeningExpression",

 "expr" : "P_PRICE",

 "name" : "Price +1AY",

 "dateOffset" : "+1AY"

 }

]

 }

The data will look like

 DATE UNIVERSE Price 0 Price +1AY

20050701 IBM 74.67 76.82

20050701 GE 277.92 263.68

20050701 C 461.60 482.50

DATE object

UNIVERSE object

Price 0 float64

Price +1AY float64

dtype: object

And the info section of the cube will include information about the offset date.

Note that date offsets only work for Screening and FQL expressions, universal screen documents do not support date offsets.

 UUID expr code desc wall type name offset offset_date source DATE

o49ncU6oTU645OYkOnj7vA== P_PRICE 0 1079.130 FLOAT Price 0 0 screeningExpression 20050701

uuKAgRMqSSmg2zdPNHEXwQ== P_PRICE 0 29.791 FLOAT Price +1AY +1AY 20060630 screeningExpression 20050701

Universal Screen Parameters

Set the source attribute to universalScreenParameter and provide a valid parameter referenceName. Each parameter in a Universal
Screen document has an automatically assigned reference name such as P4, or a user assigned reference name. You must also specify the
name attribute. Note that currently all name values must be unique due to the limitations of the data serialization format we use. This
restriction will be removed in the future. If your names are not unique, they will be deduplicated by adding a . suffix.

Note that to use Universal Screen parameters as data set formulas, the universe must be defined by a Universal Screen. Parameter references
only make sense in the context of a particular Universal Screen document.

Also note that references to non-existent parameters will result in an array of NaNs in the generated data set.

 "formulas" :

 [

 {

 "source" : "universalScreenParameter",

 "referenceName" : "P4",

 "name" : "Price"

 },

 {

 "source" : "universalScreenParameter",

 "referenceName" : "MY_DIV_YIELD",

 "name" : "Dividend Yield"

 },

 {

 "source" : "universalScreenParameter",

 "referenceName" : "I_AM_AN_INVALID_REFERENCE",

 "name" : "No Such Parameter"

 }

A common pattern is to request all parameters from a Universal Screen. Instead of listing them one by one, there is a shortcut. Set the
source attribute to allUniversalScreenParameters, and all the parameters will be included as formulas. These formulas will take their
name attribute from the 'Header' property of the parameter. Since all name values must be unique, make sure that your screen parameter
'Header' properties are all unique as well. This limitation will be removed in the future. If the names are not unique, they will be deduplicated
by adding a . suffix.

 "formulas" :

 [

 {

 "source" : "allUniversalScreenParameters"

 }

]

Let's Generate a Data Set

Let's use the data, universe, and formula definitions to generate some data sets. Below are four examples of requests, the data sets they
generate, and some comments about typical usage patterns.

Basic Data Set

The Time Series is a simple list of dates (remember to use the YYYYMMDD or YYYY-MM-DD format)
The Universe is a fixed set of equity identifiers
We retrieve the sector and earnings per share using simple screening codes

{

 "data" :

 {

 "dates":

 {

 "source" : "dateList",

 "calendar" : "FIVEDAY",

 "frequency" : "M",

 "dates" : [

 "20050701",

 "20070701",

 "20120701"

]

 },

 "universe":

 {

 "source" : "identifierUniverse",

 "universeType" : "EQUITY",

 "identifiers" : [

 "AAPL",

 "MS",

 "GE"

]

 },

 "formulas":

 [

 {

 "source" : "screeningExpression",

 "expr" : "FG_GICS_SECTOR",

 "name" : "Sector (SCR)"

 },

 {

 "source" : "screeningExpression",

 "expr" : "FF_EPS",

 "name" : "Eps (SCR)"

 }

]

 }

}

We request the Quant Engine Service to return the data set as a Pandas Data Frame, and print it.

 DATE UNIVERSE Sector (SCR) Eps (SCR)

0 20050701 AAPL Information Technology 0.0127

1 20050701 MS Financials 4.0590

2 20050701 GE Industrials 1.6100

3 20070701 AAPL Information Technology 0.0811

4 20070701 MS Financials 7.0658

5 20070701 GE Industrials 2.0215

6 20120701 AAPL Information Technology 0.9886

7 20120701 MS Financials 1.2338

8 20120701 GE Industrials 1.2313

DATE object

UNIVERSE object

Sector (SCR) object

Eps (SCR) float64

dtype: object

Switch to a FactSet Date Range and add an FQL formula

The time series is now defined by a date range
We're pulling in Sales information using FF_SALES as an FQL expression
Note the use of #DATE and #FREQ placeholders to identify the date argument positions
We could have evaluated FF_SALES as a screening expression instead
You should use screening codes to get data whenever possible because they are faster
Only use FQL expressions to get data not available via screening expressions

{

 "data" :

 {

 "dates":

 {

 "source" : "fdsDate",

 "calendar" : "FIVEDAY",

 "startdate" : "0",

 "enddate" : "-5M",

 "frequency" : "M"

 },

 "universe":

 {

 "source" : "identifierUniverse",

 "universeType" : "EQUITY",

 "identifiers" : [

 "AAPL",

 "MS",

 "GE"

]

 },

 "formulas":

 [

 {

 "source" : "screeningExpression",

 "expr" : "FG_GICS_SECTOR",

 "name" : "Sector (SCR)"

 },

 {

 "source" : "screeningExpression",

 "expr" : "FF_EPS",

 "name" : "Eps (SCR)"

 },

 {

 "source" : "fqlExpression",

 "expr" : "FF_SALES(MON,#DATE,#DATE,#FREQ)",

 "name" : "Sales (FQL)"

 }

]

 }

}

We request the Quant Engine Service to return the data set as a Pandas Data Frame, and print it.

 DATE UNIVERSE Sector (SCR) Eps (SCR) Sales (FQL)

20210930 AAPL Information Technology 5.6140 365817.0

20210930 MS Financials 6.4655 60391.0

20210930 GE Industrials 4.6676 75369.0

20211029 AAPL Information Technology 5.6140 365817.0

20211029 MS Financials 6.4655 60391.0

20211029 GE Industrials 4.6676 75369.0

20211130 AAPL Information Technology 5.6140 365817.0

20211130 MS Financials 6.4655 60391.0

20211130 GE Industrials 4.6676 75369.0

20211231 AAPL Information Technology 5.6140 378697.0

20211231 MS Financials 8.0298 61352.0

20211231 GE Industrials -2.6512 74174.0

20220131 AAPL Information Technology 5.6140 378697.0

20220131 MS Financials 8.0298 61352.0

20220131 GE Industrials -2.6512 74174.0

20220228 AAPL Information Technology 5.6140 378697.0

20220228 MS Financials 8.0298 61352.0

20220228 GE Industrials -2.6512 74174.0

DATE object

UNIVERSE object

Sector (SCR) object

Eps (SCR) float64

Sales (FQL) float64

dtype: object

Change the Universe to a Screening Expression and Add an Array Valued FQL formula

Change the universe to DOW companies with Price > 200, we need to use a screening expression universe
Add a P_PRICE screening formula as a sanity check
Add the OS_TOP_HLDR_POS formula, note that this formula returns an array of values for each (date, identifier) combination
Note that MMM only appears in the 20210531 universe

{

 "data" :

 {

 "dates":

 {

 "source" : "fdsDate",

 "calendar" : "FIVEDAY",

 "startdate" : "0",

 "enddate" : "-5M",

 "frequency" : "M"

 },

 "universe" :

 {

 "source" : "screeningExpressionUniverse",

 "universeExpr" : "(ISON_DOW AND P_PRICE > 200)=1",

 "universeType" : "EQUITY",

 "securityExpr" : "TICKER"

 },

 "formulas":

 [

 {

 "source" : "screeningExpression",

 "expr" : "FG_GICS_SECTOR",

 "name" : "Sector (SCR)"

 },

 {

 "source" : "screeningExpression",

 "expr" : "P_PRICE",

 "name" : "Price (SCR)"

 },

 {

 "source" : "fqlExpression",

 "expr" : "FF_SALES(MON,#DATE,#DATE,#FREQ)",

 "name" : "Sales (FQL)"

 },

 {

 "source": "fqlExpression",

 "expr": "OS_TOP_HLDR_POS(3,#DATE,#DATE,#FREQ,,S,SEC)",

 "name": "Top 3 Holder Pos",

 "isArrayReturnType" : true

 }

]

 }

}

We request the Quant Engine Service to return the data set as a Pandas Data Frame, and print it.

 DATE UNIVERSE Sector (SCR) Price (SCR) Sales (FQL) Top 3 Holder Pos

20210930 MSFT Information Technology 281.92 176251.0 [102992934.0, 2908770.0, 1669375.0]

20210930 UNH Health Care 390.74 279321.0 [1834462.0, 1415996.0, 968115.0]

20210930 GS Financials 378.03 75544.0 [8610503.0, 974404.0, 132137.0]

20210930 BA Industrials 219.94 62798.0 [141719.0, 85309.0, 72458.0]

20210930 MCD Consumer Discretionary 241.11 22527.6 [88500.0, 43154.0, 21581.0]

20210930 HD Consumer Discretionary 328.26 144415.0 [186544.0, 79415.0, 69996.0]

20210930 V Information Technology 222.75 24105.0 [1610000.0, 250856.0, 139715.0]

20211029 MSFT Information Technology 331.62 176251.0 [102992934.0, 2908770.0, 1669375.0]

20211029 UNH Health Care 460.47 279321.0 [1834462.0, 1415996.0, 968115.0]

20211029 GS Financials 413.35 75544.0 [8610503.0, 974404.0, 132137.0]

20211029 BA Industrials 207.03 62798.0 [141719.0, 85309.0, 72458.0]

20211029 CAT Industrials 204.01 48437.0 [288000.0, 276550.0, 275008.0]

20211029 MCD Consumer Discretionary 245.55 22527.6 [88500.0, 43154.0, 21581.0]

20211029 HD Consumer Discretionary 371.74 147699.0 [186544.0, 79415.0, 69996.0]

20211029 V Information Technology 211.77 24105.0 [1610000.0, 250856.0, 139715.0]

20211130 MSFT Information Technology 330.59 176251.0 [102992934.0, 2908770.0, 894691.0]

20211130 UNH Health Care 444.22 279321.0 [1709813.0, 1411127.0, 968115.0]

20211130 GS Financials 380.99 75544.0 [8610503.0, 957404.0, 132137.0]

20211130 MCD Consumer Discretionary 244.60 22527.6 [88500.0, 43154.0, 21581.0]

20211130 HD Consumer Discretionary 400.61 147699.0 [186544.0, 79415.0, 69996.0]

20211231 MSFT Information Technology 336.32 184903.0 [102992934.0, 2800000.0, 894691.0]

20211231 UNH Health Care 502.14 287597.0 [1526450.0, 1406707.0, 968115.0]

20211231 GS Financials 382.55 64321.0 [8610503.0, 957404.0, 132137.0]

20211231 BA Industrials 201.32 62286.0 [141719.0, 85309.0, 70957.0]

20211231 CAT Industrials 206.74 50984.0 [288000.0, 276550.0, 275008.0]

20211231 MCD Consumer Discretionary 268.07 23222.9 [88600.0, 43154.0, 21581.0]

20211231 HD Consumer Discretionary 415.01 147699.0 [186544.0, 79415.0, 69996.0]

20211231 V Information Technology 216.71 25477.0 [2400000.0, 1758783.0, 272074.0]

20220131 MSFT Information Technology 310.98 184903.0 [102992934.0, 2800000.0, 894691.0]

20220131 UNH Health Care 472.57 287597.0 [1457424.0, 1397810.0, 968115.0]

20220131 GS Financials 354.68 64321.0 [8610503.0, 957404.0, 132137.0]

20220131 BA Industrials 200.24 62286.0 [141719.0, 85309.0, 70957.0]

20220131 CAT Industrials 201.56 50984.0 [288000.0, 276550.0, 275008.0]

20220131 MCD Consumer Discretionary 259.45 23222.9 [88600.0, 43154.0, 21581.0]

20220131 HD Consumer Discretionary 366.98 151157.0 [186544.0, 79415.0, 69996.0]

20220131 V Information Technology 226.17 25477.0 [2400000.0, 1758783.0, 264965.0]

20220228 MSFT Information Technology 298.79 184903.0 [102992934.0, 2800000.0, 894691.0]

20220228 UNH Health Care 475.87 287597.0 [1455304.0, 1382810.0, 968115.0]

20220228 GS Financials 341.29 64321.0 [952404.0, 123205.0, 117701.0]

20220228 BA Industrials 205.34 62286.0 [132118.0, 93980.0, 85309.0]

20220228 MCD Consumer Discretionary 244.77 23222.9 [88600.0, 43154.0, 25829.0]

20220228 HD Consumer Discretionary 315.83 151157.0 [204092.0, 86056.0, 76634.0]

20220228 V Information Technology 216.12 25477.0 [2400000.0, 1758783.0, 264965.0]

DATE object

UNIVERSE object

Sector (SCR) object

Price (SCR) float64

Sales (FQL) float64

Top 3 Holder Pos object

dtype: object

And Now for Something Completely Different, Universal Screen Universe

If you have a Universal Screen document you can use it to define the Universe
You can pull out individual parameters using referenceName
Remember that you can pull out all parameters using the allUniversalScreenParameters formula source (not shown here)
If you reference a non-existent parameter, you will get an array of NaNs
You can use the universe generated by the Universal Screen in regular screening or FQL expressions
Let's get P_PRICE three times, from the Universal Screen, from an FQL expression, and from a screening expression
Hopefully the numbers match (barring different rounding strategies)
Note that Univeral Screens are much slower than getting universe or formula data using codes, avoid for large data sets!

{

 "data" :

 {

 "universe" :

 {

 "source" : "universalScreenUniverse",

 "screen" : "Personal:/Screens/TestScreen"

 },

 "dates" :

 {

 "source" : "fdsDate",

 "startdate" : "20050701",

 "enddate" : "20050701",

 "frequency" : "D",

 "calendar" : "FIVEDAY"

 },

 "formulas" :

 [

 {

 "source" : "universalScreenParameter",

 "referenceName" : "P9",

 "name" : "Price (USC)"

 },

 {

 "source" : "screeningExpression",

 "expr" : "P_PRICE",

 "name" : "Price (SCR)"

 },

 {

 "source" : "fqlExpression",

 "expr" : "P_PRICE(#DATE, #DATE, #FREQ)",

 "name" : "Price (FQL)"

 },

 {

 "source" : "universalScreenParameter",

 "referenceName" : "AHA",

 "name" : "Div Yield (USC)"

 },

 {

 "source" : "universalScreenParameter",

 "referenceName" : "PARAM999",

 "name" : "Bad Param"

 }

]

 }

}

We request the Quant Engine Service to return the data set as a Pandas Data Frame, and print it. When using Universal Screen documents,
the columns are not necessarily in the same order as the formulas in the request. This will be fixed in future releases. Note that Pandas makes
it easy to sort data frames, so it's easy to remedy.

 DATE UNIVERSE Price (USC) Div Yield (USC) Bad Param Price (SCR) Price (FQL)

0 20050701 RTX 51.38 1.354620 NaN 51.38 51.38000

1 20050701 UNH 52.81 0.034079 NaN 52.81 52.81000

2 20050701 JNJ 64.95 1.726580 NaN 64.95 64.95000

3 20050701 MMM 73.00 1.754600 NaN 73.00 73.00000

4 20050701 CVX 56.97 2.913730 NaN 56.97 56.97000

5 20050701 IBM 74.67 0.710083 NaN 74.67 74.67000

6 20050701 PG 52.90 1.952610 NaN 52.90 52.90000

7 20050701 GS 102.71 0.953834 NaN 102.71 102.71000

8 20050701 BA 64.68 1.487350 NaN 64.68 64.68000

9 20050701 XOM 58.31 2.067890 NaN 58.31 58.31000

10 20050701 AXP 53.54 0.780557 NaN 53.54 53.54000

11 20050701 DD 134.07 2.706520 NaN 134.07 134.06999

DATE object

UNIVERSE object

Price (USC) float64

Div Yield (USC) float64

Bad Param float64

Price (SCR) float64

Price (FQL) float64

dtype: object

Limits and Notes on Performance

The Quant Engine Service itself does not impose any limits on the number of dates, size of the universe, or number of formulas.
Theoretically, you can construct very large data sets. However, FactSet's underlying screening, FQL, and universal screen infrastructures do
have limits of their own. For example, screening expressions are optimized for very large universes, whereas FQL is not. The number of
formulas that can be reliably processed in a single request varies depending on the particular content service and the complexity of the
formulas. In practice, your request may fail because the data takes too long to generate and hits limits within these services.

The Quant Engine Service attempts to get around the performance limitations of various services, FQL in particular, by breaking up large
requests into smaller ones, sending them out individually, and then reassembling the data. However, it is possible to construct very inefficient
formulas that defeat this optimization. In such cases it is necessary to modify the formulas themselves to be more efficient.

To maximize chances of success try to limit the size of the input dimensions to

3000 identifer universe
2500 dates
50 formulas

These are not strict limits, you can trade-off the size of one dimension for another. For example, you can use a 30,000 universe (or larger) if
you reduce the number of dates by a factor of 10.

If the amount of data you want to retrieve is larger than the above parameters, and you can't trade-off effectively, you should break up your
data fetch into several requests to the API. The simplest method is to break up by the date dimension. This is recommended if the number of
formulas is low, under 50. If the number of formulas is high and their performance is poor, then it is better to break up by formula. As a last
resort, it may be necessary to break up along both the date and formula dimensions. It is usually not necessary to break up by the universe
dimension.

In general, be aware that

Screening formulas are genrally the fastest
Only use FQL expressions if the data is not available via screening expressions
Any request that uses a Universal Screen Universe will be an order of magnitude slower than simple screening or FQL codes
When constructing data sets with hundreds of dates, a Universal Screen based request may take hours to generate

Notes on Missing Values

FactSet content databases use FactSet specific NA sentinels that are not recognized by other programming languages and environments. The
Quant Engine Service understands these sentinels and marks missing data internally. However, when outputting the data set, representation
of missing values depends on the output format used.

When the data set is returned as a Pandas Data Frame in Python

numpy.nan is used to represent numeric missing values
Python None is used to represent string missing values

Be aware that the following values represent FactSet’s missing values. If you see them in your output it is likely that the output format does
not make it possible to represent missing values correctly, or there was some quirk in the data returned by content services.

Float: -1.0e+22

Float: -1.5e+21

Float: -9.999999778196308e+21

Integer: -2147483648

String: @NA

String: $$FDS_US_@NA$$

Notes on Array Valued Screening Formulas

Some FactSet formulas produce an array of scalar values for each (date, identifier) combination. Common examples are screening iteration
codes such as ARRAY5(P_PRICE), or FQL formulas such as OS_TOP_HLDR_POS. Array valued FQL formulas are always allowed. However,
Screening codes that return array values are not common. To use such codes you must turn on this behavior by setting the allowArrayData
attribute to 1 in the meta section of the request. If you do not, formulas such as ARRAY5(P_PRICE) will return the first value as a scalar.

Here is an example request.

{

 "data" :

 {

 "dates" :

 {

 "source" : "fdsDate",

 "startdate" : "0",

 "enddate" : "-5D",

 "frequency" : "D",

 "calendar" : "FIVEDAY"

 },

 "universe":

 {

 "source" : "identifierUniverse",

 "universeType" : "EQUITY",

 "identifiers" : [

 "AAPL",

 "MS",

 "GE"

]

 },

 "formulas" :

 [

 {

 "source" : "screeningExpression",

 "expr" : "ARRAY5(P_PRICE)",

 "name" : "Price (SCR) x5"

 }

]

 }

 },

 "meta" :

 {

 "allowArrayData" : 1

 }

}

And the data set.

 DATE UNIVERSE Price (SCR) x5

0 20210610 AAPL [126.11, 127.13, 126.74, 125.9, 125.89]

1 20210610 MS [91.68, 92.67, 92.79, 93.21, 93.96]

2 20210610 GE [13.63, 13.73, 13.9, 13.91, 13.96]

3 20210609 AAPL [127.13, 126.74, 125.9, 125.89, 123.54]

4 20210609 MS [92.67, 92.79, 93.21, 93.96, 93.35]

5 20210609 GE [13.73, 13.9, 13.91, 13.96, 14.09]

6 20210614 AAPL [130.48, 127.35, 126.11, 127.13, 126.74]

7 20210614 MS [90.72, 92.05, 91.68, 92.67, 92.79]

8 20210614 GE [13.47, 13.69, 13.63, 13.73, 13.9]

9 20210611 AAPL [127.35, 126.11, 127.13, 126.74, 125.9]

10 20210611 MS [92.05, 91.68, 92.67, 92.79, 93.21]

11 20210611 GE [13.69, 13.63, 13.73, 13.9, 13.91]

12 20210608 AAPL [126.74, 125.9, 125.89, 123.54, 125.06]

13 20210608 MS [92.79, 93.21, 93.96, 93.35, 92.76]

14 20210608 GE [13.9, 13.91, 13.96, 14.09, 14.09]

15 20210607 AAPL [125.9, 125.89, 123.54, 125.06, 124.28]

16 20210607 MS [93.21, 93.96, 93.35, 92.76, 92.11]

17 20210607 GE [13.91, 13.96, 14.09, 14.09, 14.15]

DATE object

UNIVERSE object

Price (SCR) x5 object

dtype: object

Output Format(s)

The primary output format supported by the Quant Engine Service data "cube" endpoint is the Apache Feather format. The data set is
converted to a Data Frame, serialized using the Feather format, and returned as a binary response. Data Frames encoded in the Feather
format can be read by any programming environment that supports this format such as Python Pandas, and R Data Frames.

Note that support for FactSet's STACH format has been dropped

