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1 Introduction

The Stochastic Volatility Inspired (SVI) parametrization for total variance was introduced by Gatheral (see [2]). It is a
five-parameter formula that fits market data remarkably well for a given maturity. Let k denote the log forward moneyness
(i.e., k = ln(K/F ) where K is the strike and F the forward price of the underlying), and let w denote the total variance
(i.e., w = tσ2 where t is the maturity and σ is the implied volatility). The SVI parametrization is

w(k) = a+ b
[
ρ(k −m) +

√
(k −m)2 + c2

]
where a, b, ρ,m, and c are the parameters. We note that b is assumed nonnegative, c is assumed positive, and |ρ| ≤ 1 as this
parameter represents the correlation between processes of the underlying and the volatility. Other reasons for the popularity
of this model include the fact that it has linear asymptotic growth, as expected from the work of Lee in [6]. We note that
Lee’s result is model-independent. Furthermore, in [3] it is shown that the Heston implied volatility model converges to the
SVI parametrization in the long maturity limit. Although one can interpolate SVI slices to create a volatility surface, this
surface is often unsatisfactory due to the presence of static arbitrage (see [4] for definition). For example, the presence of
calendar spread arbitrage can easily be seen in the left panel of Figure 1 since ∂tw ≥ 0 is most definitely violated.

To address these issues, Gatheral and Jacquier introduced the Surface Stochastic Volatility Inspired (SSVI) parametrization
[4]. Letting θt denote the forward at-the-money (ATM) implied total variance, the surface is parametrized by

w(k, θt) =
θt
2

[
1 + ρϕ(θt)k +

√
(ϕ(θt)k + ρ)2 + 1− ρ2

]
,

where ϕ is a smooth, positive-valued function such that limt→0 θtϕ(θt) exists. At a fixed maturity, this amounts to a
three-parameter specialization of the SVI parametrization, with the caveat that ρ is constant across all maturities. The
trade-off here is that the parametric form is now more rigid, having fewer parameters, but in return Gatheral and Jacquier
provide tractable conditions for the preclusion of calendar spread arbitrage and butterfly arbitrage.

In order to increase flexibility of the parametric form and thus improve the fit to market data, Hendriks and Martini
introduced the extended Stochastic Volatility Inspired (eSSVI) parametrization [5]. They allow the parameter ρ to vary
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Figure 1: SVI implied volatility and total variance surface for SPX on March 7, 2018.

with maturity and prove extended versions of the calendar spread and butterfly arbitrage conditions, which are still
tractable. Following [1], we implement the eSSVI parametrization in the form

w(k) =
1

2

[
θ + ρψk +

√
(ψk + ρθ)2 + (1− ρ2)θ2

]
, (1)

where θ = θ∗ − ρψk∗ and the parameters ρ, ψ, θ∗, and k∗ may depend on maturity (we omit a t subscript for notational
convenience). The parameters k∗ and θ∗ are taken directly from market data: k∗ is the log forward moneyness that is
closest to ATM, and θ∗ is the corresponding total implied variance. Here it is assumed that ψ > 0 and |ρ| < 1. We note
that the remaining parameters ρ and ψ are not determined by straightforward regression. In order to meet a sufficient
condition to preclude butterfly arbitrage, we must ensure that

ψ ≤ 4

1 + |ρ|
, (2)

and

ψ ≤ −2ρk∗

1 + |ρ|
+

√
(2ρk∗)2

(1 + |ρ|)2
+

4θ∗

1 + |ρ|
. (3)

To ensure there is no calendar spread arbitrage, we must consider slices taken at two separate maturities t1 < t2. Let
(θ1, ρ1, ψ1) and (θ2, ρ2, ψ2) be the parameters corresponding to maturities t1 and t2 respectively. There is no calendar
spread arbitrage between these slices if and only if the following three inequalities are satisfied

θ1 ≤ θ2, (4)

ψ1 ≤ ψ2, (5)

|ρ2ψ2 − ρ1ψ1| ≤ ψ2 − ψ1. (6)

2 Algorithm

To determine the parameters ρ and ψ at each maturity, we leverage the algorithm found in [1] and describe our
implementation of it. At each maturity, assume we have a reliable set of market data points {(wj , kj , vj)}, which are the
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total implied variance, log-moneyness, and vega respectively. Implied volatility for each security is computed using the
Cox-Ross-Rubinstein Binomial Option Pricing Model for American style options, and the Black-Scholes model is used for
European style options. For more details on the data preparation, see Appendix A. Let t1 < t2 < · · · < tn denote the
maturities where data exists and let ρi and ψi be the values of the parameters at maturity ti which are to be determined.
Also, as above let θi = θ∗ − ρiψik∗ where k∗ is the data point closest to ATM and θ∗ is the corresponding value of total
implied variance.

We choose a vega-weighted objective function of the form

f(ρ, ψ) =
∑
j

vj [wj − w(kj , ρ, ψ)]
2

(7)

where

w(kj , ρ, ψ) =
1

2

[
θ + ρψkj +

√
(ψkj + ρθ)2 + (1− ρ2)θ2

]
as in the expression in (1). At each maturity, our goal is to find the minimum value of the objective function f subject to
the constraints (2)-(6). We solve this problem sequentially starting from the shortest maturity and ending with the longest.
At each maturity we proceed as follows:

1. Sample ρ in the interval (−1, 1), say 20 evenly spaced values.

2. For each value of ρ, determine bounds ψmin and ψmax such that the inequalities (2)-(6) are satisfied for all values of ψ
in the interval [ψmin, ψmax]. For (4)-(6), the values ρ1, ψ1, and θ1 represent the parameters at the previous slice, and
thus their values are fixed. ρ2, ψ2, and θ2 represent the parameters we are currently trying to determine. Note that
for the first maturity t1, we need only to satisfy (2) and (3) with ψ > 0.

3. For each fixed value of ρ, solve the 1-dimensional optimization problem of minimizing f such that ψmin ≤ ψ ≤ ψmax.

4. Store the values of ρ and ψ that yield the smallest value of the objective function f .

5. Repeat steps 1-4 with a smaller interval centered at the value of ρ found in the previous step. The bounds of this
interval can be the neighboring values of ρ from the previous sampling.

A few items for consideration regarding the above algorithm: first, we find it sufficient to run through the above loop a
pre-determined number of times, although one could choose some other stopping criteria. Secondly, it is possible that the
interval [ψmin, ψmax] is empty, in which case we skip the calibration at this maturity. If more than 30% of maturities are
skipped, then no surface will be calculated.

3 Calibration Results

We use a weighted root mean square error (WRMSE) of volatility to compare the fitting error of the eSSVI surface to other
models. Since our objective function is vega-weighted, we include those weights here as well,

WRMSE =

√√√√√√√
∑
i,j

vj

[√
wj

ti
−
√

w(kj)
ti

]2
∑
i,j

vj

where i runs through all maturities and j runs through all data points at each maturity. Note that the quantity
√
w/t

represents the volatility corresponding to a value of total variance. To help put the results of the WRMSE for both eSSVI
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and SVI in perspective, we also include a very naive linear model for the total implied variance. This model takes the form
w(k) = max(ak + bt+ c, 0), where the parameters a, b, and c are determined by minimizing an expression similar to (7).
The results shown in Table 3 are typical for many underlying assets/indices and dates: for a reasonable loss in fitting error
for the eSSVI compared to SVI, we gain the advantage of a surface free of static arbitrage.

eSSVI SVI Linear
WRMSE 0.00958 0.00315 .07305

Table 1: WRMSE for different implied volatility surface models for SPX on March 8, 2018.

We can interpolate and extrapolate any of our models beyond the available market data on a given date 1. Therefore, we
can compute a time series for the implied volatility surface value over a range of dates for a fixed value of maturity and
moneyness. This gives us some sense of how the model performs during stressed conditions. Figure 3 shows a time series for
the calendar year 2008 for SPX that is ATM with 45 days to maturity.

Figure 2: ATM, 45 days to maturity time series for calendar year 2008 for SPX. eSSVI is on the left, SVI is on the right.

Perhaps not surprisingly, both models yield very similar results at this moneyness value. However, we see a drastic
difference when the moneyness is increased to 1.2, see Figure 3. The eSSVI model yields reasonable arbitrage-free results
for the entire surface, whereas the feasibility of the SVI model quickly erodes from ATM.

1See Section 4 for how this is accomplished for the eSSVI model. For the SVI, we use a monotonically increasing interpolation with respect to
maturity.
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Figure 3: Moneyness = 1.2, 45 days to maturity time series for calendar year 2008 for SPX. eSSVI is on the left, SVI is on
the right.

4 Interpolation and extrapolation

Suppose that we have calibrated (1) to market data at each available maturity such that inequalities (2)-(6) are satisfied. In
other words, for each maturity t1 < t2 < · · · < tn where market data exists, we have a set of parameters (θi, ρi, ψi) that
allow us to compute a total variance for any strike using the model in (1). To compute total variance at other maturities,
we need to be able to interpolate and extrapolate.

For interpolation, let tλ = (1− λ)ti + λti+1 for some number λ such that 0 ≤ λ ≤ 1. To this maturity tλ we assign
parameters as follows

θλ = (1− λ)θi + λθi+1 (8)

ψλ = (1− λ)ψi + λψi+1

ρλ =
(1− λ)ρiψi + λρi+1ψi+1

ψλ
.

Total variance for any strike at maturity tλ can then be computed using these parameters in (1). Note that the parameters
θλ and ψλ are linearly interpolated, but ρλ is not.

For extrapolation in the maturity interval [0, t1], let tλ = λt1 with 0 ≤ λ ≤ 1. Here we set

θλ = λθ1 (9)

ψλ = λψ1

ρλ = ρ1.

So in this case θλ and ψλ are again linearly interpolated, and ρλ is held constant.

For extrapolation beyond tn, let tλ be any maturity such that tλ > tn. Set

θλ = M(tλ − tn) + θ̂n (10)

ψλ = ψn

ρλ = ρn.
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Here θ̂i is the ATM total variance predicted by (1) using the parameters (θi, ρi, ψi) and k = 0, and M is the slope obtained

from linear regression on the set of points {(ti, θ̂i)} for i = 1, . . . , n.

Finally, we note that this interpolation/extrapolation scheme is not chosen arbitrarily. See [1] for proof that the resulting
surface is free of butterfly- and calendar-spread arbitrage. Figure 4 shows the implied volatility surface for SPX on March
7, 2018. The smallest and largest maturities with available market data are 7 and 1017 days respectively, the second and
third panels zoom in on these extrapolation transition points.

Figure 4: eSSVI implied volatility surface for SPX on March 7, 2018.

A Data Filtering

The following filtering rules are applied to the following exchanges (both equity and index securities):

Filters ASX BOM DMI EUR KRX LIF MOD MRV OMX
No in-the-money X X X X X X X X X
No Adjusted Options X X X X X X X X X
No IV = 0 or NA X X X X X X X X X
No Secondary Exchange X X X X X X X X X
No European Style Equity
Options

X X X X X X X X

No Options with Bid/Ask
= 0

X

No options where last set-
tlement date 6= requested
date

X

No options with Settle-
ment price = 0 or NA

X X X X X X X X

No options with contract
size 6= 100
No options where bid/ask
% spread > 5%
No options where contract
size 6= mode

X X X X X X X X X
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Filters OSE OSL TFEX USA WAR HKO TAE EMD BUD
No in-the-money X X X X X X X X X
No Adjusted Options X X X X X X X X X
No IV = 0 or NA X X X X X X X X X
No Secondary Exchange X X X X X X X X X
No European Style Equity
Options

X X X X X X X X X

No Options with Bid/Ask
= 0

X X

No options where last set-
tlement date 6= requested
date

X

No options with Settle-
ment price = 0 or NA

X X X X X X X

No options with contract
size 6= 100

X

No options where bid/ask
% spread > 5%

X

No options where contract
size 6= mode

X X X X X X X X

B Dividend Methodologies

The dividend methodology used when calculating the forward price is determined by both the option type and the data
available on the underlying ID. For Equity Options, discrete dividends will be used. For Index Options, a continuous
dividend yield will be used.

B.1 Discrete dividends

When calculating dividend projections, we look at dividends paid over the past 12 months and any announced dividends
available up to the option’s expiration date. Any non-regular dividends are excluded.

When calculating on 10/9/2019 for an option that expired 10/23/2020, the following dividends are fetched:

Dividend
amount

Ex-date Type Category

$0.54 11/13/2018 Final Historical
$0.25 3/10/2019 Interim Historical
$0.26 7/10/2019 Interim Historical
$0.55 10/20/2019 Final Announced

With the array of dividends, we project that each dividend ex-date over that period will have a corresponding dividend of
the same type the following year. We check to see if a projected dividend is within ±28 days of an actual or announced
dividend (or ±10 days for monthly dividends). If there is, we throw out the projection. We continue this up to the option’s
expiration. The amount of each dividend projection will come from the latest dividend of the same type.
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When looking at final dividends, there was a dividend ex-date of 11/13/2018. We project a dividend will have an ex-date
on 11/13/2019, with an amount of $0.55 (the most recent dividend payment of the final type). However, since the
11/13/2019 projection is within 28 days of the 10/20/2019 announced dividend, the projection is thrown out. The
3/10/2019 and 7/10/2019 dividends are projected forward annually.

Dividend
amount

Ex-date Type Category

$0.54 11/13/2018 Final Historical
$0.25 3/10/2019 Interim Historical
$0.26 7/10/2019 Interim Historical
$0.55 10/20/2019 Final Announced
$0.55 11/13/2019 Final Thrown out projection
$0.26 3/10/2020 Interim Projected
$0.26 7/10/2020 Interim Projected
$0.55 10/20/2020 Final Projected

The final set of dividends included in the calculation on 10/9/2019 for 10/23/2020 expiration is:

Dividend
amount

Ex-date Type Category

$0.55 10/20/2019 Final Announced
$0.26 3/10/2020 Interim Projected
$0.26 7/10/2020 Interim Projected
$0.55 10/20/2020 Final Projected

For an option expiring on 8/21/2021, the dividends included would be:

Dividend
amount

Ex-date Type Category

$0.55 10/20/2019 Final Announced
$0.26 3/10/2020 Interim Projected
$0.26 7/10/2020 Interim Projected
$0.55 10/20/2020 Final Projected
$0.26 3/10/2021 Interim Projected
$0.26 7/10/2021 Interim Projected

In the case of Franked/Unfranked dividends, these are summed together and treated as a single dividend.

B.2 Continuous dividends

For indices, a continuous dividend yield is applied. When settlement prices are available, an implied dividend yield will be
calculated for each maturity. The implied dividend yield is calculated for each put-call option pair in the filtered universe.
The implied dividend yield is calculated as:

qimp =

ln

(
(Call Settle)− (Put Settle) +Ke−rt

s

)
t

.
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Once the implied dividend yield is calculated for each put-call pair, the average value is calculated and used when
calculating the forward price for that maturity. In the case where the average implied dividend yield is less than zero, no
dividend yield is used.
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