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ABSTRACT 
 
High risk, high volatility task environments require extensive hands-on training, detailed protocols and the experience 
of expert decision makers who can anticipate, adapt and respond effectively to complex situations. But what happens 
when even expert-level decision making reaches its limits? How do people behave when protocols and best practices 
fail to account for unanticipated sources of risk? How can we develop better learning paradigms to address training 
needs in environments where the best course of action is unknown? Operators in these environments know that 
experience is key: exposure to repeated, high risk events helps them develop sophisticated response strategies. But 
what happens when novel challenges render expert decision models obsolete? Immersive simulations and wargames 
can create ideal learning environments to address this issue, by rapidly accelerating exposure to a variety of rare, non-
routine, or hazardous events. However, two primary issues constrain their ability to deliver effectively: First, many of 
these programs are focused on replicating events that can assure proficiency among operators. Using the Dreyfus five-
stage model of expertise, we argue that immersive simulation is most effective when it pushes decision makers beyond 
proficiency assurance and is able to destabilize their mental models, challenging them toward innovative approaches 
to chaotic situations. Second, training needs in industry, military and government organizations are often highly 
constrained by time, money, capacity, schedule, and staffing requirements. Immersive, multi-player Virtual Worlds 
allow us to relieve some of this training burden by providing a platform to sandbox novel techniques for expert 
decision making in extraordinary conditions. However, many limitations and challenges still remain. Drawing from 
our own implementation efforts, we will discuss some of the successes, failures, constraints and opportunities virtual 
environments offer as a platform to drive learning outcomes and challenge expert level decision makers.   
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INTRODUCTION 
 
“The key to good decision making is not knowledge. It is understanding. We are swimming in the former. We are 
desperately lacking in the latter” – Malcolm Gladwell 
 
“Everybody experiences far more than he understands. Yet it is experience, rather than understanding, that influences 
behavior.” – Marshall McLuhan 
 
In his 19th century essay, “On Strategy,” Prussian Field Marshal Helmuth Von Moltke comes to a famous conclusion, 
often paraphrased in the following quote: “No plan survives first contact with the enemy.” Moltke is considered one 
of the greatest military strategists of his time, and the quote is commonly offered as a caveat to the effectiveness of 
rigid pre-planning in high uncertainty contexts. The original idea behind the quote was that after the first engagement 
with the enemy, the situation often changes so drastically that “no human acumen can see beyond the first battle.” 
Moltke continues: 
 

“Throughout the campaign [the commander] must make a series of decisions on the basis of situations that 
cannot be foreseen. The successive acts of war are thus not premeditated designs, but on the contrary are 
spontaneous acts guided by military measures. Everything depends on penetrating the uncertainty of veiled 
situations…” 
 

Moltke’s treatise gets straight to the heart of a fundamental dilemma in training for expertise, both within and beyond 
the military context: to become an expert means to be prepared for any situation, but raises a paradoxical question: 
how do we prepare for the experience of being unprepared? In simple operating environments, like chess or sports, an 
expert operator is one who is able to foresee future inevitabilities based on current actions, react according to 
rehearsed, pre-determined strategies and then adjust as known risks present themselves. But in high uncertainty 
environments, an expert operator must be able to make sense of novel scenarios and unknown risks, adapt to shifting 
conditions, prioritize actions based on incomplete or contradictory information and rapidly course correct. And yet, 
many learning and training environments devote a disproportionate amount of resources to procedure, compliance, 
role hierarchy, and proficiency assurance. All of these are worthy and necessary preparations, but what happens when 
standard operating procedures are insufficient?  
 
There is an implicit assumption that with the right preparation, enough resources, and appropriate technological 
support, human operators can overcome any obstacle. But Moltke reminds us that sometimes “no human acumen is 
able to see beyond the first battle,” and even with all the advances we have made in the last century, the mysteries of 
the human mind remains at the center of the problem. This is the central concern of our inquiry: the possibilities and 
limitations of human acumen and its implications for training and readiness, particularly for high level operators in 
high uncertainty circumstances. What happens when experts face the limits of their ability in complex operating 
environments? How do we design learning and training programs to better “penetrate the uncertainty of veiled 
situations”? And what is the role of technology in helping us achieve these goals?  
 
To shed light on these questions, we will explore some key insights from cognitive science that can help us design 
appropriate learning environments for expert operators in high uncertainty, high volatility contexts. Specifically, we 
will discuss Jean Piaget’s concept of disequilibration, which highlights the importance of failure in the learning 
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process and how it can be used to train for readiness in chaotic circumstances. We will also review Hubert Dreyfus’s 
5-stage model of expertise, which outlines how cognitive processes evolve in the development of expertise. Together, 
these learning models provide a framework that help us drive accelerated learning outcomes in synthetic, virtual 
environments.  
 
 
THE DREYFUS 5-STAGE MODEL OF EXPERTISE 
 
One of the most powerful approaches to expertise was formalized by Hubert Dreyfus (1997). He proposed a 5-stage 
model of expertise that can apply to any domain and describes the way in which operators shift from novice to expert 
along a common developmental continuum.  
 
Dreyfus argued that expertise is an emergent property of experience (as opposed to innate ability) that evolves in 
stages, from “novice” to “expert,” and each stage represents unique, qualitative shifts in one’s cognitive abilities.  
Experience drives a predictable developmental trajectory that is domain specific. As the individual moves up in stages, 
his or her thinking gets increasingly “intuitive,” context-free, holistic and autonomous. Thinking and decision making 
becomes less rule-driven and increasingly organized around a core set of principles that comprise an adaptive, 
underlying approach as opposed to a set of recipes for action (See Figure 1).  
 
 

 
 
Adapted from: Dreyfus, S.E. (1981). Four models of human situation understanding: Inherent limitations on the 
modeling of business expertise. USAF Office of Scientific Research, ref F49620-79-C-0063; Dreyfus, H.L. & Dreyfus, 
S.E. (1984). Putting computers in their proper place: Analysis versus intuition in the classroom. In D. Sloan (ed). The 
computer in education: A critical perspective. Colombia NY, Teachers’ College Press.  
 

Figure 1.  Dreyfus 5-stage Model of Expertise 
 
 
An important feature of expertise acquisition is that one can’t skip stages – one doesn’t go from beginner to proficient, 
or competent to expert, without passing through interim stages. What differentiates expertise from proficiency is the 
degree to which “proficient” activity becomes intuitive, opening up the expert operator to act with high efficiency in 
routine situations, and create innovative solutions to unique or novel challenges.  
 
One of the key goals of expertise research has been to understand how the demands of the operating environment 
shape the kinds of cognition operators must have to operate efficiently. In particular, expertise researchers are 
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interested not just in how people make decisions in stable, predictable tasks, but how cognitive demands shift in 
uncertain decision environments. Much of this research has been formalized under the Naturalistic Decision Making 
approach (e.g., Klein, 1999, 2002, Zsambok & Klein, 1997). These “naturalistic decision” environments are 
characterized by the following features:  
 

• High Complexity: Decisions are highly complex and burden operators with information and decision 
overload.  

• High Risk. Decisions have high stakes and high risk and are made under time pressure. Decision 
environments often include incomplete, changing, or contradictory information. 

• Ill-Defined Goals. As situations evolve, goals can become ill-defined, and multiple goals often conflict. 
Decisions must be made even though key variables and complexities may not be fully understood.  

• Lack of Control: Decision makers must be able to take action, while unable to control a number of intervening 
factors. 

 
Traditional approaches to decision making, often referred to as “Expected Utility Theory” (EUT), view human 
decision makers as rational, deductive operators who are able to make internally consistent and context-free decisions 
about possible courses of action (COA). Studied primarily in the laboratory under stable conditions, these classical 
approaches assume that decisions are made by a systematic process of mentally reviewing all potentially relevant 
courses of action, weighing their costs and benefits, and then choosing the most efficient or effective among them.  
 
While these classical models may be relevant for stable, standardized environments, many environments that rely on 
critical decision-making expertise often present unpredictable scenarios and do not allow room for planning, 
modelling and optimization (Snowden, 2005).  Researchers found that the decision skills needed for stable 
environments are very different than decision skills employed by operators performing cognitively complex functions 
in real world situations (Gore, et. al, 2006; March, 1994, Klein, 1999). The “recognition-primed decision” (RPD) 
model, for example, contends that real-world experts confronting real world problems make decisions in a qualitatively 
different manner from novice participants in laboratory settings. In other words, expert cognition is not just a matter 
of the degree of knowledge one has, it represents a fundamental change in how one approaches problem sets. Experts 
are able to make situation assessments to determine a likely COA based on an intuitive process evolving from years 
of direct experience and engagement with a particular task environment (Klein, 2002). These intuitive processes allow 
experts to rapidly “act from the gut” based on principles adapted from encounters with multiple past problem sets. 
Johnson and Rabb (2003) for example, found that experts were likely to choose a good COA on the first try, and, most 
strikingly, when experts abandon their initial COA and considered multiple possible scenarios the quality of their 
decisions declined. The implications of this research are that ‘acting from the gut’ works if you are a high level expert, 
but not when you are a novice. Furthermore, acting from the gut is actually the optimal approach at high levels of 
expertise, and unnecessary deliberation might hamper decision efforts. For the novice, the reverse applies. Rule-based, 
careful deliberation is the optimal strategy over acting from the gut, because novices have very few intuitive, 
recognitional patterns to draw from. This is not to say that experts never use deliberation. When encountering novel 
problem sets, deliberating over alternatives is essential, but the expert knows when and how to apply these different 
approaches.   
 
These findings point to the need for highly customized training programs that are designed with a deep understanding 
of the differential needs of novice and expert learners. To illustrate this point further, in a phenomenon called the 
expertise reversal effect, researchers have found that instructional techniques with high levels of effectiveness for 
novice learners are often not effective and sometimes detrimental to more experienced or expert learners (Kalyuga, 
Ayres, Chandler & Sweeler, 2003). These findings are based in cognitive load theory, which emphasizes the limited 
duration and capacity of working memory for processing novel information (Sweller, 2004). Because of the limitations 
of working memory, designing optimal learning experiences requires a balance between inducing productive cognitive 
load (which motivates learning) and wasteful or extraneous cognitive load (which can interfere with learning). The 
key to getting that balance right is understanding the prior knowledge that the learner brings to the problem set. For 
experts, if they are given worked examples and redundant information that activate a less sophisticated knowledge 
base, working memory resources are wasted and the learning itself distracts from acquiring new, higher level 
knowledge. If they are repeatedly exposed to these kinds of learning, it can inhibit or reverse their expertise (Renkl & 
Atkinson, 2003). In sum, if training programs do not adequately account for prior knowledge and expertise levels, 
more training can reduce its effectiveness. 
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Macrocognition 
One set of skills that is highly developed in expert operators in high volatility domains falls under the umbrella of 
macrocognition (Klein, Moon & Hoffman, 2006). Generally speaking, macrocognition outlines the common decision 
tools of problem detection, mental simulation, uncertainty management, coordination and adaptation that are used by 
expert operators. These macrocognitive decision tools are distinguished from microcognition, which is characterized 
by elemental cognitive functions, such as information processing, perception, and pattern recognition.   
 
Macrocognition is an umbrella term for an approach to cognition and learning that overturns a number of previous 
assumptions about how decision makers process and deploy input from their environment, including the following:  
 

• Experts do not deductively weigh a set of options and choose the best one, but rather, draw on previous 
patterns to make sense of situations and adjust. 

• Operators don’t always need a clear set of goals. Goals can be emergent.  
• Expert decision making is largely unconscious (tacit, intuitive) 
• For experts, more information is not always better. Experts know what to pay attention to and what not to. 

Information gathering can be a detrimental technique, because it places unnecessary cognitive demands on 
working memory and often distracts from an already chosen optimal path based on experience.  

• Uncertainty comes more often from an inaccurate framing of information than it does from a lack of 
information.   

• Performance is not improved by simply disseminating existing models, it must include challenges to existing 
models.  

• Training through rote-style learning can reinforce lower level decision models and be harmful to expert 
operators.  

 
 
A FUNDAMENTAL MECHANISM OF DEVELOPMENT: DISEQUILIBRATION 
 
Cognitive Equilibrium 
 
As we gain experience in any task domain, we build schemas, or, mental models that organize our experience into 
meaningful perceptions of our environment. These schemata allow us to create expectations for how the world will 
behave and how our actions influence and are influenced by it. A key feature of this model is that it is “constructivist” 
insofar as learning is not simply a reaction to environmental stimuli, but rather, an active, constructive process of 
transforming experiences and updating prior beliefs that “makes the world make sense” (Block, 1982). Jean Piaget, 
studying the basic mechanisms of cognitive development, argued that humans are motived to learn by a desire to 
create cognitive equilibrium between our expectations based on prior knowledge and our environment (Piaget, 1977). 
As we move through developmental stages, similar to the stages of expertise, we take on new knowledge about how 
to operate effectively in the world, and construct more and more sophisticated mental models.  
 
Acting in the world, we are always encountering new information that threatens our prior knowledge. Encountering 
new or unique information, our first response is to try to assimilate it into our existing expectations, thereby confirming 
and reinforcing our prior schemata. If we are unable to assimilate this new information, we then use a strategy of 
accommodation, in which we adjust our prior schemata to accommodate it, thus expanding our knowledge base. The 
equilibration process is one in which the individual seeks to modify and refine these cognitive structures to achieve 
greater equilibrium between our expectations and the environment.  
 
In situations of high uncertainty, or in situations where one encounters information that drastically violates our prior 
mental models, one experiences a state of disequilibration. The process of disequilibration jeopardizes one’s ability 
to create meaningful expectations for how to behave in the world. The more one’s mental models are violated, the 
greater the experience of disequilibration, and the more strategies one has to employ to recover cognitive equilibrium. 
For Piaget, disequilibration is the primary motivational force driving our trajectory through major developmental 
stages. The assimilatory response does not engender change, only the process of disequilibration and accommodation 
offer a mechanism of developmental growth.   
 
Building on Piaget’s model, many researchers have updated this initial framework, such as Kolb’s “experiential 
learning” model (Kolb & Kolb, 2005), which expands the set of mental conflicts that must be resolved to achieve 
equilibrium, and Clark’s “predictive processing” model, which refines the neuroscience of expectation and belief 
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updating (Clark, 2013). But the fundamental Piagetian mechanism of change remains the same and, for our purposes 
in this paper, is key to guiding operators to achieve expert level performance.   
 
Accelerating Expertise 
 
Capturing, storing and transferring expert knowledge and reducing skill fade among experts are among the biggest 
challenges that high volatility organizations face. A common rule of thumb is that in order to become an expert, 10,000 
hours of “deliberate practice” is required. Deliberate practice in this context is defined as “engagement in structured 
activities created specifically to improve performance in a domain.” (Macnamara, Hambrick & Oswald, 2014). The 
findings are persuasive and backed up with compelling examples: while aptitude plays a role in enhancing expertise, 
those who get a jump start on completing 10,000 hours are more likely to become top experts in their field than people 
who are born with natural capabilities or who possess extraordinary genius.  
 
Superficially these findings overturn our assumptions about the role that natural talent and aptitude play in skills 
development. However, the “10,000 hours rule” applies primarily to structured environments like chess or sports, 
where success has more predictable rules. Research shows that in these more structured domains, deliberate practice 
accounts for roughly 20% of the difference between superior achievers and their average colleagues (Macnamara, 
Hambrick & Oswald, 2014). However, in “other professions,” which included computer programmers, pilots, and 
salespeople, deliberate practice accounted for only 1% of this difference.  
 
In these more unstructured domains, the amount of deliberate practice one completes is not necessarily a strong 
predictor of success. The results of these studies are especially critical for naturalistic, highly volatile domains, such 
as war, emergency first-response, and firefighting where rules, goals, and standard practices need to be more fluid to 
accommodate complexity in rapidly evolving situations. Traditional training methods based on classical knowledge 
transfer are insufficient and structured training programs that rely on deliberate practice alone will not suffice. As 
such, developing leading experts in these domains requires not only a large amount of practice, but crucially a different 
kind of practice.  
 
Cycles of Failure 
 
Based on the Piagetian model, the assimilatory process does not produce change. Thus, to move through 
developmental stages of expertise, operators cannot simply rehearse scenarios that continuously reinforce existing 
knowledge. Instead, they must be exposed to situations that violate their prior mental models, leaving them unable to 
form an interpretation and choose a course of action. In other words, adding new knowledge and practicing standard 
procedures is insufficient for developing expert level performance. To activate new modes of thinking and behaving 
(develop new schemas) in response to dynamic environments, old models must first be “unlearned.” This is achieved 
through the disequilibration process by which old, default mental models are recognized as inadequate, creating fertile 
ground for unlearning and relearning. As such, a purposeful “failure” of the default mental models is essential.  
Routinely disequilibrating operators through complex scenarios allows them to break down and reorganize mental 
models to more easily adapt to evolving circumstances, facilitating a transition through the stages of expertise. 
 
In highly structured domains with routine tasks, practicing the same solution over and over increases your performance 
and differentiates you from others. But in highly volatile domains, given the research outline above on expertise 
reversal, this kind of routinized practice can actually become a deficit (Kalyuga, Ayres, Chandler & Sweeler, 2003).  
Understanding how to navigate infrequent events, disruptions and uncertainties is the key ingredient to developing 
and accelerating expertise. Thus, developing expertise in volatile contexts should not defined by the number of hours 
one spends in deliberate practice, it is defined by the number of failure cycles that a person experiences. Learning is 
accelerated when these challenges induce failure cycles more rapidly. The more failure cycles operators encounter, 
the more refined and adaptive their solution set becomes.  
 
ACCELERATED LEARNING IN VIRTUAL WORLDS 
 
Providing the right training environment to advance failure cycles and drive learning is often too expensive or too 
difficult or dangerous to carry out due to real world constraints. As such, accelerating the development of expertise is 
critical for organizations that must invest heavily in training requirements (Hoffman, et. al., 2014). As training 
programs have evolved over the years, simulation-based models, also called “serious games” or “immersive learning,” 
have emerged as one of the most promising new methods for learning, training and organizational change (Dalgarno 
& Lee, 2009; DiBello, Missildine & Struttmann, 2008; DiBello & Missildine, 2010). Simulation-based training allows 
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for a participator process, whereby expertise is not predetermined, rather it is allowed to emerge from situational 
constraints. Real world, hands on simulations, such as wargames, have been around for a long time, and can be highly 
effective. But, for example, these kinds of trainings must still account for operator safety, and often, in order to meet 
the actual training demands of the job, the cost of these environments is often prohibitive. In the last few decades, 
synthetic virtual environments have helped reduced implementation demands for complex training needs (Alexander, 
Brunye, Sidman, & Weil, 2005). These synthetic, virtual environments are especially suited for training situations 
which are impractical, difficult, dangerous or expensive to reproduce in an operational environment (Whitney, 
Tempby, & Stephens, 2014). 
 
However, not all virtual environments are created equal. To clear up some of the confusion around different types of 
virtual environments, and why the current wave of virtual reality and virtual worlds have shown so much promise, it’s 
important to outline some distinctions. Generally speaking, a "3D virtual environment" or “immersive virtual 
environment” (IVE) refers to a single player walkthrough space, unpopulated by other people (avatars). These IVEs 
are often replications of real world objects and environments that are used to help familiarize people with a task or 
space, showcase an object or product, or aid in the design or basic knowledge induction of an operating environment. 
As they have become more realistic and the programming more elaborate, training environments can be gamified to 
take a single player through pre-determined scenarios with other non-player characters. IVEs have also been used as 
a general term to encompass all virtual environments, regardless of their characteristics. "Virtual reality" (VR) refers 
to an immersive experience in a virtual environment using head mounted goggles. Because these VR headsets provide 
a fully immersive view of a virtual environment, VR is best used for learning and training scenarios that rely on the 
feeling of presence or “being there” to engender potent somatic responses. Finally, "virtual worlds" (VW) refers to a 
3D virtual environment filled with avatars controlled by multiple players who can remotely interact with each other 
through avatars in a persistent, synchronous virtual environment (Bell, 2004). These multiplayer virtual worlds are 
best suited to training that requires team interaction to solve more complex problems. The virtual world allows 
designers to create affordances in an environment, communication mechanisms, and role specific tasks and feedback 
that challenge teams of people to solve problems together. 
 
Simulations in single-player IVEs have a long history in training, typically focused on task training simulators (Blow, 
2012). Flight simulators, for example, enable pilots to become familiarized with cockpit controls and rehearse 
emergency scenarios hundreds of times before they ever step foot in a plane. As computer technology evolved, 
simulations became more sophisticated and provided increasingly accurate replicas of objects and environments, often 
aimed at developing specific operational skills. Research has shown many examples in which IVEs have proved to be 
effective as educational and training environments (Mikropoulos & Natsis, 2011; Seymour, et. al., 2002). Along with 
other applications, like truck driving simulators and simulated surgeries for medical practitioners, these involve 
intensive operational capability, targeting hard skills that rely on rote memory and extensive practice to enhance 
dexterity, accuracy and acuity and reduce error rates (Schout, et.al., 2010). However, they generally still rely on highly 
structured decision paths with concrete, pre-determined pathways to success. In other words, these types of IVEs are 
best suited for skills that do not require handling high uncertainty tasks with unpredictable interactions, unknown 
sources of risk and unreliable outcomes. 
 
The advent of virtual worlds created a new way to simulate complex, multiplayer behaviour. Immersive, multiplayer 
virtual worlds provide an environment in which users can remotely interact in real time with other users, using voice 
communication and controlling avatars for rich interactivity. Virtual worlds, which enables persistent, interactive, 
multiplayer environment allows learning designers to target skills associated with dynamic group interaction, complex 
decision making, and strategic coordination and communication to achieve a goal. They provide a high-fidelity 
platform where risks are unpredictable, decision paths are co-created and evolving situations create multiple solutions 
for success. But, while virtual worlds appear to be an ideal platform to roll out immersive learning programs, many of 
them have failed. Numerous programs and platforms have shown initial successes but have not been able to 
demonstrate the transformative value that has been promised.  
 
We argue that two factors are responsible for these failures:  First, simulation designers are often overly focused on 
environmental fidelity. Their primary value proposition has been to create increasingly robust, accurate replications 
of reality without considering the implications for how this advances the learning process (Hays & Singer, 1998). 
Second, simulation designers often do not optimize the environment for advanced learning experiences, and, as a 
result, organizations have often simply imported their existing, rote-style training programs into a virtual world. As 
such, while virtual worlds have enormous potential to transform learning experiences and accelerate expertise 
development, without designing the simulation based on a rigorous learning model, this opportunity is often 
squandered. In addition, many of the unique affordances of the virtual worlds (simulating death, catastrophes, rogue 
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actors, miscommunication, etc.) are underutilized. To achieve optimal accelerated learning using virtual worlds, 
designers should focus less on customizing the virtual environment to accommodate an existing training program and 
focus more on how the training program can be designed to take advantage of the full affordances of the virtual 
environment.   
 
From “Proficiency Assurance” to “Iterative Failure” Using Virtual Worlds  
 
To fully exploit the value of virtual world simulations, learning experience designers need to have a robust 
understanding of the cognitive demands placed on the target population of learners, and the mechanisms that underlie 
learning and development for that population. Our goal in this paper has been to outline some fundamental learning 
models related to accelerated expertise as it applies to learning and training in high uncertainty operating 
environments. Let’s review some of these findings. 
 
In high volatility domains, not only are the training requirements high, but the outcomes can be unreliable. Learning 
environments must prepare operators not just for procedural knowledge of how to carry out tasks, but for a larger, 
holistic understanding and awareness of multiple, unpredictable risk factors (Zambok & Klein, 1997). Operators need 
to know how to flexibly adapt to changing circumstances and even changing goals. They need to be prepared, not just 
for how to follow protocol, but for how to behave when the protocol breaks down. They need to be trained to remain 
emotionally regulated under conditions where the outcome is uncertain, and where untested ideas may be the only 
option available. And, they need to know how to rapidly innovate solutions to unforeseen problems (Weick, 2015).  
 
In many training programs, there is a disproportionate focus on “proficiency assurance.” Proficiency assurance 
involves a “skill and drill” approach to prove that operators can demonstrate task proficiency, comply with standard 
operating procedures, and respond to routine and non-routine incidents based on appropriate protocols and procedures. 
However, expert-level operators in high volatility domains must go beyond mere proficiency. If we return to the 
Dreyfus 5-stage model for a moment, the key shift from “Proficient” to “Expert” is the ability to respond to complexity 
with intuitive decision making, relying on a recognition-primed, context-driven, holistic approach that does not rely 
on rules or procedures. Beyond handling challenging situations (known unknowns) experts must demonstrate an 
ability to manage chaotic situations (unknown unknowns), where worked examples and practiced responses are 
inadequate. They must be able not just to apply solutions to difficult problems but create innovative solutions to 
“wicked problems.” Thus, to move from proficient to expert, an adaptive learning model must be employed that 
utilizes iterative failure over proficiency assurance, continuously disequilibrating their thinking at increasing levels 
of complexity 
 
Developing expertise requires exposure to situations that significantly disrupt operators’ existing mental models. This 
helps propel operators to higher levels of expert knowledge through the motivational mechanism of disequilibration 
as they attempt to resolve discrepant or uncertain sources of information to achieve cognitive equilibrium. Routinely 
disequilibrating operators through complex scenarios allows them to break down and reorganize mental models to 
more easily adapt to evolving circumstances. However, based on cognitive load theory, this process is only effective 
when prior knowledge and working memory capacity is accounted for. Overexposure to disequilibrating scenarios 
leads to burdensome cognitive demands that can inhibit learning. Once the learning needs are adequately calibrated, 
accelerating this process propels operators through this developmental process more quickly, which helps 
organizations overcome time and resource training burdens.  
 
Virtual worlds have enormous potential to act as rehearsal environments in which operators can rapidly experience 
infrequent, disruptive scenarios in a repeatable and controllable fashion, with exposure to a wide range of scenarios 
in a compressed time frame. Moreover, virtual worlds have proven to be an effective platform to accelerate skills 
development along all levels of the expertise continuum. The environment can be simplified and heavily facilitated to 
accommodate novice learners. Expert learners, on the other hand, can be exposed to situations wherein their intuitive, 
‘from the gut’ reaction (schema) can be challenged and fail. This drives the kind of learning necessary to continuously 
challenge experts operating high uncertainty contexts. But again, it’s important to reiterate: virtual worlds are simply 
places that facilitate the delivery of immersive learning experiences. The science (and art) of designing high impact 
learning experiences to different levels of expertise is contingent upon the appropriate method of delivery, the learning 
model applied, the affordances in the environments that support the learning model, and the degree of facilitation and 
guidance required at each stage. 
 
 
FIVE KEY DESIGN ELEMENTS FOR ITERATIVE FAILURE 
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In our work designing learning experiences in synthetic environments, we have developed a number of design 
parameters that drive our ability to engineer disequilibration into the learning process for expert operators. These five 
guiding design parameters below can help transform a synthetic virtual world environment into a meaningful learning 
experience that exploits the fundamental cognitive mechanisms of development. 
 
Plausibility over realism 
 
As outlined above, people don’t simply absorb information directly from their environment, they organize it and 
interpret it through schemas (mental models). To drive a learning process, it’s more important to engage and disrupt 
the mental model, than to simply present new information. For many virtual simulation designers, the focus is on 
fidelity, that is, the degree to which the virtual, simulated environment replicates reality. But numerous studies have 
shown that full fidelity is not necessary to produce adequate learning outcomes, and often full replication is either not 
feasible or can distract from the learning goals (Hays & Singer, 1998; Stewart, Johnson & Howse, 2008). Research 
on transfer, that is, the degree to which knowledge acquired in the virtual environment transfers to the real world, 
shows questions some assumptions on needed similarities between the simulated and real world operating 
environment. Studies suggest that the “surface elements” (like high fidelity visual features) of the training environment 
are not as important to effective transfer as “deep structural features” (logical connections and underlying decision-
making principles) (Lehman, Lempert, & Nisbett, 1988). 
 
In addition, no matter how realistic they are, synthetic environments will never achieve full realism for any training 
exercise. What is more important is the degree to which designers can create a sense of “presence,” which is the feeling 
of “being there” in a plausible virtual environment. This is achieved by producing two essential illusions in the virtual 
environment: the place illusion, which is the degree to which you feel transported into a virtual space, and the 
plausibility illusion, which is the degree to which the environment feels credible to the learner and relationships among 
decision elements make sense (Slater, 2009). To create a place illusion, it is not necessary to replicate all aspects of 
the environment, only those that are needed to enable action and interaction. Creating a plausibility illusion, designers 
must not focus too heavily on realism, but replicate essential features of the schema that needs to be activated, 
disequilibrated and reorganized. To illustrate this point further, think of the difference between a photograph and a 
caricature. We often look at photographs and say “that doesn’t look like me,” even though it is a full fidelity, two-
dimensional replica of your image. On the other hand, a caricature artist can create a drawing that “looks exactly like 
me” because it captures the essential features of one’s mental model of a person rather than how they actually look. 
Thus, an important guiding principle is that we design for “plausibility” not “realism.” The affordances of the world 
must contain those elements that activate mental models and are key to framing the decision process, not necessarily 
presenting everything that would be available in a particular operating environment.  
 
Guided discovery 
 
Experts and novices learn differently, and as the learning needs evolve, learning techniques and environments must 
flexibly adapt to accommodate these qualitative shifts (LaFrance, 1989; Daley, 1999). While novices benefit greatly 
from the heavily guided instructional techniques, learners that have some expertise in a domain learn better when they 
are able to discover solutions to problems on their own, rather than simply practicing a pre-determined procedure 
(Kalyuga & Renkyl, 2010; Kirschner, Sweller & Clark, 2006). Expert learners need to be exposed to a problem, apply 
a solution and (if inappropriate) have that solution fail. By repeatedly encountering a problem and devising an 
undetermined solution, learners experience cycles of failure and reorganization, a previously identified essential 
component of expertise development.  
 
Guided discovery also helps discard prior beliefs that may not have been serving their goals, and it enhances buy-in 
and engagement. When users find a solution on their own through trial and error, they are more likely to buy-in to its 
effectiveness than if they are simply told that it works. It allows them to see what works and what doesn’t and engage 
more fully with the solution. Increasing engagement in the learning process is a key component of retention. 
 
Unpredictable distractions 
 
Often in disaster training scenarios, participants are forewarned about the nature of the emergency scenario. How often 
have we done a “fire drill,” all lined up, told where to go, and simply followed instructions to our exit? Does anyone 
think these routine fire drills will help us act effectively in the event of an actual fire? Many training programs, while 
much more robust than simple fire drills, make a similar mistake. The learners are forewarned about the nature of the 
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training and instruction is given as the event unfolds. In real life, operators don’t know what event is occurring or 
when it will occur. In our experience, if the critical feature of the disaster is that it is a disruptive surprise in an 
otherwise routine day, then the unpredictability of a surprise event is crucial to the learning process. The element of 
surprise is best engineered by having participants engaged with routine tasks and distracted or misdirected about the 
nature of the exercise.  
 
Incomplete information 
 
A prominent feature of high uncertainty operating environments is that information is often incomplete and unreliable, 
sources may be untrustworthy or contradictory, and the meaning of the information may be unclear. Providing 
participants with unreliable, incomplete or conflicting information heightens complexity during emergency scenarios. 
More importantly, it reveals the default mental model of the operator. If the operators are able to solve a challenge 
based on standard emergency procedures, it is difficult to get a sense of the gaps in their mental models. By forcing 
them to deal with untrustworthy information, assessors get a window into their default patterns.  
 
Risk to every decision 
 
Every decision, even and especially the right ones, must carry some risk (i.e., can lead to a chain of negative 
consequences). This is especially critical in “guided discovery” learning environments. With minimal instructional 
guidance from facilitators, learners acquire knowledge by making decisions against the affordances of the 
environment. Negative and positive consequences of actions “teach” the learner the optimal path. If these decisions 
do not carry any risk, participants will simply choose the least risky path without being challenged to weigh 
alternatives. It is especially important that good decisions have risk, which forces the participant to consider options 
critically. 
 
 
CONCLUSION 
 
Creating effective learning experiences for expert operators in high uncertainty environments requires going beyond 
proficiency assurance by inducing a targeted disequilibration of their mental models. Research on cognitive 
development, expertise, and naturalistic decision-making shows that these learning experiences are most effective 
when they account for differential instructional needs for learners at different stages in the process. Expertise 
development can be accelerated more effectively through rapid, iterative failure over routine proficiency assurance. 
But meeting these kind of training needs for operators in high uncertainty contexts is often cost prohibitive.  
 
New immersive technologies, such as virtual worlds, have shown promise in providing a synthetic, scalable, 
multiplayer environment that can expose expert operators to scenarios that accelerate the iterative failure process. 
However, designers have often neglected to take full advantage of what the platform has to offer. Designers have 
focused disproportionate resources on how the virtual environment can be customized to meet the needs of their 
training program, rather than how the training program can be transformed by exploiting the unique affordances of 
the virtual environment. Despite some successes, and promising research demonstrating their potential value, 
widespread adoption of immersive virtual technologies for training purposes is still very limited and as a result, large 
scale empirical studies have not been able to adequately examine their effectiveness. Learning experience designers 
can better exploit their value by applying a learning model through key elements like plausibility, risk, 
unpredictability, and guided discovery to leverage the affordances of the virtual environment to meet the needs of 
expert operators.  
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