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● Modern Portfolio Theory (MPT), developed by Harry Markowitz 
in the 1950s, is essential in investment management, providing 
a framework for optimizing the balance between risk and return 
through diversification.

● Alphas in statistical arbitrage refer to systematic trading signals 
that predict relative asset price movements. 

● Constructing a portfolio of alphas involves combining multiple 
alphas to create a diversified and optimized strategy, reducing 
the risk associated with any single alpha and benefiting from 
internal trade crossing and position netting.

● Risk-adjusted return maximization measures investment 
efficiency by considering both return and risk.

● The empirical analysis, conducted using over 800 alphas in the 
Binance USDⓈ-M market, compares different weighting 
methodologies. Results show that strategies optimized for risk-
adjusted returns outperform equal-weighted strategies, 
highlighting the importance of optimization in portfolio 
construction.
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Modern Portfolio Theory [1], developed by Harry Markowitz in the 
1950s, is a foundational concept in investment management and 
financial theory. It provides a framework for constructing a portfolio of 
assets to maximize the expected return for a given level of risk or to 
minimize risk for a given level of expected return. On the other hand, 
the maximization of risk-adjusted return focuses on maximizing returns 
after adjusting for risk, using specific performance metrics like the 
Sharpe or Sortino ratio. This article will assess various models that 
extend MPT by substituting the risk term in constructing a portfolio of 
alphas to maximize its risk-adjusted return, where each alpha is 
treated as an investment asset.
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Key Concepts
• Risk and Return: At the heart of MPT is the idea that the return on 

investment is directly related to the risk we are willing to take. 
Typically, higher risk is associated with the potential for higher 
returns, and lower risk correlates with lower returns. Risk is often 
measured by the volatility of returns, indicating how much an 
asset's return fluctuates.

• Diversification: This is a central principle of MPT. Diversification 
involves spreading investments across various assets to reduce 
risk. The theory suggests that holding multiple assets is less risky 
than concentrating on one, as different assets often do not move in 
the same direction simultaneously. If one investment performs 
poorly, another might perform well, offsetting the loss.

• Efficient Frontier: Imagine a graph with risk (volatility) on the X-
axis and expected return on the Y-axis. The efficient frontier is a 
curved line on this graph representing the set of portfolios that offer 
the highest expected return for a given level of risk. These portfolios 
are considered "efficient" because it is impossible to achieve a 
higher return without taking on more risk.

Alphas in Statistical Arbitrage
In statistical arbitrage, an alpha represents a systematic trading signal 
designed to generate returns by predicting relative price movements of 
assets. Various alphas are implemented by a combination of 
mathematical expressions based on different concepts, such as mean-
reversion, momentum, and more. For more details of alphas, refer to 
[2].

Portfolio Construction on Alphas
Each alpha can be considered as an investment vehicle. Constructing 
a portfolio of alphas involves combining multiple alphas to create a 
unified strong signal (a.k.a. combo alpha) that benefits from 
diversification and optimized performance. By combining various 
alphas, we can diversify the alpha portfolio to hedge against any 
subset of alphas performing poorly during any given period. 
Additionally, the portfolio benefits from internal crossing of trades and 
netting of positions, which boosts expected return, reduces trading 
costs, and improves profitability. This approach also reduces the risk 
associated with any single alpha by spreading it across multiple 
alphas.
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Modern Portfolio Theory
MPT focuses on creating an optimal portfolio that maximizes expected 
return for a given level of risk, or equivalently, minimizes risk for a 
given level of expected return. There are three types of optimization 
problems.

1. Maximize Return Given Portfolio Risk Target
max
𝐰

𝛍"𝐰

𝑠. 𝑡. 𝐰"𝐂𝐰 ≤ 𝜎#

,
$

𝑤$ = 1

, where 𝛍 ∈ ℝ% is the expected return vector of alphas, 𝑛 is the 
number of alphas, 𝐰 ∈ ℝ% is the weight vector, 𝐂 ∈ ℝ𝒏×𝒎 is the 
covariance matrix of alphas, and 𝜎# is the target of the portfolio risk.

2. Minimize Risk Given Portfolio Return Target
min
𝐰
𝐰"𝐂𝐰

𝑠. 𝑡. 𝛍"𝐰 ≤ 𝜇#

,
$

𝑤$ = 1

, where 𝜇# is the target return of the portfolio.

3. Maximize Return while Minimizing Risk
max
𝐰

𝛍"𝐰 − 𝛾𝐰"𝐂𝐰

𝑠. 𝑡. ,
$

𝑤$ = 1

, where 𝛾 is the risk-aversion coefficient.

Using any of the problems described above, an efficient frontier curve 
can be constructed using an iterative method. This curve represents 
the set of optimal portfolios offering the highest expected return for a 
given level of risk. The straight line starting from the risk-free rate and 
tangent to the efficient frontier is the Capital Market Line (CML). The 
tangency point of the CML and the efficient frontier represents the 
portfolio with the highest Sharpe ratio, indicating the best risk-adjusted 
return. This is illustrated in Figure 1.



04

Figure 1. Efficient Frontier and Capital Market Line to 
Find the Portfolio of Maximum Sharpe Ratio Source: Presto Research

Maximization of Risk-Adjusted Return
Risk-adjusted return is a concept used in finance to measure the 
return on a strategy relative to the amount of risk taken to achieve that 
return. It helps comparing the performance of different strategies by 
considering not just the returns they generate, but also the risks 
involved in generating those returns. Here’s a detailed explanation of 
risk-adjusted return and its importance:

1. Comparative Analysis: It allows comparing strategies with 
different levels of risk. For example, a high-return investment might 
not be preferable if it comes with extremely high risk.

2. Efficiency Assessment: It helps in assessing the efficiency of a 
strategy. A higher risk-adjusted return indicates a more efficient 
investment, as it generates higher returns per unit of risk taken.

3. Portfolio Management: It aids in constructing and managing a 
diversified portfolio by helping to balance the trade-off between risk 
and return.

Frequently used metrics for risk-adjusted return include Sharpe ratio, 
Sortino ratio, and average return over MDD (Maximum Drawdown).
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Sharpe Ratio Maximization
Instead of constructing the efficient frontier using an iterative method 
to find the tangency point that maximizes the Sharpe ratio, we can 
directly aim to solve the problem of maximizing the ratio. In 
constructing the portfolio of alphas for statistical arbitrage, which is 
dollar neutral and, thus, self-financing, subtracting the risk-free rate 
from the portfolio return to calculate the Sharpe ratio is not usually 
considered. Therefore, the problem can be formulated as follows:

max
𝐰

𝛍"𝐰
𝐰"𝐂𝐰

𝑠. 𝑡. ,
$

𝑤$ = 1

Usually, the problem is solved with lower and upper bound on the 
weight of each alpha:

𝐰) ≤ 𝐰 ≤ 𝐰*
, where 𝐰) is the lower bound and 𝐰* is the upper bound vector of the 
weights.
To solve this optimization problem using either quadratic programming 
or conic programming solvers, we need to transform the problem. 
Since the objective function is scale invariant with respect to 𝐰, we 
may define a scaled vector, 𝐲, proportional to the weight vector to 
simplify the function:

𝐲 ≔ 𝜅𝐰
which satisfies 𝛍"𝐲 = 1 for 𝜅 ≥ 0.
With this change, the problem becomes

min
𝐲,-

𝐲"𝐂𝐲

𝑠. 𝑡. 𝛍"𝐲 = 1

,
$

𝑦$ = 𝜅

𝜅𝐰) ≤ 𝐲 ≤ 𝜅𝐰*
𝜅 ≥ 0
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Sortino Ratio Maximization
The Sortino Ratio is a risk-adjusted performance metric used to 
evaluate the return of an investment relative to its downside risk. 
Similar to the Sharpe Ratio, the Sortino Ratio focuses on downside 
deviation rather than total volatility, penalizing only the negative 
returns that fall below a specific target or threshold. This makes the 
Sortino Ratio particularly useful for investors who are more concerned 
with downside risk rather than total volatility. The problem of 
maximizing the Sortino Ratio can be formulated as:

max
𝐰

𝛍"𝐰
DR(𝐑𝐰)

, where 𝑅 ∈ ℝ.×% is the matrix of alpha returns and 𝑚 is the number of 
time intervals. DR(⋅) is the function that outputs the downside 
deviation:

DR 𝐫 ≔
1

𝑚 − 1 ,
/01

.23

max −𝑟/, 0 4

, where 𝐫 ∈ ℝ. is a vector of returns.
Note that the objective function is scale invariant. Thus, we can use 
the same technique we exploited in Sharpe ratio maximization:

min
𝐲,-

DR 𝐑𝐲 4

𝑠. 𝑡. 𝛍"𝐲 = 1

,
$

𝑦$ = 𝜅

𝜅𝐰) ≤ 𝐲 ≤ 𝜅𝐰*
𝜅 ≥ 0

We define the downside return vector as:
𝐝 ≔ maximum(−𝐑𝐲, 𝟎)

, where maximum(⋅,⋅) is an element-wise max function that works on 
vectors.
Then the constraints for the downside risk will be:

1
𝑚 − 1

𝐝 4 ≤ 𝑞
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Now the problem can be formulated as:
min
𝐲,-,𝐝,6

𝑞4

𝑠. 𝑡. 𝛍"𝐲 = 1

,
$

𝑦$ = 𝜅

𝜅𝐰) ≤ 𝐲 ≤ 𝜅𝐰*
𝜅 ≥ 0
maximum −𝐑𝐲, 𝟎 ≤ 𝐝

𝟏
𝒎− 𝟏

𝐝 4 ≤ 𝑞

Maximization of Average Return over MDD
Another frequently used measure of risk is MDD. The problem of 
maximizing the risk-adjusted return using MDD can be formulated as:

max
𝐰

𝛍"𝐰
MDD(𝐑𝐰)

This problem is also scale invariant with respect to 𝐰. Using the same 
transformation we have used before, we can reformulate it as:

min
𝐲,-

MDD 𝐑𝐲

𝑠. 𝑡. 𝛍"𝐲 = 1

,
$

𝑦$ = 𝜅

𝜅𝐰) ≤ 𝐲 ≤ 𝜅𝐰*
𝜅 ≥ 0

Now we need to transform the objective function into a combination of 
a convex objective and constraints. First, we need to form a time 
series of the cumulative portfolio return:

𝐜 ≔ cumsum(𝐑𝐲)
, which is an affine function.
With the cumulative return vector, we define the record high vector, 𝐡, 
as:

max 𝑐1, 0 ≤ ℎ1
max 𝑐/, ℎ/23 ≤ ℎ/, ∀𝑡 ∈ 1, 2, … ,𝑚 − 1

Don’t worry about the inequality because we will minimize it in the end. 
Therefore, it doesn't matter whether it is an equality or inequality 
constraint. However, if we use equality constraints, the constraints 
cannot be translated into convex constraints.
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With the record high vector, we define the MDD, $d$, as:
ℎ/ − 𝑐/ ≤ 𝑑, ∀𝑡 ∈ {0, 1, … ,𝑚 − 1}

Now we can minimize the MDD of 𝐲:
min

𝐲,-,𝐡,𝐜,9
𝑑

𝑠. 𝑡. 𝛍"𝐲 = 1

,
$

𝑦$ = 𝜅

𝜅𝐰) ≤ 𝐲 ≤ 𝜅𝐰*
𝜅 ≥ 0
𝐜 = cumsum 𝐑𝐲
max 𝑐1, 0 ≤ ℎ1
max 𝑐/, ℎ/23 ≤ ℎ/, ∀𝑡 ∈ 1, 2, … ,𝑚 − 1
ℎ/ − 𝑐/ ≤ 𝑑, ∀𝑡 ∈ {0, 1, … ,𝑚 − 1}

This leads to the maximization of the average return over MDD of the 
portfolio.

Comparison
More than 800 alphas in production are used for constructing 
strategies with a target GMV of 10 million USDT in the Binance
USDⓈ-M market, each targeting 5-minute intervals and the 50 most 
liquid symbols for signal generation. The in-sample part of alphas is 
not used for the strategy construction. The simulation summary 
considers transaction costs, including slippage, under-fill, and funding 
fees. Metrics such as return, Sharpe ratio, Sortino ratio, and 
return/MDD are annualized.
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Figure 2. PNL Plots of Strategies Using Different 
Weighting Source: Presto Research

Table 1. Stats of the Strategy Using Equal Weight

Table 2. Stats of the Strategy Using Sharpe Ratio Maximization

Table 3. Stats of the Strategy Using Sortino Ratio Maximization
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Table 4. Stats of the Strategy Using Return/Mdd Maximization

Table 5. Correlation between Strategies with Different Weighting Methodologies

Compared to the simple methodology of allocating equal weight to 
each alpha, optimizing the weight using risk-adjusted metrics yields 
significantly better results in various aspects, including average return, 
risk-adjusted metrics, MDD, return per trade. While the correlations 
between the equal weighting strategy and the other strategies are 
quite low, the correlations among the risk-adjusted weighting 
strategies are remarkably high. Among the risk-adjusted metric 
optimization strategies, maximizing Sharpe ratio and Sortino ratio 
clearly outperforms equal weighting or return/MDD maximization. 
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Conclusion
The integration of Modern Portfolio Theory and risk-adjusted return 
maximization offers a robust framework for constructing efficient 
portfolios in quantitative finance. MPT, with its emphasis on 
diversification and the efficient frontier, provides a foundational 
approach to balancing risk and return. By optimizing portfolios to either 
maximize expected return for a given level of risk or minimize risk for a 
given level of return, investors can systematically achieve more 
efficient investment outcomes.

The maximization of risk-adjusted return, using metrics such as the 
Sharpe ratio, Sortino ratio, and average return over MDD, further 
refines this process by directly targeting the efficiency of returns 
relative to risk. This approach is particularly valuable in constructing 
portfolios composed of multiple alphas, where each alpha represents 
a distinct trading signal. By combining these alphas into a unified 
portfolio, overall performance can be enhanced through diversification 
and optimization, thereby reducing the impact of any single 
underperforming alpha.

The empirical analysis conducted on the Binance USDⓈ-M market 
demonstrates the practical application of these approaches. The 
results indicate that strategies optimized for risk-adjusted returns, such 
as those maximizing the Sharpe ratio, Sortino ratio, or return over 
MDD, outperform those using equal weighting. These optimized 
strategies exhibit higher returns and improved risk-adjusted return and 
risk metrics, validating the effectiveness of risk-adjusted return 
maximization.

Overall, risk-adjusted return maximization provides a powerful toolkit 
for portfolio management, enabling investors to achieve superior 
performance relative to risk in diverse and dynamic market 
environments. Future research and advancements in computational 
methods are likely to further enhance these approaches, providing 
even greater adaptability in portfolio construction and management.
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