
Lesson 11: Debugging Strategies

45 minutes

Overview

How can the console be used as a debugging tool?

Students learn to print information to the console as a

debugging tool to identify logic errors in their programs.

Students expand an existing subclass to implement a

new method that displays information about the state of

an object and use this method within other methods to

troubleshoot errors.

Standards Full Course Alignment

CSA Conceptual Framework

MOD-1 - Some objects or concepts are so

frequently represented that programmers can draw

upon existing code that has already been tested,

enabling them to write solutions more quickly and

with a greater degree of confidence

VAR-1 - To find specific solutions to generalizable

problems, programmers include variables in their

code so that the same algorithm runs using different

input values

Agenda

Warm Up (5 minutes)

Finding Errors

Activity (30 minutes)

Debugging Programs

Getting Information About the Painter

Wrap Up (10 minutes)

Debugging Wall

Assessment: Check for Understanding

AP Classroom Topic Questions

Objectives

Students will be able to:

Debug common errors in code

Use System.out.print() and

System.out.println() to output

information about the state of an

object to the console

Write a void method to add a

new behavior to an existing class

Preparation

Check the Teacher's Lounge for

verified teachers on the CSA

Forum to find additional

strategies or resources shared by

fellow teachers

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the students

Printing in Java - Video

U1L11 Extra Practice - Handout

Vocabulary

concatenation - joining two

strings together

Teaching Guide

Warm Up (5 minutes)

https://staging-studio.code.org/courses/csa-2022/standards
https://forum.code.org/t/csa-unit-1-lesson-11-debugging-strategies/36405/2
https://youtu.be/XjswJsUj2wQ
https://docs.google.com/document/d/1a9SiT2Ri_WVUG9_bD4T4dJfnXG1R57crXfZ3IRGver0/edit?usp=sharing



Finding Errors

 Remarks

We have gotten pretty good at finding and fixing syntax and logic errors! Logic errors tend to be

tricky to find, but there are strategies and tools we can use to help.

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

When have you encountered logic errors in your programs?

How did you find and fix these errors?

What tools or strategies would help find and fix logic errors?

Discussion Goal: Students share examples of logic errors they have encountered in their programs and

their strategies to find and fix these errors. Students suggest tools or strategies for finding logic errors,

such as stepping through their code one line at a time or seeing the current state of a PainterPlus

object as it navigates and paints The Neighborhood.

Activity (30 minutes)

Debugging Programs (10 minutes)

 Remarks

Logic errors can be tricky to find. However, software engineers use the console to print information to

help them find these types of errors. Let's find out how we can do that.

 Do This: Review the lesson objectives.

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

What do these methods return?

What do you think these methods do?

Why would this information be useful?

Discussion Goal: Students suggest that the method return the x and y coordinates, the direction, and

the amount of paint for a PainterPlus object and realize that methods can return more than just

boolean values. Students note that these methods provide information about the current state of a

PainterPlus object and share ideas for when this information would be useful, including debugging

logic errors.

 Teaching Tip

Recall good programming style by asking students how they knew what these methods do and if

they could have determined their purpose if they were named differently.

 Display: Show the video – Printing in Java.

 Do This: Click through the animated slide to discuss the example code segment.

Getting Information About the Painter (20 minutes)



 Remarks

The Painter class gives us some of the basic behaviors we need to navigate and paint The

Neighborhood. We can add a method to our PainterPlus class to print information about a

PainterPlus object to track its state.

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

What would the method signature be for this new method?

What would we write in the body of this method?

Discussion Goal: Students identify the method as a void method and share ideas for the method

name. Students suggest printing the values of the x and y coordinates, the direction, and the amount of

paint in the method's body.

 Teaching Tip

Have students consider logic errors they have encountered before. Ask students what would have

been helpful to know as the Painter was moving and painting in The Neighborhood.

 Do This: Direct students to add the new method to the PainterPlus UML diagram.

 Remarks

Let's add this method to our PainterPlus class!

 Do This: Direct students to Level 1 on Code Studio to complete Levels 1, 2, and 3. Students complete

a Check for Understanding on Level 1, then continue to Level 2 to write a method to print information

about the state of a PainterPlus object. Students use the new method while solving a problem on

Level 3.

Debugging with PainterPlus

 Remarks

This is a good time to commit our code and save our new version of the PainterPlus class to the

Backpack. Anytime we make changes to our programs, it is helpful to commit, or save, our work as a

new version in case we need to revert to a previous version.

 Do This: Play the music clip to cue committing their code and saving the new version of the

PainterPlus class to the Backpack.

Wrap Up (10 minutes)

Debugging Wall

 Remarks

We saw some new types of errors today! Let's discuss these errors we encountered and update our

 1-3

1


2 3

Debugging Wall with the strategies we used to debug them.

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

What errors did you encounter while writing your code?

How did you find and fix the error?

Discussion Goal: Students consider errors they encountered in previous lessons and this lesson and

share scenarios. Students suggest using their new method to find and fix logic errors they have

encountered.

 Do This: Have students choose a strategy as a class and add it to the Debugging Wall.

 Do This: Review the concepts covered in this lesson.

 Display: Key Vocabulary

Assessment: Check for Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. You

can use these questions as an exit ticket.

Check for Understanding

AP Classroom Topic Questions

To assign questions from the AP Classroom Question Bank that align with this lesson, create a custom

quiz in AP Classroom by searching the Question Bank for the Essential Knowledge statements listed at

the top of this lesson plan. You can find instructions and video demonstrations to do this on AP Central.

The following Topic Questions in AP Classroom can be assigned as a formative assessment for this

lesson:

Topic Questions 1.1

Note: Some Learning Objectives and Essential Knowledge statements in the suggested Topic Questions

are covered in later units.

If you are interested in licensing Code.org materials for commercial purposes contact us.

 4


https://apcentral.collegeboard.org/instructional-resources/ap-classroom
https://creativecommons.org/
https://code.org/contact

