
Lesson 7: Writing Methods

45 minutes

Overview

How do I write a new method in a subclass?

Students learn to write and use a new void method in

the PainterPlus class to expand its capabilities.

Students first consider the accessibility of new behaviors

between superclasses and subclasses to identify

situations when to write new methods in the superclass or

the subclass. In the process, students discover that

methods written in a subclass are not accessible in the

superclass.

Standards Full Course Alignment

CSA Conceptual Framework

MOD-1 - Some objects or concepts are so

frequently represented that programmers can draw

upon existing code that has already been tested,

enabling them to write solutions more quickly and

with a greater degree of confidence

MOD-3 - When mulitple classes contain common

attributes and behaviors, programmers create a new

class containing the shared attributes and behaviors

forming a hierachy. Modifications made at the

highest level of the hierarchy apply to the

subclasses.

Agenda

Warm Up (5 minutes)

Do Birds Share Behaviors?

Activity (30 minutes)

Writing Methods

Turning Right in The Neighborhood

Wrap Up (10 minutes)

Debugging Wall

Assessment: Check for Understanding

AP Classroom Topic Questions

Objectives

Students will be able to:

Differentiate between calling and

writing a method

Identify when to write a method

in a superclass or a subclass

Write a void method in a

subclass

Preparation

Gather 1-2 sticky notes

Check the Teacher's Lounge for

verified teachers on the CSA

Forum to find additional

strategies or resources shared by

fellow teachers

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the students

U1L7 Extra Practice - Handout

Writing a Method - Video

Vocabulary

method signature - consists of a

name and parameter list

https://staging-studio.code.org/courses/csa-2022/standards
https://forum.code.org/t/csa-unit-1-lesson-7-writing-methods/36409/2
https://docs.google.com/document/d/1FryxLH2YT2z55Pbon7zL9Vf55eTF7_IGZ_6QqJnqdw0/edit?usp=sharing
https://youtu.be/pdNf1O9BTYM



Teaching Guide

Warm Up (5 minutes)

Do Birds Share Behaviors?

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

Do all birds have the same attributes and behaviors as a Bird ?

Do these birds have additional attributes and behaviors?

Should these additional attributes and behaviors be accessible by the Bird class?

Discussion Goal: Students note that all members share the same attributes and behaviors as a Bird

since they extend the Bird class. Students suggest that some of the members might have additional

attributes and behaviors depending on the type of bird. Students realize that these additional

attributes and behaviors shouldn't be accessible by all birds, such as the ability to fly.

Activity (30 minutes)

Writing Methods (10 minutes)

 Remarks

Software engineers often create subclasses to have additional methods or attributes. We created a

PainterPlus class to have a new type of Painter with additional behaviors. Before adding new

methods to the PainterPlus class, we need to know how to write a method.

 Do This: Review the lesson objectives.

 Display: Show the video – Writing a Method.

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

What does it mean for a method to be a void method?

Discussion Goal: Students recall that a void method does not return a value and only performs a

specified action.

 Teaching Tip

Have students look at the methods on the UML diagram for the Painter class and identify the

methods that are void . Ask students what these methods have in common.

 Do This: Review the void keyword.

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

What are the similarities and differences between calling methods and writing methods?

Discussion Goal: Students recall that they call a method by specifying the name of the object followed

by a dot then the name of the method. Students note that this calls a method that is already in the

class. Students share writing a method requires providing a method signature and the block of code

that the method executes when it is called.





 Teaching Tip

To help students identify similarities and differences, make the analogy that writing a method is like

writing a recipe while calling a method is like cooking the recipe.

 Do This: Review how to call methods and compare to writing methods.

 Do This: Demonstrate how to write a new method in a class.

Turning Right in The Neighborhood (20 minutes)

 Remarks

The Painter class doesn't have a method to turn right. Now we have a PainterPlus class that

extends the Painter class.

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

What does a PainterPlus object need to do to turn right? What would we write in the body of the

turnRight() method?

Discussion Goal: Students suggest calling turnLeft() three times in the body of the turnRight()

method.

 Do This: Have students add the turnRight() method to the PainterPlus UML diagram.

 Remarks

Let's add this new method in the PainterPlus class to allow PainterPlus objects to turn right.

 Do This: Direct students to Level 1 on Code Studio to complete Levels 1, 2, and 3. Students write the

turnRight() method in their PainterPlus class, then use the turnRight() method on Level 2.

Students debug the program on Level 3 that attempts to call turnRight() on a Painter object.

Writing and Using a New Method

 Teaching Tip

To help students recall errors during the wrap up, give each student several sticky notes and have

them keep track of errors they encounter while they work.

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

Why would we write a new method in the subclass instead of in the superclass?

Discussion Goal: Students recall the Painter class is part of The Neighborhood package, so they

cannot modify it. Students note that if the method is only for one subclass and not a shared behavior

for all types of objects, then it should not be added to the superclass.

 Do This: Have students predict the outcome of the code segment. Click through the animated slide

to explain that a superclass cannot use the methods in the subclass, but the subclass inherits methods

from the superclass.

 1-3

1 2 3

 Remarks

The Painter class cannot use any methods that are written in the PainterPlus class. Any method

that is called must be defined within its own class or its superclass.

Wrap Up (10 minutes)

Debugging Wall

 Remarks

We saw some new types of errors today! Let's discuss these errors we encountered and update our

Debugging Wall with the strategies we used to debug them.

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

What errors did you encounter while writing your code?

How did you find and fix the error?

Discussion Goal: Students share examples of errors they encountered, including calling a subclass

method on a superclass. Students suggest strategies for finding and fixing these errors.

 Do This: Have students choose a strategy as a class and add it to the Debugging Wall.

 Do This: Review the concepts covered in this lesson.

 Display: Key Vocabulary

Assessment: Check for Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. You

can use these questions as an exit ticket.

Check for Understanding

AP Classroom Topic Questions

To assign questions from the AP Classroom Question Bank that align with this lesson, create a custom

quiz in AP Classroom by searching the Question Bank for the Essential Knowledge statements listed at

the top of this lesson plan. You can find instructions and video demonstrations to do this on AP Central.

If you are interested in licensing Code.org materials for commercial purposes contact us.

 4


https://apcentral.collegeboard.org/instructional-resources/ap-classroom
https://creativecommons.org/
https://code.org/contact

