
Lesson 12: Decomposition and Design

45 minutes

Overview

How do I decide what new methods to write in a

program?

Students are introduced to decomposition and top-down

design to deconstruct problems into smaller tasks and

develop algorithms for these tasks. Students analyze

decomposition examples and identify the importance of

writing clear and specific pseudocode. Students write

and translate algorithms into methods and consider

potential edge cases to improve their programs.

Standards Full Course Alignment

CSA Conceptual Framework

VAR-1 - To find specific solutions to generalizable

problems, programmers include variables in their

code so that the same algorithm runs using different

input values

Agenda

Warm Up (10 minutes)

Solving Problems

Activity (30 minutes)

Developing Efficient Solutions

Deconstructing a Problem

Wrap Up (5 minutes)

Software Engineering Skills

Assessment: Check for Understanding

Objectives

Students will be able to:

Compare programs and identify

good vs. poor decomposition

Identify edge cases for an

algorithm

Write clear and readable code

using methods, control structures,

and comments

Preparation

Print copies of the Decomposition

handout (one for each pair of

students)

Check the Teacher's Lounge for

verified teachers on the CSA

Forum to find additional

strategies or resources shared by

fellow teachers

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the students

Decomposition - Handout

U1L12 Extra Practice - Handout

Vocabulary

Method Decomposition - the

process of breaking a problem

down into smaller parts to write

methods for each part

edge case - a bug that occurs at

the highest or lowest end of a

https://staging-studio.code.org/courses/csa-2022/standards
https://forum.code.org/t/csa-unit-1-lesson-12-decomposition-and-design/36404/2
https://docs.google.com/document/d/1QcGlM8t15byOkUp0__Cg95sBc1QHsrcFuJ_9SFhOR1k/edit?usp=sharing
https://docs.google.com/document/d/1AKIygL1eVqQk1i-nFF90V019bFnMbuqIDJ2u4Ag0rLg/edit?usp=sharing

range of possible values or in

extreme situations

redundant code - code that is

unnecessary

Teaching Guide

Warm Up (10 minutes)

Solving Problems

 Remarks

Computer science is all about problem-solving. Solving problems is a core component of a software

engineer's work, and we have learned about ways to create and improve solutions in The

Neighborhood. Let's consider how we solve problems in our daily lives.

Group: Place students in groups of three or four.

 Do This: Have students work with their groups to write an algorithm for the scenario.

 Discuss: What process did you take to decide on your algorithm?

Discussion Goal: Students share the approaches they took to develop their algorithm. Students discuss

how they broke the problem down into smaller tasks, such as sorting the colors into piles and then

counting the number of M&M's in each pile.

Activity (30 minutes)

Developing Efficient Solutions (10 minutes)

 Remarks

Sometimes, problems are so big that we need to break them down into manageable tasks first. This

process is called decomposition, and we will learn how to use this approach to break down problems.

 Do This: Review the lesson objectives.

 Do This: Define decomposition.

 Teaching Tip

Revisit the scenario from the warm up or an example of a personal interest or daily activity. Briefly

discuss how the scenario would be broken down into specific tasks or steps.

Do This: Explain the steps to solving a programming problem.

 Understand

 Expected Behavior

 Supporting Information

 Mapping

 Assemble

 Testing

Deconstructing a Problem (20 minutes)

 Remarks

As you work through these problems, use decomposition strategies to break them down into

manageable tasks. Consider any edge cases for your solutions and review your solutions for any

redundancy.

Group: Place students in pairs.

 Distribute: Give each pair a copy of the Decomposition handout.

 Do This: Direct students to work with their partners to write pseudocode for one of the choice

problems on the Decomposition handout and add their new method to the PainterPlus UML diagram.

 Do This: Direct students to Level 3 on Code Studio to complete a choice level to implement their new

method.

More PainterPlus Methods

 Remarks

When software engineers develop solutions, they try to account for potential errors and different

ways a user might use the program. However, they have to be careful about being redundant to keep

their programs efficient.

 Do This: Define edge case and redundant code.

 Remarks

This is a good time to commit our code and save our new version of the PainterPlus class to the

Backpack. Anytime we make changes to our programs, it is helpful to commit, or save, our work as a

new version in case we need to revert to a previous version.

 Do This: Play the music clip to cue committing their code and saving the new version of the

PainterPlus class to the Backpack.

 Remarks

When we write new code, getting feedback from our peers is helpful to make sure we have met the

requirements of the problem efficiently.

 Do This: Click through the animated slide to have students participate in the Code Review Call and

Response.

 Do This: Direct students to complete a code review on their chosen problem on Level 2.

Code Review: More PainterPlus Methods

 1

 2

Wrap Up (5 minutes)

Software Engineering Skills

 Remarks

You have made a lot of progress developing your software engineering skills. Let's take a moment to

reflect on our progress and growth.

 Do This: Direct students to use the sentence starters on the Unit 1 Guide to reflect on their progress

and growth as software engineers.

 Do This: Review the concepts covered in this lesson.

 Display: Key Vocabulary

Assessment: Check for Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. You

can use these questions as an exit ticket.

Check for Understanding

If you are interested in licensing Code.org materials for commercial purposes contact us.

 3

https://creativecommons.org/
https://code.org/contact

