1: Exploring Biotechnology

Lab change Explore	Library Search library, people and organizations	Dashboard Community 🗘 🖵 🛛
	Library catalog > Pathway	
	☆ Favorite → Share ··· Biotechnology 152 Favorites - 3,520 Views - 30 Clones	Lab change
	This pathway introduces how DNA can be manipulated using different molecular tools and techniques. For a deeper look at this topic, we recommend the pathway <u>Biotechnology and Genomics</u> from the OpenStax textbook Biology for AP® Courses.	This content is from LabXchange.
	Advanced Placement® and AP® are trademarks registered and/or owned by the College Board, which is not affiliated with, and does not endorse, this material.	View Profile
	Show less Uploaded April 29, 2020	
	✓ subject ౫ Language ¥ Background Knowledge ♀ License Biotechnology +1 English Some Labxchange Standard Ucense Ucense Ucense Ucense	
		► Start pathway

- 1. You will explain the use of genetic engineering techniques like gel electrophoresis and DNA sequencing in analyzing DNA.
- 2. You will explain the use of genetic engineering techniques like PCR and gene cloning in manipulating DNA.

2: Tools & Techniques in Biotechnology: Gel Electrophoresis

Lab (change Explore L	Library Search library, p	people and organizations	Q		Dashboard	Community 🛆 🕻	
	Ubrary catalog > Pathway Tools & Technin 415 Favorites • 35,660 Vie This pathway introduces pathway also supports J Uploaded August 30, 2019 ✓ subject Biotechnology +2	ques in Biotechr ws • 248 Clones gel electrophoresis, a tec BBE lab 1.2: Gel Electropho % Language English (Change)	stology: Gel Electro hnique used to separate biol resis. Background Knowledge Some	☆ Favorite → Share ··· · phoresis ogical molecules. This 2 License Lab/xchange Standard License	Labychange" This content is from Labxchange. 2º View website View Profile		
					► Start pathway		

- 1. You will explain how gel electrophoresis separates biological molecules based on size and charge.
- 2. You will identify and explain the role of each piece of equipment required to conduct gel electrophoresis.
- 3. You will demonstrate how to separate dye molecules using gel electrophoresis.
- 4. You will interpret a gel to determine the relative sizes of molecules separated by gel electrophoresis.

3: Introduction to Genetic Engineering

- 1. You will identify the common features of human and bacterial cells that make genetic engineering possible.
- 2. You will outline the steps of gene cloning and identify the importance of each step to the process.
- 3. You will describe an example of how gene cloning is used to treat a specific disease, such as diabetes.
- 4. You will apply an understanding of the gene cloning process to evaluate its use as a therapy for a particular disease.

4: Recombinant Plasmids

Introduction to Genetic Engineering:

Lab) change Explore	Library Search library, t	people and organizations	q		Dashbo	ard Community 🛆 🗔 🛾
	Introduction to 342 Favorites - 19,730 Vie This pathway provides a new traits into an organ Uploaded August 23, 2019 ✓ subject Bioengineering +3	Genetic Engine ws • 81 Clones in overview of recombina ism. This pathway can su % Language English (Change)	eering: Recombina Int plasmids and how they can upport ABE Labs 2, 2a, 3, 4 and Background Knowledge Some	☆ Favorite → Share … nt Plasmids be modified to introduce d 4a. g License Labschange standard License	Labychange* This content is from LabXchange. @ View website View Profile	
					► Start pathway	

- 1. You will describe what a plasmid is and its role in bacterial cells.
- 2. You will label the key features of a recombinant plasmid.
- 3. You will explain the function of each part of a plasmid vector.
- 4. You will explain the role of restriction enzymes in creating a recombinant plasmid.
- 5. You will design a recombinant plasmid to express a protein of interest.

Building a Recombinant Plasmid: Restriction Enzymes

- 1. You will explain how restriction enzymes cut DNA.
- 2. You will explain why restriction enzymes are a valuable tool in genetic engineering.
- 3. You will describe how conditions such as temperature and pH affect the activity of restriction enzymes.
- 4. You will choose the best restriction enzyme for a given application.

Building a Recombinant Plasmid: DNA Ligase

Lab Change Explore	Library Search library, people and organizations	a	Dashboard Community 🛆 🖵	
	Building a Recombinant Plasm 171 Favorites • 7,927 Views • 42 Clones This pathway describes how DNA ligase, a key enz create a recombinant plasmid. This pathway supp Uploaded January 2, 2020 ✓ subject 7A Language Biotechnology + 3 Anguage English (Change)	 ☆ Favorite → Share … Add: DNA Ligase zyme in DNA replication, is used in gene cloning to borts ABE lab 3: Building a Recombinant Plasmid. ✓ Background Knowledge Some ♀ License Lib/change Standard License 	Labychange" This content is from Labxchange. @ View website View Profile > Start pathway	

- 1. You will explain how DNA ligase joins two DNA strands together.
- 2. You will justify why DNA ligase is an important tool in genetic engineering.
- 3. You will predict the recombinant plasmids that will form when two DNA fragments with complementary sticky ends are connected by DNA ligase.

Verifying a Recombinant Plasmid: Gel Electrophoresis

Lab (change	Explore	Library Search library,	people and organizations	٩		Dashbo	ard Community 🛆 🖵
		Library catalog > Pathway					
		Verifying a Red 179 Favorites - 10,058 Vi This pathway demonstr used to verify successf	combinant Plas aws • 33 Clones ates how a fundamental ul production of a recomb	mid: Gel Electropho tool in biotechnology, DNA gel binant plasmid. This pathway si	☆ Favorite → Share ···· Dresis electrophoresis, can be upports ABE labs 4 and 4a.	Labychange [*]	
		Uploaded January 2, 2020	A Language English (Change)	Background Knowledge Some	License LabXchange Standard License	2 View website	
						Start pathway	

- 1. You will describe the interactions that give DNA its unique helical structure.
- 2. You will explain how gel electrophoresis can be used to sort DNA molecules by size.
- 3. You will use gel electrophoresis to evaluate whether the desired recombinant plasmid has been created from a ligation experiment.

5: Introduction to Genetic Engineering: The Role of Cells

Lab (change Explore	Library Search library, people and organizations	Dashboard Community 🛆 🖵
	Library catalog > Pathway	
	☆ Favorite → Share ··· Introduction to Genetic Engineering: The Role of Cells 147 Favorites • 4,638 Views • 26 Clones	Labychange [*]
	This pathway will help learners better understand the critical role that bacterial cells play as protein production factories in the process of gene cloning. The processes of binary fission, transcription and translation are all essential for this role and are explored in detail here. For those using this pathway as part of the Amgen Blotech Experience, this pathway is a good companion to ABE Lab 5. Show less	This content is from LabZchange.
	Uploaded December 30, 2019 2 Subject % Language Biotechnology +2 English (Change) Some LatXchange Standard License	
		► Start pathway

- 1. You will describe how proteins are used inside cells.
- 2. You will explain how protein structure relates to function.
- 3. You will describe how recombinant proteins are being used in science.

6: Tools & Techniques in Biotechnology: Bacterial Transformation

Lab change Explore	Library Search library, people and organizations	Dashboard Community 🛆 🖵
	 ☆ Favorite A state	This content is from LabXohange. 2: View website View Profile
		Start pathway

- 1. You will describe different ways that bacteria can acquire new DNA.
- 2. You will explain how the heat shock process allows DNA to enter bacterial cells.
- 3. You will judge whether a transformation experiment was successful by evaluating the growth of bacteria on selective media.

6: Tools & Techniques in Biotechnology: Column Chromatography

Laby (change Explore	E Library Search library, people and org	nizations Q	1 Cont	Dashboa	ard Community 🛆 🖵
	Library catalog > Pathway	K	6	The second	-
	Tools & Techniques in E 152 Favorties + 4,868 Views + 44 Clones This pathway will show you how the te product. This pathway supports ABE Is Uploaded January 20, 2020 ✓ subject Biochemistry +2 % English (d)	otechnology: Column C hnique of column chromatography ca 6. Background Knowledg Some	 ☆ Favorite → Share … Chromatography In be used to purify a protein Q License LabxChange Standard License 	Labychange This content is from LabXchange. 2: View website View Profile	
				► Start pathway	

- 1. You will summarize why proteins need to be purified from cells in order to be used.
- 2. You will describe the role of lysis and centrifugation in the process of protein purification.
- 3. You will explain how column chromatography works to separate proteins from a mixture

Additional Resources

Biotechnology - In depth, Text-based

Lab change Explore	Library Search library, people and organizations Q	Dashboard Community 🗘 🖵
	Library catalog > Textbook > Concepts of Biology	JA AN
A	☆ Favorite → Share ···· Biotechnology 37 Favorites - 428 Views - 4 Clones	epenstax-
	This pathway provides an in-depth look at cloning and genetic engineering, biotechnology in medicine and agriculture, genomics and proteomics. The pathway also provides vocabulary support for these topics, as well as opportunities for learners to self-assess their understanding by analyzing figures and more	This OpenStax content is from Concepts of Biology.
	Subject % Language ♥ Background Knowledge ♀ License Biolonglineering +2 English Some Attribution (CC BY 4.0)	
		► Start pathway

- 1. You will explain the basic techniques used to manipulate genetic material.
- 2. You will explain molecular and reproductive cloning.
- 3. You will describe uses of biotechnology in medicine.
- 4. You will describe uses of biotechnology in agriculture.
- 5. You will define genomics and proteomics.
- 6. You will define whole genome sequencing.
- 7. You will explain different applications of genomics and proteomics

DNA Structure and Function – In depth, Text-based

Lab	Explore	Library	Search library, people and organizat	ions Q		Dashbo	ard Community 🛆 💭 (
		Library catalo	log > Textbook > Biology 2e				
					습 Favorite 🏾 🤿 Share \cdots		
		DNA S 21 Favorit	Structure and Function ites • 176 Views • 4 Clones	n		open stax -	
		The three be retrie	ee letters "DNA" have now become s eved from hair, blood, or saliva. Each	nonymous with crime solvin person's DNA is unique, and	g and genetic testing. DNA can it is possible to detect	This OpenStax content is from Biology 2e.	
		difference many pra determin outbreak vaccine o looking a DNA stru in eukary opportur question	ces between individuals within a spo ractical applications beyond forensic ining paternity, tracing genealogy, Idi ks, and studying human migration pu development, and caneer therapy. It at genes. This pathway provides an ucture and sequencing, basics of DN ryotes, and DNA repair. The pathway mitiles for learners to self-assess the ns.	scies on the basis of these urs. In humans, DNA testing is snthying pathogens, archeolo atterns. In the medical field, is now possible to determin n-depth look at historical ba- k replication, DNA replication also provides vocabulary sup r understanding by analyzing	ique features. DNA analysis has applied to numerous uses: igical research. tracing disease DNA is used in diagnostics, new predisposition to diseases by predisposition to diseases by is of modern understanding, n in prokaryotes, DNA replication port for these topics, as well as figures and answering	C View original textbook	
		Show less Uploaded	<u>255</u> d March 31, 2020				
		Z Subject Biotect	ect 🕉 Language echnology +4 English	Background Know Some	edge Q License Attribution (CC BY 4.0)		
						► Start pathway	

- 1. You will explain the transformation of DNA.
- 2. You will explain how Griffith's experiments in 1928 relate to our modern understanding of DNA and how it works.
- 3. You will discuss key historic experiments that helped identify DNA as the genetic material.
- 4. You will define Chargaff's rules of nitrogenous base pairing.
- 5. You will illustrate the molecular structure of DNA.
- 6. You will describe the Sanger method of DNA sequencing.
- 7. You will recall an application of DNA sequencing.
- 8. You will contrast the similarities and differences between eukaryotic and prokaryotic DNA.
- 9. You will explain how the structure of DNA provides for the process of replication.
- 10. You will discuss how the Meselson and Stahl experiments supported the semiconservative nature of replication.
- 11. You will explain how DNA is replicated in prokaryotes, and describe the roles of the leading and lagging strands and Okazaki fragments in the process.

- 12. You will explain the role of DNA polymerase and other enzymes and proteins in supporting replication.
- 13. You will contrast the similarities and differences between DNA replication in eukaryotes and prokaryotes.
- 14. You will recall the role of telomerase in DNA replication.
- 15. You will list different types of mutations in DNA and explain the significance of mutations.
- 16. You will identify examples of mechanisms that repair mutations in DNA.