
Lesson 8: The Program Design Process

Overview

This lesson introduces students to the process they will

use to design programs of their own throughout this unit.

This process is centered around a project guide which

asks students to sketch out their screens, identify

elements of the Circuit Playground to be used, define

variables, and describe events before they begin

programming. This process is similar to the Game Design

Process that we used in Unit 3. In this lesson students

begin by playing a tug o' war style game where the code

is hidden. They discuss what they think the board

components, events, and variables would need to be to

make the program. They are then given a completed

project guide which shows one way to implement the

project. Students are then walked through this process

through a series of levels. At the end of the lesson

students have an opportunity to make improvements to

the program to make it their own.

Purpose

This lesson gives students to practice developing a larger

scale program in order to prepare them to do so

independently. While previous lessons have focused on

building skills around using specific elements of the

Circuit Playground and related programming concepts,

this lesson focuses on combining everything learned so

far into a more complex program. The lesson heavily

scaffolds the software development process by

providing students a completed project guide, providing

starter code, and walking students through its

implementation. In the subsequent lessons students will

need to complete a greater portion of this guide

independently, and for the final project they will follow

this process largely independently.

Assessment Opportunities

1. Implement different features of a program by

following a structured project guide

The final program should reflect the functions, events,

and screen design as shown in the project guide.

2. Develop a program that responds to events from a

hardware input

Code Studio: See rubric on bubble 12

Objectives

Students will be able to:

Create a function that uses

parameters to generalize

behavior

Develop a program that responds

to events from a hardware input

Implement different features of a

program by following a structured

project guide

Preparation

Provide students with copies of

the project guide

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the teachers

Booleans and Comparison

Operators - Resource

CSD Unit 6 - Physical Computing

- Slides

Functions - Resource

If Statements - Resource

For the students

Emoji Race - Project Guide

https://drive.google.com/file/d/1HUDl6xDoxNWJUptqMA1B9DXE0XFTeD3a/view?usp=sharing
https://docs.google.com/presentation/d/1kP-ZflfE6KTH8DC71qVEnptEs_m4eirbgyYpHRammkE/copy
https://drive.google.com/file/d/1Zw7G76us_ENyDtrVOWsA5RMQzjDbrJcg/view?usp=sharing
https://drive.google.com/file/d/1dCxskfbG66EVJfdzp0cNaNxw9MxX79KF/view?usp=sharing
https://docs.google.com/document/d/1dn4FIRKYaVb1o7TNiyeKqoT1fBL9FPoqOmJV-nvJYUM/






3. Create a function that uses parameters to

generalize behavior

Code Studio: See rubric on bubble 12

Standards Full Course Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

Agenda

Warm Up (5 minutes)

Play Emoji Race 

Stop: Review Project Guide 

Activity (80 minutes)

Implement Project Guide 

Wrap Up (5 minutes)

Make It Your Own 

Teaching Guide

Warm Up (5 minutes)

Play Emoji Race 

Group: Place students in pairs

Demo: Show students the Emoji Race demo, available at the beginning of this lesson.

Transition: Send students online to try out the game on their own. Each pair should play the game and

follow the instructions which ask them to list the board components, events, and variables they think are

necessary to create this game.

Stop: Review Project Guide 

Discuss: Students should have individually created a list of board components, events, and functions

they would need to make the game they played. Ask students to share their lists with a neighbor before

discussing as a class.

 Discussion Goal

Running the Conversation: You can write "Board", "Events", and "Functions" on the board and

record their ideas below each. Ask students to justify their decisions but don't feel the need to settle

on one right answer.

 Teaching Tip

https://staging-studio.code.org/courses/csd-2021/standards




Keeping Focus: Students can easily get distracted by the fun of playing the game. Let them play

for a while but eventually encourage them to follow the on-screen instructions and make a list of the

board components, events, and variables that would be necessary to create the game.

Distribute: Give each student or pair of students a copy of the project guide.

Prompt: Compare the list of things you thought would be needed to the ones on this project guide. Do

you notice any differences?

Discuss: As a class compare the list you had on the board to the list of board components, events, and

functions on the project guide. Note the similarities. Where there are differences try to understand why.

Don't approach one set as "right" vs. "wrong" but just confirm both would be able to make the game

students played.

 Teaching Tip

Sharing the Project Guide: Students are not actually writing on the project guide in this lesson. You

can give each student their own copy for reference but you might also choose to print one copy per

pair, share digital copies, or just display the guide on the projector. So long as it is available for

reference any approach will work fine.

 Remarks

There's usually lots of ways you can structure a program to get it to work the way you want. The

important thing when writing complex or large programs is that you start with a plan. Today we're

going to look at how we could implement this plan to build our own emoji race game. By the end of

the lesson you'll not only have built your game, but you'll know how to change it and make it your

own. Let's get going!

Activity (80 minutes)

Implement Project Guide 

Students are given starter code to establish the functions and event handlers needed for this project.

These levels guide students through how to use the provided variables and what ought to occur within

the event handlers. As students move through the levels point out how the project guide is being used.

Though this project is highly scaffolded, the next lesson will ask students to develop a hardware-based

program of their own design, so make sure to reinforce the connection between the planning that was

done in the project guide and the programming levels.

Sample Program

Plan Your Project

Screen Design

 1

 2

 3-5

3 4 5







Finishing Functions

 Teaching Tip

Exposure to Functions with Parameters

Parameters are a powerful way to make functions more useful by giving them specific input. We are

introducing this here primarily as a way to expose students to this concept, but functions with

parameters won't be taught thoroughly until chapter 2. For students who are interested in

experimenting more with this technique now, direct them to the documentation.

Checking for a Winner

 Assessment Opportunity

Level 12 You can use this level as a formative assessment for students. Click inside the level to view a

rubric and leave feedback to your students

Make it Your Own

Wrap Up (5 minutes)

Make It Your Own 

This last level encourages students to make the game their own. If students have made their way to this

point they have all the skills they need to progress through the curriculum, so there is no pressure to

complete any of the modifications suggested in this level. If you have time, however, getting practice

planning and implementing new features will be a useful skill. Even just modifying the look of the

screens is an easy way students can make the game their own.

Share: Once students have completed the project they can share their work with their classmates.

Encourage students to showcase the additional code they wrote and explain how it has changed the

way the game works.

 6-8

6 7 8

 9-12

9 10 11 12


 13

https://studio.code.org/docs/applab/functionParams_n/

