AOIT Introduction to Programming
Overview of Culminating Project

AOIT Introduction to Programming
Overview of Culminating Project
Project Description
In this project, students apply what they are learning about writing computer programs to create a strategy game as a Python program. The driving question for the project is, “How can we use Python programming to best create an engaging, basic strategy game?”
The programming emphasis is on user-defined functions, lists/tuples (also called arrays), branching, and looping. The students will create both high-level and low-level designs to work from before they begin coding the project. Project management and following the software development life cycle (including formal testing) are also important aspects of the project. 
The culminating project will conclude with a game fair, which will be attended by friends and family as well as professionals in the programming field. 
The students work cooperatively in groups of three, and each member of the team takes on a specialist role with responsibility for specific chunks of the code. 
Project Components
Students produce the following pieces that will make up their complete product:
High-level and low-level program designs
An interactive Python program (a computer game)
A test plan
Assessment
The Python program for the game is assessed using a rubric that evaluates the code design and quality, the output design and results, and the mechanics.
Advance Preparation
The materials for this lesson provide general descriptions and requirements for four games the students can choose from: 
Blackjack is the traditional card game (also called 21) with simplified rules. This text-only game consists of one player and a dealer (the computer).
Shoot-the-Ball is an animated game that uses Turtle Graphics. The game can have multiple players. One player at a time tries to shoot down the bouncing ball as it moves around the drawing window.
Tic-Tac-Toe is the traditional paper-and-pencil game for two players. 
Pot-Shot is an animated game using Turtle Graphics that requires some understanding of the sine and cosine functions used in trigonometry. The game consists of two players who take turns lobbing cannon balls back and forth from one corner of the drawing window to the other. The object of the game is to hit and destroy each other’s buildings, which are located next to the shooting platforms.
The students have already been taught the basic Python tools and techniques they will need to create the games. However, in implementing the basic game definitions, the students will have ample opportunity and encouragement to use their creativity, ingenuity, and programming skills to come up with a final product that is theirs alone and represents the best they can achieve.
It would be helpful to the students, as they plan and design their projects, to have access to experts in the programming field to expand their horizons and encourage them to take on new programming challenges. 
NAF academy advisory board members can help you find such experts. The ideal is to have one expert advisor to coach each group of students as they work on their project. You will also be asking for experts to review student work, to be willing to be interviewed, to come into the classroom near the end of the course to talk about their profession, and to act as the audience for the students’ project presentations.
You will need to decide whether you will hold the game fair in your classroom or in another space, such as an auditorium or conference room. Be sure to book the date and time well in advance of the event, and make sure to notify students and other attendees as soon as possible so that you have time to handle scheduling conflicts. You can also schedule to have the presentations videotaped.
Lesson Overview
Below are the main milestones for this project, broken down according to the lesson in which they fall.
Lesson 13:
Students learn which teams they will be in, and each team chooses a game for which they will write a program. Students go through the following process to create their program:
Teams plan the program using their requirements resource.
Teams create the high-level program design and assign code chunks to team members.
Specialists design their code chunks (low-level design).
Specialists code chunks, and teams integrate chunks into the program.
Teams add temporary debugging code into the processing section and fix bugs in chunks.
Teams replace the debugging code with the final processing code and fix bugs.
Teams put the finishing touches on the program by improving messages and program comments.
Teams write a test plan.
Teams test another group’s program and report the results.
Teams do final debugging and fixing activities.
Students invite friends, family, and advisory board members to play the game.
An initial assessment of each program is completed at this point using Teacher Resource 13.12, Rubric: Complex Software Project.
Lesson 15:
The games are presented at a fair where visitors can play the games and try to beat each other or the computer. Programming team members are available to answer questions and explain different aspects of their work on this project. A final assessment of the program is completed at this point using Teacher Resource 15.3, Rubric: Complex Software Project.

The Culminating Project and NAFTrack Certification 
The culminating project is a required course assessment component for academies taking part in NAFTrack Certification. As students complete their culminating project, they upload a work sample for evaluation. The sample demonstrates students’ ability to apply the knowledge and skills they have learned throughout a course in an authentic way that is relevant to their academy’s industry theme.
If your students are participating in NAFTrack Certification, see below for the work sample(s) to keep in mind as your students work on this culminating project. Please note that the rubric used to assess the project in NAFTrack Certification is different from the project rubric used in the course instructional materials. 
Culminating Project Work Sample(s) for Introduction to Programming
Students must upload one work sample for evaluation. Learning objective codes are organized by unit, lesson, and unit learning objective (e.g., 1.3.8). 
	Work Sample(s)
	Learning Objectives

	Project Presentation: Interactive Python Program for a Computer Game and Computer Game Design
(Lesson 15, Student Resource 15.1, Teacher Resources 15.2 and 15.3)
	1.1.1: Infer the skills and knowledge about computer programming needed to be successful in an authentic project
1.2.4: Demonstrate the ability to enter and modify source code statements using the editing capabilities of Thonny
1.2.6: Demonstrate the ability to debug statements, distinguishing between syntactic and semantic errors
1.4.17: Create a program that includes meaningful comments with correct syntax
2.5.5: Demonstrate the ability to debug syntax errors, semantics errors, and runtime errors in statements that include variables
3.8.2: Create if-statements and if/else-statements
3.8.5: Create for-loops and while-loops
3.8.6: Develop programs using for-loops and while-loops
3.9.15: Create programs that use string, list, and tuple methods and functions
3.9.16: Create programs using indexing
3.9.17: Create programs that use sequences of type string, list, and tuple
3.10.18: Create programs that use advanced sequence manipulation techniques
3.10.19: Design, code, test, and debug a complex software project
3.10.22: Demonstrate understanding of how to work in a team to implement complex software project
4.11.1: Display understanding of various formal debugging techniques
4.11.2: Locate errors in and fix graphics programs
4.13.6: Demonstrate the ability to use software best practices to complete a complex software project
4.13.7: Demonstrate the ability to organize and successfully implement a complex software project
4.13.8: Demonstrate the ability to turn a complex problem statement and set of requirements into working code that meets the project objectives
4.13.9: Demonstrate the ability to plan, design, code, and test a complex software program
4.13.10: Demonstrate the ability to divide a program into sets of cooperating functions and other blocks of related code
4.13.11: Create a complex program in Python that contains branching, looping, sequences, and one or more defined functions
4.13.13: Locate and fix errors found during coding and testing using standard techniques
5.15.6: Evaluate individual and group performance on a major programming project





	[image: ]		
	NAF 2021



Copyright ©. All rights reserved	1	NAF 2021
image1.jpeg
(<) O




