	
	
	

AOIT Introduction to Programming
Course Scope and Sequence
AOIT Introduction to Programming
Course Scope and Sequence
July 2021
Introduction to Programming uses the Python programming language paired with a beginner friendly integrated development environment called Thonny to introduce students to basic programming skills. Students learn the principles of programming by comparing Python to other programming languages. The course begins with algorithms, and then it lays a foundation of mastering variables, operators, and control structures. Students use models as a way to quickly solve new problems using knowledge and techniques already learned. After this foundation is established, students learn to design programs and write functions. In addition, students learn program design, documentation, formal debugging, and testing.
Students complete numerous programs in the course, including both text and graphics/animation programs. In their culminating project, students create their own computer game of Tic-Tac-Toe, Pot-Shot, Blackjack, or Shoot-the-Ball, demonstrating all of the programming skills and knowledge they have acquired. Students hone the important skills of problem solving, thinking logically, looking at the big picture, and paying attention to detail. Students also examine career opportunities as system programmers, application programmers, and system engineers, and they consider the education, experience, and skills needed to enter and succeed in programming-related professions.
This course is expected to take a total of 86 50-minute class periods.
Unit 1: Getting Started
Lesson 1: Course Introduction
Estimated # of Class Periods: 2
Learning Objectives
Infer the skills and knowledge about computer programming needed to be successful in an authentic project
Evaluate the importance of learning about computer programming in terms of relevant professions
Identify general computer programming terms with which to build a taxonomy

Lesson 2: Writing a Simple Program
Estimated # of Class Periods: 6
Learning Objectives
Demonstrate the ability to enter and modify source code statements using the editing and interactive execution capabilities of Thonny
Develop simple graphics programs using Thonny
Demonstrate the ability to debug statements, distinguishing between syntactic and semantic errors
Identify input, process, and output in a program

Lesson 3: Computers and Programming
Estimated # of Class Periods: 4
Learning Objectives
Differentiate between hardware and software and explain how the two work together
Explain how and why computer programs translate information into bits and bytes
Differentiate between an interpreter and a compiler
Compare and contrast different programming languages
Describe the characteristics that set Python apart
Explain the difference between knowing a programming language and knowing how to program

Lesson 4: Program Design and Problem Solving
Estimated # of Class Periods: 6
Learning Objectives
Create a natural language procedure for solving a problem
Create an algorithm to solve a programming problem
Create a program using an algorithm as a planning guide
Create a program that includes meaningful comments with correct syntax
Demonstrate the ability to test a programming solution to make sure it meets all stated requirements

Unit 2: Manipulating Data
Lesson 5: Working with Variables
Estimated # of Class Periods: 5
Learning Objectives
Define the term variable and demonstrate how operations and algorithms use variables to store and manipulate data
Explain how Python handles different variable types
Create assignment statements for variables using Python rules (for both programmer-assigned and user-assigned values)
Create a simple Python program with two or more variables
Demonstrate the ability to debug syntax errors, semantic errors, and runtime errors in statements that include variables
Compare and contrast how Java, C++, and Python handle variables (use of types, declaring, etc.)

Lesson 6: Using Arithmetic Operators to Manipulate Data
Estimated # of Class Periods: 3
Learning Objectives
Demonstrate the ability to order and calculate arithmetic operations correctly
Create a program with statements that use arithmetic operators
Demonstrate the ability to debug arithmetic operations

Lesson 7: Using String Operators and Methods to Manipulate Data
Estimated # of Class Periods: 5
Learning Objectives
Create programs that process textual information using string operators and methods (functions)
Demonstrate the ability to debug string operations

Unit 3: Control Structures
Lesson 8: Simple Conditional Branching and Looping
Estimated # of Class Periods: 11
Learning Objectives
Explain the use of conditional branching and how it works
Create if-statements and if/else-statements
Develop programs using if-statements and if/else-statements
Explain the use of looping and how it works
Create for-loops and while-loops
Develop programs using for-loops and while-loops
Differentiate between for-loops and while-loops
Classify statements with relational operators as true or false
Demonstrate understanding of program flow in a decision-making model
Create algorithms and code for decision structures that demonstrate understanding of initialization statements, control statements, Boolean expressions, and counter statements
Demonstrate an ability to debug programs with branches and loops
Develop test plans appropriate for programs with branches and loops

Lesson 9: User-Defined Functions and Sequences
Estimated # of Class Periods: 6
Learning Objectives
Define programming functions
Explain how a function call is executed
Create programs that use string, list, and tuple methods and functions
Create programs using indexing
Create programs that use sequences of type string, list, and tuple

Lesson 10: Advanced Sequence Manipulation
Estimated # of Class Periods: 8
Learning Objectives
Create programs that use advanced sequence manipulation techniques
Design, code, test, and debug a complex software project
Develop data for use in program testing
Develop and implement a test plan for a complex software project
Demonstrate understanding of how to work in a team to implement complex software projects

Unit 4: Designing a Program
Lesson 11: Advanced Debugging Techniques
Estimated # of Class Periods: 5
Learning Objectives
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Display understanding of various formal debugging techniques
Locate errors in and fix graphics programs
Demonstrate the ability to modify an existing program to add debugging code

Lesson 12: Animation Using Turtle Graphics
Estimated # of Class Periods: 4
Learning Objectives
Display understanding of various animation techniques, including events and sound
Demonstrate the ability to add animation to an existing program

Lesson 13: Designing and Implementing a Complex Software Project
Estimated # of Class Periods: 12
Note: This lesson includes the culminating project.
Learning Objectives
Demonstrate the ability to use software best practices to complete a complex software project
Demonstrate the ability to organize and successfully implement a complex software project
Demonstrate the ability to turn a complex problem statement and set of requirements into working code that meets the project objectives
Demonstrate the ability to plan, design, code, and test a complex software program
Demonstrate the ability to divide a program into sets of cooperating functions and other blocks of related code
Create a complex program in Python that contains branching, looping, sequences, and one or more user-defined functions
Create a test plan for a complex software program and use it to test the program
Locate and fix errors found during coding and testing using standard techniques

Unit 5: Careers in Programming and Course Closure
Lesson 14: Working in Programming and Learning from Industry Experts
Estimated # of Class Periods: 4
Learning Objectives
List the types of jobs that are available in the programming industry
Describe entry-level jobs in the programming industry and corresponding qualifications
Evaluate which programming-related jobs are most suitable, based on personal interests and skills
Write an effective letter of inquiry for entry-level jobs or internships in programming

Lesson 15: Project Presentation and Course Closure
Estimated # of Class Periods: 5
Learning Objectives
Summarize key learning across the whole subject of programming
Evaluate individual and group performance on a major programming project
Copyright © 2009–2016 NAF. All rights reserved.
Copyright ©. All rights reserved	1	NAF 2021
