
Lesson 7: Conditionals Practice

Overview

In this lesson students spend most of their time practicing

using the skills and processes they have learned about

conditionals. At the conclusion of the lesson students

discuss the main things they realized and still have

questions about at the conclusion of this lesson.

Purpose

This lesson is students primary opportunity to get hands

on with conditionals in code prior to the Make activity in

the following lesson. Give students as much class time as

you can to work through these. For this lesson it's

recommended that you place students in pairs as a

support and to encourage discussion about the

challenges or concepts they're seeing. In the following

lesson students are encouraged to work independently.

Standards Full Course Alignment

CSP Conceptual Framework

AAP-2 - The way statements are sequenced and

combined in a program determines the computed

result. Programs incorporate iteration and selection

constructs to represent repetition and make

decisions to handle varied input values.

AAP-3 - Programmers break down problems into

smaller and more manageable pieces. By creating

procedures and leveraging parameters,

programmers generalize processes that can be

reused. Procedures allow programmers to draw

upon existing code that has already been tested,

allowing programmers to write programs more

quickly and with more confidence.

CRD-2 - Developers create and innovate using an

iterative design process that is user-focused, that

incorporates implementation/feedback cycles, and

that leaves ample room for experimentation and

risk-taking.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

Agenda

Objectives

Students will be able to:

Debug programs that use boolean

expressions and conditional

statements

Write programs that use boolean

expressions and conditional

statements with the support of

sample code.

Preparation

Review the programming

challenges students will be

completing

Review the Debugging Guide for

ideas on how to support your

students during the lesson

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the teachers

CSP Debugging Guide

CSP Unit 4 - Variables,

Conditionals, and Functions -

Slides

Guide to Practice Lessons -

Video

https://staging-studio.code.org/courses/csp-2021/standards
https://docs.google.com/document/d/13wipr2CpR3kHY2_pLoiUtVPqt2prMaTASYr5XaRoy-Q/edit?usp=sharing
https://docs.google.com/presentation/d/1a4w7xtUqAs-3jxMdcLiwGayVA9r3x7k27oiVfsApRMs/edit?usp=sharing
https://youtu.be/Aad0UJXGcR4



Lesson Modifications

Warm Up (5 minutes)

Quick Warm Up

Activity (35 minutes)

Practice Time

Wrap Up (5 minutes)

Assessment: Check For Understanding: AP

Practice

Teaching Guide

Lesson Modifications

 Attention, teachers! If you are teaching virtually or in a socially-distanced

classroom, please read the full lesson plan below, then click here to access the modifications.

Warm Up (5 minutes)

Quick Warm Up

 Remarks

Today we're going to have a chance to practice programming with a lot of the concepts and patterns

we've explored over the last two lessons. I encourage you to go through these with a partner, but pay

close attention to what each other is doing. In our next lesson you're going to have to use a lot of

these on an independent project, and these activities are good practice for what you'll find there!

Alright, let's get to it!

 Teaching Tip

Move Quickly to the Activity: There's a lot in the main activity of today's lesson. You may optionally

wish to do a quick vocabulary review or address any questions that came up in the last lesson.

Otherwise, give students more time to get hands on with some code.

Activity (35 minutes)

Practice Time

Group: It is recommended that students work in pairs for this lesson and a number of the activities

feature discussions. Consider using pair programming, having drivers and navigators switch every 3

minutes, not every level.

 Do This: Direct students to Code Studio, Lesson 3 Level 2. Then briefly remind students about

debugging skills that they will be using in today's activity.

 Remarks

T d ' tl i t ti h t ' l d b t i ith diti l A

https://docs.google.com/document/d/1qlZ1jETAivu185K88GCIdcZWYlj0suAIrf0gWy2-Mrc/edit?usp=sharing



Today you're mostly going to practice what we've learned about programming with conditionals. As

always you should be using the debugging process to help you as you work on issues. Today we're

also going to be working on finding two types of errors

1. Syntax errors show up when you type code that breaks the rules of the programming language.

You can check for errors and warnings

2. Logic errors show up when you type valid code but it works incorrectly. Today you're going to

focus on testing your code to make sure you don't have logic errors.

Other errors you may encounter include:

Run-time error - a mistake in the program that shows when running the program. These are

defined by the programming language.

Overflow error - an error that occurs when a computer tries to handle a number outside of the

defined range of values.

Levels 1-3: These levels only use the console.log() command which prints commands in the debug

console. Here are a few things to keep an eye out for

Levels 1-2 ask students to write Boolean expressions using comparison operators. Students may

need to quickly review the comparison operators < , > , <= , >= , == , !=

Level 3 asks students to write Boolean expressions with logical operators && , || , !

 Teaching Tip

Providing Support: Circulate around the room through the lesson encouraging students to use the

strategies introduced at the beginning of the lesson. Students have a number of supports at their

fingertips, so a big part of your role is helping build their independence in using those resources.

Boolean expressions

Levels 4-8: These levels practice if-statements while working with a star color-changing app.

Levels 4-5 involve setting up an if-statement that becomes an if-else statement.

In Level 6 students follow a pattern to create a lengthy if-else-if statement.

For Level 7, make sure students slow down the running of the code to understand what's

happening. It's suggested that students use the slider to slow down the code.

Level 8 demonstrates that Boolean expressions can be written as conditional statements, and vice

versa

If-Statements

Levels 9-10: The levels return to the "Can I Adopt a Cat?" flowchart from the Conditionals Explore

activity. Students will use the flowchart to work out the logic of the if-statements in a their program.

A new block appears in these levels: getNumber() . This is different than getText() . getNumber()

gets a number from a user input that can be used mathematically.

 1-3

1 2 3

 4-8

4 5 6 7 8

https://staging-studio.code.org/docs/applab/console.log/
https://staging-studio.code.org/docs/applab/getNumber/
https://staging-studio.code.org/docs/applab/getText/
https://staging-studio.code.org/docs/applab/getNumber/

Level 10 can be completed many different ways. There are different combinations of Boolean

expressions using && and || . Students should regularly test their apps to see if their Boolean

expressions are working properly.

Logical Operators

Level 11 Students do a quick practice with the MOD operator.

MOD Practice

Extension Opportunities:

Level 3: Students can add more variables and create complex Boolean expressions. One challenge

might be to assign a String to a variable and compare that string to another.

Level 9: There are multiple solutions. If students build their if-statement using only && encourage

them to figure out how to build it using only || . They may need to switch the content of the if and

else branches.

Level 10: Create another input (i.e. How many cats do you already own?). Students use this

information to craft more complex if-statements.

Wrap Up (5 minutes)

 Discuss: What aspects of working with conditionals do you feel like clicked today? What do you still

feel like you have trouble with?

Discussion Goal: Use this opportunity to address any lingering questions or misconceptions in the room.

You can also use this as a source of discussion topics to kick off the following lesson. As you lead the

discussion, call out the many resources students have access to help when they're getting stuck.

 Remarks

Conditionals can be a little bit tricky, but I saw a lot of good progress today in nailing down this

concept. We may have a few lingering questions, but you also have a lot of resources available. Next

time you'll have a chance to put all this together by programming an app that starts with "the blank

screen"!

Assessment: Check For Understanding: AP Practice

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: What will be displayed after this code segment is run?

 9-10

9 10

 11

Question: The program below asks a user to type in a number and then will output a message. What

number will a user need to input for the message "COLD" to be displayed?

number <- INPUT()

IF (number >= 10)

{

 IF (number <= 20)

 {

 DISPLAY("MEDIUM")

 }

 ELSE

 {

 DISPLAY("HOT")

 }

}

ELSE

{

 DISPLAY("COLD")

}

Check For Understanding: AP Practice 12-13

12


13


