
Lesson 6: Intro to Programming

Overview

Students use and modify a series of simple apps to get

familiar with a small set of programming commands. They

observe the way the code runs by slowing down the

code and compare programs that run all at once to those

that respond to user actions like buttons clicks. At the end

of the lesson students discuss what they observed and

are introduced to some key vocabulary for describing the

running of programs.

Purpose

This lesson is written in an Investigate style, a common

format of lesson that will be used in the remainder of the

programming units. In this kind of lesson students are

encouraged to investigate working code and make

simple modifications to understand how it works.

This lesson introduces a number of concepts and

vocabulary around what programs are and how they run

that will need to be reinforced in future lessons.

Standards Full Course Alignment

CSP Conceptual Framework

AAP-2 - The way statements are sequenced and

combined in a program determines the computed

result. Programs incorporate iteration and selection

constructs to represent repetition and make

decisions to handle varied input values.

AAP-3 - Programmers break down problems into

smaller and more manageable pieces. By creating

procedures and leveraging parameters,

programmers generalize processes that can be

reused. Procedures allow programmers to draw

upon existing code that has already been tested,

allowing programmers to write programs more

quickly and with more confidence.

CRD-2 - Developers create and innovate using an

iterative design process that is user-focused, that

incorporates implementation/feedback cycles, and

that leaves ample room for experimentation and

risk-taking.

CSTA K-12 Computer Science Standards (2017)

Objectives

Students will be able to:

Define a program as a sequence

of commands that are executed

or run by a computer

Define comments as notes or

documentation into a program

that do not affect how the

program executes

Explain the differences between

how sequential and event-driven

programs execute

Preparation

Review the example apps and the

prompts that students will be

asked to respond to for each

Review the information covered in

the slides at the conclusion of the

lesson

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the teachers

CSP Unit 3 - Intro to App Design

- Slides

https://staging-studio.code.org/courses/csp-2021/standards
https://docs.google.com/presentation/d/1lAs01DpAfG_i-BG641zLahDQ_P3RrsJWnkdpwwmTTFA/edit?usp=sharing





AP - Algorithms & Programming

Agenda

Lesson Modifications

Warm Up

Get to the Activity

Activity (30 minutes)

Wrap Up (15 minutes)

Assessment: Check For Understanding

Teaching Guide

Lesson Modifications

 Attention, teachers! If you are teaching virtually or in a socially-distanced

classroom, please read the full lesson plan below, then click here to access the modifications.

Warm Up

Get to the Activity

 Remarks

Yesterday we learned that we need to create a new kind of language, a programming language, in

order to clearly communicate instructions. Today is a big day. We're going to get our first taste of what

programming looks like, and we'll see different ways we can use these tools to communicate our

instructions to a computer.

 Teaching Tip

Get to the Activity: There's a lot to do in this lesson. Get to the main activity as quickly as you can.

Prompt Ideas: If you need a prompt for when students come in consider asking them to list 2-3

differences between a natural language and programming language and why those differences

need to exist.

Activity (30 minutes)

 Group: Place students in pairs. One student per group should navigate to the lesson on Code Studio.

 Teaching Tip

Prepping for this lesson: The best way to prepare for this lesson is to go through the experience

yourself. Check out the three apps in Code Studio to get a sense for how they work. Then move on

to the Code Investigation and actually try to answer all the questions for each app. To help you out,

however, answers are provided in the "For Teachers Only" tab for verified teachers.

https://docs.google.com/document/d/1TfLlWANuZcXn4tljTl6_Mp9FqUAYnLQXkTwmaG0_Sgk/edit?usp=sharing

Show code at the front: If your room allows it, display the code at the front of the room. When

students mentions specific lines of code actually scroll to that line and read through it together.

Discuss specific lines of code: As you run discussions, model talking about programs by specifically

calling out lines of code, as in "I can see that when the playSound block on line 2 is highlighted the

sound plays...."

Save modifications for the end: This lesson can be tight on time. Rather than have students modify

the code all at once, you can save modifications for the end of the Code Investigation and have

students pick a single app they wish to modify.

OK to Break Things: When using the widgets in Units 1 and 2 it's not really possible to "break

things". That's a little different than how things work in App Lab where it is possible to write code

that may not run at all. Encourage students that this is ok. Using blocks makes it easier to avoid

errors, and if students need to they can use the version history to set the code back to its original

state.

Display: If possible in your room, display the Code Studio levels at the front of the class.

Level 1: Have students work on the three tasks for a few minutes. Circulate the room making sure that

pairs are actually discussing the prompt and are collaborating to modify the program. Once it seems all

groups have had a chance to do this bring the class together.

Discuss: Have students share the results of their discussions with the class. You do not need to use

formal vocabulary yet, but make sure all students are seeing the same things.

Code is running one line at a time.

Strings need to go in quotes. Numbers do not need to.

Yellow highlighting shows you which line of code is running in either block or text mode.

The turtle slider changes the speed at which the code runs. At full speed (all the way to the right)

there is no longer any highlighting.

Level 2: Run this level in the same way. Have students complete all three prompts and then bring the

class together after a few minutes for a discussion.

Discuss: Once again have students share the results of their discussions and modifications with the

room. Here are some good points to draw out if they don't come up naturally in the discussion.

console.log prints text in the Debug Console

setProperty changes the properties of elements on the screen. These should be familiar from

using Design Mode.

console.log needs one input while setProperty needs three

Hovering over a block in the toolbox helps you know what kind of information to put in each input.

Level 3: Run this level in the same way. Have students complete all three prompts and then bring the

class together after a few minutes for a discussion.

Discuss: Once again have students share the results of their discussions and modifications with the

room. Here are some good points to draw out if they don't come up naturally in the discussion.

onEvent makes the program respond to the user. You can add code inside of it that will only run

when something happens.

Changing the second input changes the type of interaction that will make the code inside the

onEvent run.

Code outside the onEvent runs right away. Code inside an onEvent will only run when the event

happens.

Even if code is after an onEvent , it will run first if it's outside of any onEvent

https://staging-studio.code.org/docs/applab/console.log/
https://staging-studio.code.org/docs/applab/setProperty/
https://staging-studio.code.org/docs/applab/console.log/
https://staging-studio.code.org/docs/applab/setProperty/
https://staging-studio.code.org/docs/applab/onEvent/
https://staging-studio.code.org/docs/applab/onEvent/
https://staging-studio.code.org/docs/applab/onEvent/
https://staging-studio.code.org/docs/applab/onEvent/
https://staging-studio.code.org/docs/applab/onEvent/
https://staging-studio.code.org/docs/applab/onEvent/



Level 4: Run this level in the same way. Have students complete all three prompts and then bring the

class together after a few minutes for a discussion.

Discuss: Have students share the results of their discussion and anything else they noticed. Here are

good points to draw out.

playSound will play a sound you pick from the Sound Library

Lines that start with // are called comments and don't actually run. They just help you understand

your code.

Level 5: Run this level in the same way. Have students complete all three prompts and then bring the

class together after a few minutes for a discussion.

Discuss: Have students share the results of their discussion and anything else they noticed. Here are

good points to draw out.

Random number chooses a new random number each time, between the high and low value given

onEvent takes many different event types, not just "mouseOver" and "click" . Depending on the

situation different ones make more sense.

Code Investigation

Wrap Up (15 minutes)

 Discuss: Think about your experiences today and in the previous lesson. How is a programming

language different from natural language?

Discussion Goal: Make this a quick discussion to help connect the previous lesson to this one. Help bring

out some of the following points.

Programming languages are much more precise than natural language

Programming languages have very strict rules

Programming languages may feel a little awkward at first.

 Remarks

Awesome job! Today was our first chance to check out what programming in App Lab is like. So far

we've only learned a few blocks but we've already seen they'll let us make a wide variety of types of

programs. We're going to get a lot more time to practice using them, but before we do let's get some

vocabulary in your journal to make sure we're using the same words to talk about what we saw today.

 Journal: Go through each vocabulary word (Program Statement, Program, Sequential Programming,

Event Driven Programming) and give students a chance to record each piece of information.

 Teaching Tip

Reinforcing Vocabulary: A lot of the vocabulary introduced here is taken straight from the AP

framework. The images are designed to help connect the definitions to the experiences they had in

this lesson. Help students make these connections by not only writing down definitions but talking

through how it's connected to what they saw.

 Remarks

 1-5

1 2 3 4 5

https://staging-studio.code.org/docs/applab/playSound/
https://staging-studio.code.org/docs/applab/onEvent/

Great job today! You've learned a lot so far about programs. It's important to remember that

programs need to work for a variety of inputs and outputs. That's what makes programming

interactive apps so fun! Today, you also learned how to describe the behavior of a program, or how

the program works when it's run and how the user interacts with it.

When we talk about how programs run, we can describe both what the program does and specifically

how the program statements accomplish this goal.

We're going to keep practicing using these words and going forward you're going to get more chance

to practice programming. Start thinking about how you might want to use what you learned today in

your project.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

What is the difference between a sequential program and an event-driven program?

Check for Understanding 6


