
Lesson 7: Debugging

Overview

In this lesson students practice using the different

programming concepts that they were introduced to in

the last lesson. To begin, however, they are introduced to

the concept of debugging and are encouraged to use

and reflect on this practice throughout the lesson. At the

end of the lesson students share their experiences

debugging as well as an new realizations about

programming.

Purpose

This lesson serves a number of roles. Even if students had

modified programs in the previous lesson, this continues

to be an introduction to many of the skills of

programming. Students are also introduced to

debugging as a skill they'll need to use and develop as

programmers. A huge goal of this lesson, however, is

attitudinal.

Standards Full Course Alignment

CSP Conceptual Framework

AAP-2 - The way statements are sequenced and

combined in a program determines the computed

result. Programs incorporate iteration and selection

constructs to represent repetition and make

decisions to handle varied input values.

CRD-2 - Developers create and innovate using an

iterative design process that is user-focused, that

incorporates implementation/feedback cycles, and

that leaves ample room for experimentation and

risk-taking.

CSTA K-12 Computer Science Standards (2017)

CS - Computing Systems

Agenda

Lesson Modifications

Warm Up (5 minutes)

Preview the Lesson

Activity (30 minutes)

Practice Time

Objectives

Students will be able to:

Debug simple sequential and

event-driven programs

Use the debugging process and

Identify specific best practices for

debugging programs

Use the speed slider, break points,

and documentation as part of the

debugging process

Preparation

Review the steps of the

debugging process

Review the levels students will

need to complete on Code Studio

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the teachers

CSP Unit 3 - Intro to App Design

- Slides

For the students

How To Debug - Video

(Download)

https://staging-studio.code.org/courses/csp-2021/standards
https://docs.google.com/presentation/d/1lAs01DpAfG_i-BG641zLahDQ_P3RrsJWnkdpwwmTTFA/edit?usp=sharing
https://youtu.be/auv10y-dN4s
https://videos.code.org/levelbuilder/debugging_sm-mp4.mp4

Wrap Up (10 minutes)

Assessment: Check For Understanding

Teaching Guide

Lesson Modifications

 Attention, teachers! If you are teaching virtually or in a socially-distanced

classroom, please read the full lesson plan below, then click here to access the modifications.

Warm Up (5 minutes)

Preview the Lesson

 Discuss: Your friend calls and says "I can't get music to come out of my speakers, can you help?".

Write a quick list of everything you'd ask them or have them check to try to fix the problem.

Optional Warmup Discussion: This discussionis optional and included for instances where you need a

warm up discussion on the board when students walk in. If your classroom is able to move directly to

main activity you should feel free to skip this discussion in the interest of time.

Discussion Goal: This prompt should help get students in the mindset of debugging. If students ask for

more details tell them that this is all the information they have and that they should feel free to

 Remarks

Today we're going to practice programming, but we're also going to practice a very important skill in

programming called "debugging". Let's see what it looks like.

Activity (30 minutes)

Practice Time

 Display: Show the Debugging video and then show the debugging process.

 Remarks

We're going to use this process to help us fix programs. I want you to use this process as you fix issues

you find in code today. At the end of the lesson we'll talk more about this process and any specific

strategies you document along the way.

Group: Place students in pairs.

Level 1: This level requires students to recognize that strings need to go in quotes.

Level 2: This level also requires students to recognize that strings need to go in quotes. Ideally students

will get more familiar with checking for yellow warnings in this level.

Level 3: The code in this level will run, but the wrong text and sounds have been placed in the wrong

places. This shows that code may have no warnings but still is not working correctly.

https://docs.google.com/document/d/1yvj_9HkeZY2xKw-xDm1rnfk7zkZ_W_vceHnyx15EkI0/edit?usp=sharing

Level 4: Again this code has no warnings but in testing the app students should see that the range of

values for the random numbers is too large. Iterative testing with different values should help them pick

a number that keeps the smiley inside the screen.

Level 5: In this level an entire event handler is missing. Students will need to add it to the app.

Level 6: This level explicitly introduces the fact that event handlers (onEvent) should not go inside

other onEvent blocks. This is explicitly addressed in the concluding slide show as well.

Level 7: This app is a good chance for students to practice adding functionality of their own. While

nothing starts off as "broken", students will need to use debugging practices as they add code to this

app.

Debugging

Wrap Up (10 minutes)

 Discuss: If you were using the debugging process then you should have some notes of good

debugging tips. Share those with your neighbor and add any new ones you forgot to add. Be ready to

share with the class.

Discussion Goal: This discussion should help reinforce the fact that debugging is a skill that can be

learned and that it is made up of many little steps and understandings. Give the room an opportunity to

share as many ideas as they can before sharing the provided slides with some recommended steps.

 Display: Show the slide which lists some best practices in addition to those students may have

mentioned.

 Remarks

Debugging is an important and entirely normal part of programming. Your code won't always work

the first time, and that's OK! Debugging is a skill that you can practice and get better at. Using

documentation and leaving comments for yourself are important skills, but so is working with

classmates or learning to more effectively search for bugs. We'll keep using these skills.

 Journal: Have students add the following vocabulary words and definitions to their journals:

documentation and comment.

 Remarks

Let's take a minute to talk more about comments and documentation. Comments help explain the

code, but do not affect how the program runs. They are meant to be read by people! When we write

code, we don't only write for the computer we also write for other people. It's important that others

can understand our code, so write your code clearly using the practices we discussed and comments.

Not all programming environments support comments, so other forms of documentation may be

important like keeping a separate document with information about your program. The key takeaway

here, is no matter what the format, comments and documentation are important!

As you grow in your programming skills, you will start to appreciate how valuable comments can be.

You don't have to wait until a program is complete to write the comments. You should be doing this as

you develop the project. There will be opportunities to write comments called out in the App project

you are currently working on.

 1-7

1 2 3 4 5 6 7

https://staging-studio.code.org/docs/applab/onEvent/
https://staging-studio.code.org/docs/applab/onEvent/

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

What is one thing you really enjoyed about today's activity?

Is there anything that you found confusing or need extra help with?

Check for Understanding 8


