
Lesson 5: The Need for Programming
Languages

Overview

In this lesson students explore the challenges of clearly

communicating instructions. They build a small

arrangement of blocks (LEGO® pieces or paper cutouts)

and then create text instructions a classmate could follow

to construct the same arrangement. Groups then trade

instructions to see if they were clear enough to allow

reconstruction of the original arrangement. The wrap-up

discussion is used to highlight the inherent ambiguities of

human language and call out the need for the creation of

a programming language which leaves no room for

interpretation.

Purpose

This lesson is students' first introduction to the concept of

a programming language. It helps them understand why

programming languages exist by giving them a first-

hand experience with the problems that programming

languages are designed to address. Natural language is

usually too ambiguous for giving precise instructions that

can be followed correctly 100% of the time. We need to

create more structured and precise programming

languages in order to accomplish this.

Standards Full Course Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

Agenda

Lesson Modifications

Warm Up (5 minutes)

Activity (30 minutes)

Wrap Up (10 minutes)

Assessment: Check For Understanding 

Objectives

Students will be able to:

Explain the qualities that

differentiate natural languages

and programming languages

Justify the existence of

programming languages to

precisely communicate

instructions

Preparation

Prepare either a small set of

LEGO blocks or paper cutouts for

each pair of students

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the teachers

CSP Unit 3 - Intro to App Design

- Slides

Teaching Guide

https://staging-studio.code.org/courses/csp-2021/standards
https://docs.google.com/presentation/d/1lAs01DpAfG_i-BG641zLahDQ_P3RrsJWnkdpwwmTTFA/edit?usp=sharing


Lesson Modifications

 Attention, teachers! If you are teaching virtually or in a socially-distanced

classroom, please read the full lesson plan below, then click here to access the modifications.

Warm Up (5 minutes)

 Remarks

Today we're going to look at what it takes to write "good" instructions. We all use instructions all the

time, whether it's directions to get somewhere, instructions to fill out a form, or even instructions from

teachers. To help us get started, let's brainstorm what "bad" instructions" look like.

 Discuss: Write down three different reasons you would call a set of instructions "bad". Be ready to

share with a neighbor.

Discussion Goal: Aim to hear a few different students share reasons that instructions are "bad". The

point here is just to get students thinking and there's no specific answer you're driving towards. Some

possible ideas, however, might include:

Instructions are not clear on what to do

Instructions use confusing words

Instructions don't actually accomplish what they're supposed to

 Remarks

Alright, so we have an idea of what "bad" instructions look like. Let's see if we can use this brainstorm

to help us write good instructions in the next activity!

Activity (30 minutes)

Group: Place students in groups of two, optionally forming a group of three.

 Distribute: Give each group a small set of blocks (either LEGO or paper cutouts). Also have each

group use a blank sheet of paper or a blank page in a journal.

Display: Use the lesson slides to guide this activity.

 Step 1: Design: Give students a couple minutes to create their design. Keep this quick since the

bigger focus should be on the instructions.

Step 2: Record: Either have students sketch their design or take a picture. Make sure the image is on a

separate piece of paper or the back side of a sheet of paper.

Step 3: Write Instructions: This is the most important step and should be given about 5 minutes.

Encourage students to be as clear as possible while only using words. Encourage them to think about

their brainstorm of "bad" instructions this morning to see if it can inspire them to make "good" ones.

 Step 4: Trade: Have students take apart their design, and then trade instructions with another group.

Make sure they keep their recording of the design hidden.

Step 5: Build: Give students 3 minutes to follow the instructions from another group.

Step 6: Compare: Give students 2 minutes to compare what they built with the picture of the actual

target. In their groups they should discuss what they think went wrong or anything they're surprised

worked out.

https://docs.google.com/document/d/1ro6_apaSbhb3Ff16xK9fVyJX3vszVcknaEdjnzemVP8/edit?usp=sharing




Step 7: Repeat: Depending on how much time you have, encourage students to trade with one or two

other groups. Make sure to save time for the wrap up.

 Teaching Tip

Make it a Gallery Walk: Depending on your room set-up you may be able to have students run this

activity in a more open-ended way. Students should leave their unconstructed blocks and

instructions at their table with the target image face down. They can then make their way to a few

different groups' instructions over the course of 10-15 minutes.

Mark What's Confusing: You may optionally have students leave suggestions on instructions when

they use them explaining where they were confused or wanted more detail. This is a good way to

practice giving and receiving feedback. It also forces groups to think more clearly about what is

causing their confusion since they'll have to leave it in writing.

Wrap Up (10 minutes)

 Discuss: When you or your classmates made mistakes following instructions today what "went

wrong"? Try to be as specific as possible.

Discussion Goal: This wrap up includes two sets of prompts and should be run as back-to-back

discussions. The first set helps students synthesize the challenges they encountered during the main

activity. The second set prompts students to think about how they might design a new language that

avoids these challenges.

When running the first discussion ask students to share specific experiences during the lesson and

prompt them to think about what went wrong. They might say things like "if we'd just been more clear"

or "we just need to include more detail". This might be true, but eventually you should point out that

human language is often ambiguous. In other words, it's not their fault! It's hard to do a good job with

bad tools!

When running the second discussion push students to think about what a language designed for giving

instructions would look like. While specific answers aren't important, you should push them to build on

their experiences in the main activity. For example, if they saw that words having two meanings was

confusing in the main activity, they should suggest redesigning the language so each word has a single

well-understood meaning.

 Remarks

Even trying to be as clear as possible we struggled to write clear instructions. There are things we

could do to improve, but the core challenge here is that everyday human language is bad for giving

clear instructions. Words can have two or three meanings! Instructions that seem clear turn out to be

vague when we actually go follow them. If we want to give clear instructions, we need to

fundamentally change the language we use. We need to create a new kind of language.

 Discuss: Imagine we were going to redesign human language to be really good for giving clear

instructions. What types of changes would we need to make?

 Remarks

Today we talked a lot about instructions because soon we're going start programming your apps.

When you write a program you're just giving instructions to a computer for what it should do to run

your app. As you'll see, the programming language we use to give these instructions sometimes looks

like English, but then has a lot of weird (and sometimes confusing) differences. This is because it

needs to be more precise and unambiguous than normal human language. We'll dive into this more

next time we meet!



Assessment: Check For Understanding 

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: What is the difference between a programming language and natural (every-day)

language?

Check For Understanding 1



