
Lesson 5: Parallel and Distributed
Algorithms

Overview

In this lesson students explore the benefits and limitations

of parallel and distributed computing. First they discuss

the way human problem solving changes when

additional people lend a hand. Then they run a series of

demonstrations that show how simple tasks like sorting

cards get faster when more people help, but there is a

limitation to the efficiency gains. Later in the lesson

students watch a video about distributed computing that

highlights the ways distributed computing can help

tackle new kinds of problems. To conclude the lesson

students record new vocabulary in their journals and

discuss any open questions.

Purpose

This lesson is a quick tour of the challenges and benefits

of parallel and distributed computing. It caps off the unit

to showcase ways these techniques are being used to

push the boundaries of how efficiently computer can

solve problems.

Standards Full Course Alignment

CSP Conceptual Framework

CSN-2 - Parallel and distributed computing

leverages multiple computers to more quickly solve

complex problems or process large data sets.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

Agenda

Warm Up (5 minutes)

Activity (30 minutes)

Card Sorting Challenge 

Debriefing the Challenge 

Distributed Computing in Real World Settings 

Wrap Up (10 minutes)

Assessment: Check For Understanding 

Objectives

Students will be able to:

Calculate the speedup of a

parallel solution to a problem

Describe the benefits and

challenges of parallel and

distributed computing.

Explain the difference between

sequential, parallel, and

distributed computing.

Preparation

Collect the manipulatives you will

use for the main activity. While

decks of cards are suggested,

other manipulatives are possible.

See the teaching tip in the main

activity for suggestions.

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the teachers

CSP Unit 6 - Algorithms - Slides

https://staging-studio.code.org/courses/csp-2021/standards
https://docs.google.com/presentation/d/1gL5WpBPqyrQqATGO8IIP5DsI3T0xLfCZE-jG5mBxS1o/edit?usp=sharing




Teaching Guide

Warm Up (5 minutes)

 Discuss: Brainstorm a task that you can complete faster if you get other people to help. What’s the

most number of people you’d want to help you and why?

Discussion Goal: This should be a quick discussion to foreshadow the main ideas of the lesson. Students

should brainstorm many potential tasks. When they start mentioning the maximum number of people

they'd want to help them direct attention towards why that's the case. You might hear that:

Adding extra people makes it more complicated

Sometimes extra people doesn't really speed things up

If you're working with lots of people then if one person is slower the whole group is slowed down

Have students think about their answers on their own, then share with a partner, and then finally discuss

responses with the entire room.

 Remarks

As we've explored in this unit, computer scientists are always looking for more efficient ways to run

programs. One way to do this is to develop faster algorithms that run on a single computer. Another

idea we'll explore today, is figuring out ways to run programs on many computers at the same time.

We just talked about some benefits and challenges when many people help with a task. As we'll see,

the same is true with running programs on multiple computers. It can lead to some improvements, but

also some new challenges.

Activity (30 minutes)

Card Sorting Challenge 

 Teaching Tip

Choosing Manipulatives: This activity can easily be done with many different types of

manipulatives, not just cards. For example, students could sort pennies by even / odd year, sort

coins into piles of different denominations, sort blocks by color / size, or sort any other readily

available item. Pick whatever makes the most sense for your context.

Group: Place students in groups of three or four.

 Distribute: Give one member of each group a deck of cards.

 Challenge 1 - One Person Sort: At the front of the room display the directions for the first sort as well

as the clock. Run the clock, and have students put the cards in order. Have students record their time.

Then let the another partner repeat the process.

 Challenge 2 - Two Person Sort: At the front of the room display the directions for the second. Run

the clock, and have students put the cards in order. Have students record their time. If students are in

groups of four offer to let the other two students try the challenge.

 Challenge 3 - Full Group Sort: At the front of the room display the directions for the challenge. Run

the clock, and have students put the cards in order. Have students record their time.



Debriefing the Challenge 

 Display: Show the slides explaining the difference between parallel and sequential computing

models. Talk through the different models.

 Discuss: What portions of your algorithms for Challenges 2 and 3 were parallel? What makes things

complicated or slows you down during parallel portions of your algorithm?

Discussion Goal: This discussion has two goals. The first is to reinforce the difference between parallel

and sequential portions of an algorithm. Any time multiple processes are happening at once (for

example multiple people are sorting cards), an algorithm is parallel. The second goal is to bring up some

common challenges that come up when running parallel algorithms. The remarks cover some of the

most important ones but the main point is that while parallel algorithms are faster, they still present

challenges.

Discuss: Have groups discuss responses at their tables before sharing with the room.

 Remarks

A lot of the challenges you just encountered show up when you try to run a program on multiple

computers as well.

Sometimes you need to wait because one computer finished before another

It can be complicated to split up work and recombine it when moving in and out of parallel

portions

They're faster, but not always as much faster as you think.

 Discuss: What was your group’s speedup in Challenge 2? What about in Challenge 3? Are you

surprised?

Discussion Goal: Use this discussion to reinforce how speedup is calculated, but also to prime students

to realize that adding additional parallel processes doesn't always lead to the same amount of speedup.

During the parallel portion things are in fact moving faster, but sequential portions still take a long time

(e.g. collecting individual piles once each group member has sorted their cards). Therefore speedup is

rarely your original time divided by the number of computers running the process. Eventually it will

level off.

Have groups calculate their speedup and share with the room.

 Display: Cover the primary points of speedup in the real world.

Students probably noticed their speedup is lower than the number of people helping sort. Sorting

with two people doesn't give a speedup of 2. Sorting with 3 people doesn't give a speedup of 3.

Because some portions are always still sequential, the benefits of adding more processors will go

down and eventually the speedup reaches a limit.

Distributed Computing in Real World Settings 

 Remarks

We've just explored some of the core and theoretical ideas of parallel computing. It can speed things

up, but not infinitely, and it adds complications and many more resources. That said, parallel

computing can help tackle some big problems.

 Discuss: Before showing the video share these two questions.



Why is the type of computing presented “distributed”?

Why is distributed computing used to solve the problem?

 Display: Show the video on Folding at home

 Discuss: Have students share their responses to the two questions:

Why is the type of computing presented "distributed"?

Why is distributed computing used to solve the problem?

 Remarks

Distributed computing is very similar to parallel computing. The main idea is that programs can be run

on lots and lots of computers. Distributed and parallel computing are helpful for solving really big

problems that you couldn't normally solve on a single computer.

Wrap Up (10 minutes)

 Remarks

Let's sum up what we learned: Parallel computing consists of both a parallel portion that is shared and

a sequential portion.

A sequential solution's efficiency is measured as the sum of all of its steps, but a parallel solution takes

as along as its sequential tasks plus the longest of its paralell tasks. Often times a parallel solution will

be the fastest option, but there is a limit.

Solutions that use parallel computing can scale more effectively than solutions that use sequential

computing. Why is this so? If we continue to add tasks, a sequential solution would continue to get

larger and larger. However, with a parallel system, those tasks can be balanced.

 Journal: Students add the following vocabulary words and definitions to their journals: sequential

computing, parallel computing, distributed computing, speedup

 Discuss: Based on what we saw here today, create a list of pros and cons for distributed and parallel

computing. Share it with a partner.

Discussion Goal: This lesson covers a lot of ground so this is a good chance to review some of the main

points of the lesson. Here's some big ones to cover.

Parallel programs typically are faster

Parallel programs don't get faster forever. At some point adding more processors doesn't really help

Parallel programs can be more complicated.

Parallel programs can be slowed down if only one of many devices is slow.

Distributed programs can be run on thousands or even millions of computers which allows you to

take on enormous problems

Have students write their list, then share with a partner, and then finally discuss responses with the

entire room.

Assessment: Check For Understanding 

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: What is the speedup of this parallel solution?



Question: In your own words, explain why the speedup of a parallel algorithm will eventually reach

some limit.

Check For Understanding 1-2

1


2



