
Lesson 1: Algorithms Solve Problems

Overview

Students will complete two exploratory activities that

introduce the concept of a problem and an algorithm. In

the first students answer a series of questions about

birthdates and names of their classmates. They then

discuss the similarities and differences between the

problems. In the second activity students are given six

different algorithms and must analyze them to determine

which they think are the same or different. At the end of

the lesson they are introduced to the formal definitions of

a problem and an algorithm.

Purpose

This lesson is an approachable and interactive

introduction to the main concepts of this short unit.

Students have been writing a lot of code, and now they

are ready to think on a high level about the patterns that

make two different problems, or two different algorithms,

similar or different. This mindset will be important as they

tackle the more challenging material later in the unit

where students will learn to compare different algorithms

that address the same problem.

Standards Full Course Alignment

CSP Conceptual Framework

AAP-2 - The way statements are sequenced and

combined in a program determines the computed

result. Programs incorporate iteration and selection

constructs to represent repetition and make

decisions to handle varied input values.

Agenda

Warm Up (5 minutes)

Activity (30 minutes)

Comparing Problems

Comparing Algorithms

Wrap Up (10 minutes)

Assessment: Check For Understanding 

Objectives

Students will be able to:

Explain that some algorithms may

look or operate differently but still

solve the same problem.

Explain that some problems may

look different but be similar or

look similar but be different.

Explain the formal definitions of a

problem, an algorithm,

sequencing, selection, and

iteration.

Preparation

Review the algorithms students

will be comparing in the second

activity to make sure you are

prepared to support students in

trying them out.

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the teachers

CSP Unit 6 - Algorithms - Slides

Teaching Guide

https://staging-studio.code.org/courses/csp-2021/standards
https://docs.google.com/presentation/d/1gL5WpBPqyrQqATGO8IIP5DsI3T0xLfCZE-jG5mBxS1o/edit?usp=sharing


Warm Up (5 minutes)

 Discuss: What makes two pieces of code “the same”? Could there ever be two pieces of code that

you consider to be “the same” even if they aren’t identical?

Discussion Goal: This is an optional discussion. If you are able to move directly to the main activity you

should do so. This discussion should get students thinking about the themes of the lesson.

There are no "wrong answers" here though you should expect answers that focus on the fact that often

there's lots of ways to write code that does the same thing.

Have students think about their answers on their own, then share with a partner, and then finally discuss

responses with the entire room.

Activity (30 minutes)

 Remarks

Today we are going to kick off a short unit about how computer scientists think about problem solving.

A really important skill will be recognizing patterns and similarities.

Comparing Problems

Distribute: Ask students to take out their journals or give them some blank paper for working on the

following problems

Show the slides for the ten problems students will need to solve.

Circulate: Ask students to review the problems for one minute, and then let them move around the

room collecting information needed to solve the problems. This may take them several minutes.

 Discuss: Which problems did you need to do something similar in order to solve them?

Discussion Goal: This discussion should focus on what made the problems that students solved similar

to one another. You likely will want to put the problems back on the screen to make it easier to talk

through. Here are some connections you may pull out though there are more students may make.

Problems 1 and 2 are very similar. As soon as you find one person who meets the criteria you know

you're done.

Problem 3 and 4 are very similar but you need to talk to every other student to answer it. You only

need to keep track of the closest birthday you've heard so far, however.

Problem 5 is easy to solve as soon as you've solved problems 3 and 4.

Problem 6 - 10 require you to have written down everyone's birthday, likely in order.

Problems 7 - 9 are the same problem but for different numbers of people. Whatever strategy you

use for one of those would be helpful to solve the others

Problem 10 is a different version of problem 7 but instead of finding the smallest gap you're finding

the largest.

Have students discuss the prompt with a neighbor before asking them to share with the room. Lead a

discussion on their experiences.

 Remarks

The first thing that we need to think about as computer scientists is what is a "problem". We just

looked at 10 problems, but as we discussed, a lot of them are similar. If we solve one problem we may

t ll l th t l t h d id f h t t t l i th A t



actually solve another, or at least have a good idea for how to start solving another. As computer

scientists it's important to ask "have I seen this problem before" or "how is this problem similar to

others I've solved?"

Comparing Algorithms

 Remarks

We just thought about whether problems are similar. Now we're going to look at whether we're

actually solving the same problem.

 Discuss: Which of these algorithms are “the same” as one another?

Discussion Goal: This discussion should focus on what made the algorithms the same. While they are

designed to fall into two categories, ideally a number of points should come out of this discussion.

Algorithms 1, 3, and 4 draw a square while 2, 5, and 6 draw a rectangle

Algorithms 4 and 6 are written using a flowchart while 1, 2, 3, and 5 are written in the AP

Pseudocode

Some of these algorithms turn the robot right by turning left three times. It's debateable whether

we can really call these algorithms "the same"

Some of these algorithms create lists or variables to store information. Depending on the context we

may not be able to call these algorithms "the same"

Circulate: Ask students to review the algorithms with a partner and group them into categories. Move

around the room making sure students are not getting stuck. If they finish early push them to see if they

can think about the problem in a different way.

 Discuss: Discuss with another group. which of these algorithms are “the same” as one another?

Have students discuss with another before asking them to share with the room. Lead a discussion on

their experiences using tips from the discussion goal at the side.

Wrap Up (10 minutes)

 Journal: Students add the following vocabulary words and definitions to their journals: problem,

algorithm, sequencing, selection, iteration.

Discuss: How did today’s activities change the way you think about algorithms and problems?

Have students think about their answers on their own, then share with a partner, and then finally discuss

responses with the entire room.

Discussion Goal: Use this discussion to reinforce vocabulary introduced in the slides and check in on

whether students have begun the transition towards thinking on a higher level about algorithms and

problems.

 Remarks

Computer scientists don't just think about "code", they think about problems and the algorithms that

solve them. In this unit we're going to explore what makes two problems, or two algorithms, similar or

different from one another, and the way computer scientists talk about them. Not only will you be a

better programmer, but you'll get to work on some really interesting problems along the way.



Assessment: Check For Understanding 

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: In your own words explain the difference between a problem and an algorithm.

Check For Understanding 1



