AOIT Introduction to Programming
Lesson 7 Using String Operators and Methods to Manipulate Data
AOIT Introduction to Programming
Lesson 7
Using String Operators and Methods to Manipulate Data
Student Resources
	Resource
	Description

	Student Resource 7.1
	Worksheet: Concatenating with String Operators

	Student Resource 7.2
	Practice: Analyzing and Using String Operators

	Student Resource 7.3
	Practice: Using String Methods

	Student Resource 7.4
	Design and Coding: Menu Program

Student Resource 7.1
Worksheet: Concatenating with String Operators
Student Names:__ Date:___________
Directions: Study the examples in the first two rows of the table below, and then use what you can deduce from those examples to evaluate the remaining equations that use string operators. After you complete all the equations, use what you’ve deduced to answer the two questions about how string operators work.
	String Equation
	What Do You Predict the Equation Evaluates To?

	"abc" + "def" =
	abcdef

	"a" * 5 =
	aaaaa

	("aa" + "bb") * 2
	

	("a" * 3) + "xyz"
	

In your own words, explain how addition operations evaluate with strings, and give your own example.

In your own words, explain how multiplication operations evaluate with strings, and give your own example.
Student Resource 7.2
Practice: Analyzing and Using String Operators
Student Names:__ Date:___________
Directions: This multipart worksheet includes various exercises in analyzing and using Python string operators. Follow the specific instructions at the beginning of each part.
You will be using the Shell in Thonny for all the exercises.
Part 1: Guided Exercises
Read the information and answer the questions below.
As you have already learned, you can use the following operators in Python numeric environments:
· Addition (+)
· Subtraction (-)
· Multiplication (*)
· Division (/)
· Floor division (//)
· Exponentiation (**)
· Remainder (modulus) (%)
You can use some, but not all, of these operators in string environments.
This exercise allows you to explore the differences between numeric and string environments, and to check whether the predictions you made about addition and multiplication with string operators are correct.
Type the following statement into the Shell in Thonny and observe the results.
("aa" + "bb") * 3

In this example, the "aa" and "bb" are first added together, producing aabb. Then the string is concatenated three times, producing aabbaabbaabb.
(You first saw concatenation when you were working on budget_buggy.py in Lesson 6. It produced unexpected and erroneous output in that program, because it concatenated, rather than added, numeric data.)
Next, type the following statements into the Shell and observe the results.

firstname = "Emily"
lastname = "Chu"
print((firstname + lastname) * 2)

In this example, "Emily" and "Chu" are first concatenated, producing EmilyChu, and then that string is “multiplied” by 2, producing EmilyChuEmilyChu. When printed using the print statement, it results in EmilyChuEmilyChu. This is called multiple concatenation.

1. Explain concatenation as it applies to strings in the Python programming environment.

1. What is the difference in usage of the plus symbol (+) in numeric and string environments?

1. What is the difference in usage of the star or asterisk symbol (*) in numeric and string environments?

Part 2: Independent Exercises
Respond to the following prompts.
Type in a statement involving two strings for all of the other numeric operators you learned about in Lesson 6. For example:

"aa" – "bb"

"aabb" – "bb"

"cc" / "dd"

"Emily" % "Chu"

1. Explain the results.

Write a general statement about the nature and usage of operators in Python programming in both numeric and string environments. For example, you might begin, “Operators are used in both numeric and string environments, but there are differences…”

Write two original Python code examples that show the use of concatenation and multiple concatenation in string environments, and explain the examples and their results.

Student Resource 7.3
Practice: Using String Methods
Student Names:__ Date:___________
Directions: This multipart worksheet includes various exercises in using Python string methods. Follow the specific instructions at the beginning of each part, below.
In Parts 1 and 2, you will be using the Shell in Thonny; in Part 3, you will create some documentation for string methods; in Part 4, you will write an informal Python program called vacation.py.
Part 1: Guided Exercises
Read the information and answer the questions below.
String methods allow you to create new strings from old ones and to return information about strings.
Python methods look like functions (for example, float()), but their syntax is different.
For example, one string method, upper(), can take a string (for example, "picture") and change it to all uppercase ("PICTURE"). The syntax would be as follows:
 "picture".upper()

A complete statement to print picture in uppercase would be as follows:
print("picture".upper())

If you’re going to apply multiple string methods to a string of any length, it is easier to first assign the string to a variable and then apply the string methods to the variable name instead of to the string literal. For example:
mystring = "picture"
print(mystring.upper())

In this set of exercises, you’re going to apply a set of string methods to the string "happy birthday". You’re going to be using the string multiple times, and you don’t want to keep typing it, so you assign it to a variable.
Type the following individual statements into the Shell and observe the results. Then answer the questions below.
greeting = "happy birthday"
print(greeting)
print(greeting.upper())
print(greeting.title())
print(greeting.capitalize())
print(greeting.replace("birthday","new year"))
print(greeting.replace("new year","anniversary"))

1. Explain the first line of code. What is greeting? What is "happy birthday"? What is the statement doing?

1. What does Python return when you print the second line of code (print(greeting))?

1. What is the difference between the title() and capitalize() string methods?

1. What does Python return when you type in the second-to-last line of code, print(greeting.replace("birthday","new year"))?

1. What happens when you type in the last line of code? Do you get the result you expect? Try to explain Python’s behavior.

Part 2: Independent Exercises
Type all of the following statements into the Shell and observe the results. Then answer the questions below.
greeting = "howdy"
print(greeting.islower())
print(greeting.isupper())
print(greeting.isalpha())
print(greeting.isdigit())

greeting = "howdy8"
print(greeting.isalpha())

greeting = "888888"
print(greeting.isdigit())

greeting = "howdy!"
print(greeting.isalnum())

print("\t",greeting)
print("\n","\t",greeting)

1. In the first line, you are setting the variable greeting (the one you used in Part 1) to a new value ("howdy"). Then you are testing various characteristics of the current string. Python gives you a True/False response.
What is Python’s response to the statement print(greeting.islower())? What does that mean?

What is Python’s response to print(greeting.isupper())? What does that mean?

Why do you think Python responds with False to print(greeting.isalnum())? How could you change the string to make Python’s response be True?

What happens when you type in the last two statements? Based on the results, explain what \t and \n do.

Part 3: Informal Documentation for String Methods
Complete the following table with your own informal documentation for the string methods and escape sequences you have been practicing in this worksheet. Several definitions and examples have been done for you.
	String Method
	Definition
	Example

	upper()
	Changes a string to uppercase
	Code: "cat".upper()
Result: CAT

	capitalize()

	
	

	title()

	
	

	replace()
	Replaces one string with another
	Code: "cat".replace("t","b")
Result: cab

	isalnum()

	Tests whether a string is all alphanumeric
	Code: "cat5".isalnum()
Result: True

	isalpha()

	
	

	isdigit()

	
	

	islower()

	
	

	isupper()

	
	

	\t
(tab escape sequence)
	Tabs a string in the program output
	Code: print("\t","cat")
Result: cat

	\n
 (new line escape sequence)
	
	

Part 4: Informal Python Program Using String Methods
Below is a set of strings that need to be polished and formatted in a short composition called “My Summer Vacation.” Write a short informal Python program to put the strings together into a title and a short paragraph that look like the finished text below. Name your program vacation.py and save it in your Lesson 7 folder.
Don’t forget to include appropriate comments in your program.
Note: Best practice is to group fixed variable assignments together toward the beginning of the program for easy referencing and debugging. It’s a lot easier to fix “My Vacatn” if it’s right there at the top rather than deep in the code where you have to hunt around for it.
Strings That Need “Fixing” Using Python String Methods
my summer vacation
the first week of
VACATION
my cuzzons and I went to the beach.
The rest of the summer
I worked in my dads grocery store.
Important: Of course, you could “fix” these strings by typing them into your program the way they are supposed to look. Don’t do that! Instead, include the incorrect text in your program and make it correct in your program output by applying the appropriate string method.
What the Finished Text Should Look Like
My Summer Vacation
The first week of vacation, my cousins and I went to the beach.
The rest of the summer I worked in my dad’s grocery store.
(Note: There needs to be an apostrophe in dad’s.)
First Two Lines of Python Code
The first two lines of Python code should look like this:
tab the title and print it in initial caps
print("\t","my summer vacation".title())
make the first sentence start with a capital letter
continue the line (,\)
so the whole first sentence is in a single print statement
use this same technique with the second sentence
print("the first week of ".capitalize(),\)

Student Resource 7.4
Design and Coding: Menu Program
Student Names:___ Date:____________
Directions: Following the steps outlined below, write the algorithm and pseudocode for the Menu program and then code it. The problem statement and requirements have already been filled in. Read them carefully before you begin to design and code the program.
This program package is formally assessed. Read the assessment criteria at the end of this resource before you begin to design and code the program.
Problem Statement
Modify a sample Python program (menu_debug.py) to create a simple restaurant menu using your own original design.
As you are coding and testing the program, you will send the output to the Shell in Thonny. When you are finished with the program, you will send the output to an external file called menu_file.txt.
The last step in the process is for you to open the output file (menu_file.txt) using a text editor and print it on an external printer.
Requirements and Programming Instructions
Open menu_debug.py and run it to see what it does and to be sure it works. The output should appear in your Shell.
Rename the file to menu.py and save it in your Lesson 7 folder.
In the prolog (as comment statements), put in the following information: the program name, the authors’ names, the date, the name of the design and coding worksheet (this document), and a place for unresolved bugs (if any).
Use at least three string methods in the program.
Read through and analyze the sample code, and compare the code to the program output in the Shell. As part of your analysis, answer the following questions:
1. In your own words, explain the programming tip above the menu text graphic section of the program.

Look at the menu text graphic between the triple quotation marks ("""). Are there any characters in the menu text graphic that would cause the kind of problem the programming tip is talking about?

In the space below, write the line of code that prints the menu text graphic. Explain in your own words what that line of code is doing.

How is the section of code labeled face text graphic similar to the section of code labeled menu text graphic?

Explain in a way that would be understood by a non-Python programmer what a text graphic is in Python and how to create one.

In the section labeled information about the restaurant, explain the following line of code (you might want to look again at the output in the Shell):
		print("Joe's Cafe".upper(), file=menu_file)

What is upper() called in Python, and what does it do?

List two other Python string modules in the program that you have learned about, and explain what they do.

Using the sample program as a model, create a Menu program of your own, modifying the elements that are in the sample program and adding new ones. Your program needs to contain the following:
Two text graphics (no more than two!). One should be a word (like menu), and one should be an object or cartoon character. The graphics should be no more elaborate than the samples.
Additional information about Joe’s Cafe, such as phone number and address.
Food and/or drink items with their prices.
Algorithm
On the back of this page, write the algorithm and pseudocode for the Menu program. When you code the program, be sure to include important elements of your algorithm as program comments.
Instructions for Sending Output to the External File
The last thing you need to do is send the program output to the external file (menu_file.txt) using the following instructions. Do not follow the instructions until your teacher directs you to do so.
1. Open sample Python file menu_print.py.

2. Find the block of comments and Python statements near the beginning of the program that is labeled “BLOCK 1 FOR PRINTING TO EXTERNAL FILE” and copy it.
[image: block1_menu]
3. Go to your menu.py file.
4. Paste BLOCK 1 so it replaces BLOCK 1 FOR DEBUGGING currently in your menu.py file.
5. Go back to menu_print.py.
6. Find the block of comments and Python statements at the end of the program that is labeled “BLOCK 2 FOR PRINTING TO EXTERNAL FILE” and copy it.
[image: block2_menu]
7. Go to your menu.py file.
8. Paste BLOCK 2 so it replaces BLOCK 2 FOR DEBUGGING currently in your menu.py file.
Both blocks in your menu.py file should now reference the external file.
9. Rerun your menu.py program. The output should not go to the Shell.
10. Check your Lesson 7 folder. A new file called menu_file.txt should be there.
11. Open menu_file.txt with a text editor (for example, Microsoft Notepad) and see whether the output is what you expect. It should look the same as the output you formerly got in the Shell.
Note: The open method refers specifically to file operations in Python. The w flag on the line tells Python to open the file for writing. If you only wanted to read records from a file, you’d replace that w with an r, for example. Whenever you open a file for any operation, you must also close it (the menu_file.close() line in this case) when you’re done with it. Not doing so can corrupt or wipe out any data currently in the file when the program finishes.
Your output should look something like this:

[image: text_menu]
Make sure that your assignment meets or exceeds the following assessment criteria:
Program Package
· The package contains all components: (1) Menu design and coding worksheet (this document), (2) printout of the Menu program, and (3) menu.py program in the Lesson 7 folder.
Design Document
· The algorithm represents a complete solution to the problem statement.
· The algorithm contains an appropriate level of detail for the target audience and contains both major and minor steps in the correct order.
· The document is neat and legible and does not contain spelling or grammatical errors.
Program Printout
· The prolog contains the information specified in the design worksheet.
· The program comments accurately describe the Python statements and are detailed enough so that peer programmers can understand the entire program.
· The comments do not contain spelling or grammatical errors.
Python Code
· The program meets the requirements stated in the design document.
· The program runs without errors and produces the intended results.
Copyright © 2009–2015 NAF. All rights reserved.
[bookmark: _Hlk78478797][bookmark: _Hlk78478798][bookmark: _Hlk78479050]Copyright ©. All rights reserved	1	NAF 2021
image3.png

image1.png

image2.png

