AOIT Introduction to Programming
Lesson 5 Working with Variables
AOIT Introduction to Programming
Lesson 5
Working with Variables
In this lesson, students gain a basic understanding of the three key types of variables used in Python programming: string, integer, and floating point. Using capabilities built in to Thonny, they practice debugging programs that contain variables. They also compare differences in the way other programming languages (Java and C++) handle variables.
In this lesson, students design and code two programs: one with string variables and one with numeric variables.
This lesson is expected to take 5 class periods.
[image:]
Lesson Framework
Learning Objectives
Each student will:
Define the term variable and demonstrate how operations and algorithms use variables to store and manipulate data
Explain how Python handles different variable types
Create assignment statements for variables using Python rules (for both programmer-assigned and user-assigned values)*
Create a simple Python program with two or more variables*
Demonstrate the ability to debug syntax errors, semantic errors, and runtime errors in statements that include variables
Compare and contrast how Java, C++, and Python handle variables (use of types, declaring, etc.)
*This is one of the 16 key learning objectives assessed by the NAFTrack Certification end-of-course exam for this course.

	
Academic Standards
The relevant Common Core State Standards are too extensive to list here but are an important basis for this lesson. For details, please refer to the separate document “Correlations to the Common Core Standards” (available in the Course Planning Tools section of the course materials).

Use product or service design processes and guidelines to produce a quality information technology (IT) product or service (Common Career Technical Core 2012, IT 2)
Describe quality assurance practices and methods employed in producing and providing quality IT products and services (Common Career Technical Core 2012, IT 9)
Program a computer application using the appropriate programming language (Common Career Technical Core 2012, IT-PRG 6)
Create original works as a means of personal or group expression (ISTE NETS for Students 2007, 1b)
Plan and manage activities to develop a solution or complete a project (ISTE NETS for Students 2007, 4b)
Assessment
	Assessment Product
	Means of Assessment

	The Temperature program package (Python program and related material)
	Teacher Resource 5.4, Assessment Criteria: Temperature Program Package

Prerequisites
Experience using Thonny
Basic understanding of the software development cycle
Experience writing programming design documents with problem statement, requirements, and algorithm
Ability to extend a simple program to make a more complex program
Instructional Materials
Teacher Resources
Teacher Resource 5.1, Sample Python Programs: favorite_foods.py and temperature.py (separate ZIP file)
Teacher Resource 5.2, Sample Java Programs: favorite_foods.java and temperature.java (separate ZIP file)
Teacher Resource 5.3, Sample C++ Programs: favorite_foods.cpp and temperature.cpp (separate ZIP file)
Teacher Resource 5.4, Assessment Criteria: Temperature Program Package
Teacher Resource 5.5, Key Vocabulary: Working with Variables
Student Resources
Student Resource 5.1, Classification: Variable Types in Python
Student Resource 5.2, Reference and Practice: Variable Names in Python
Student Resource 5.3, Analysis: Firstname Program
Student Resource 5.4, Design and Coding: Favorite Foods Program
Student Resource 5.5, Worksheet: Debugging String Variables Using Thonny
Student Resource 5.6, Worksheet: Debugging Numeric Variables Using Thonny
Student Resource 5.7, Design and Coding: Temperature Program
Student Resource 5.8, Compare and Contrast: Variables in Other Programming Languages
Student Resource 5.9, Defining Format: Variables
Equipment and Supplies
Student versions of firstname.py program from Lesson 3
Veyon software
Whiteboard, blackboard, or flip chart
Chart paper
[image:]
Lesson Steps
	Step
	Min.
	Activity

	
	
	class period 1

	1
	30
	Categorization: Variable Types in Python
The purpose of this springboard activity is to allow students to discover and explore the basic characteristics, usage, and categorization of variables.
Write the following three items on the board, and ask the class to list all the ways these items are different from each other:
Emily
55
7.5
After students give their input, conclude by labeling each item as one of these three variable types: (1) “string,” (2) “integer,” and (3) “floating point.” Review the purpose of variables (placeholders for values).
Explain that in this activity, the students will categorize a list of variables and identify possible values for them.
Divide the class into groups of three students, and refer them to Student Resource 5.1, Classification: Variable Types in Python.
Instruct student groups to note two possible values for each variable in the column labeled “Two Example Values,” and then note the type of variable in the column labeled “Variable Type.” For example, for the variable named temperature, the possible values might be 98.6 and 75, and the variable type would be floating point.
When the groups are finished, instruct them to exchange their work with another group to see where their answers differ. Ask students to fill in the final column of their peers’ chart, noting any differences of opinion. Finally, make a list on the board of items there were different opinions about. Explain to students that professional programmers also have differences of opinion and must work together to resolve them.
Explain to students that at this point, their team answers are probably all valid from a programming point of view, even though some may differ. However, in professional programming environments, it is often necessary to reach complete agreement on variable names and types, even though there may be several possible and acceptable solutions. Why do they think this is so? (A good answer would be that for a program created by a group, multiple variable names representing the same information would cause confusion and would prevent an acceptable programming solution.)
Go through each item listed on the board. Ask students to give their arguments for classifying the item as one type of variable or another; then have students vote on which category the item should be in. If necessary, give students additional considerations to make sure each term falls in an acceptable category.
In this exercise, the students have worked through some ambiguities normal in the programming process to reach some level of group consensus. They have learned more about the professional programming environment by participating in a rather typical decision-making process.

	2
	20
	Analysis and Classification: Naming Variables
The purpose of this activity is for students to test their understanding of the Python naming guidelines by finding incorrect or unsuitable variable names and creating alternative variable names that meet the rules and guidelines.
Refer students to Student Resource 5.2, Reference and Practice: Variable Names in Python. Part 1 of the resource contains a summary of the Python variable naming standards. Part 2 is an exercise in which the students need to decide whether the given names are valid or invalid in Python and fix the invalid names.
Instruct students to read through the naming standards and conventions in Part 1 and to work in programming pairs to complete Part 2, pausing where there is disagreement between partners to come up with the “most likely” or “best” answer and adding comments, where appropriate, about why the name and type were chosen. (Some possible comments might be to use the floating point instead of integer type if certain types of calculations will be done on numbers, and to pick a variable name for a string that is easy to remember, meaningful, and not so long that it will be difficult to type.)
At the end of the class period, have pairs exchange their work with another pair to check for accuracy and completeness, and go over the student resource as a class to answer any outstanding questions.
Instruct the students to save Student Resource 5.2 in their notebooks and to add its title to the table of contents. Tell them that they will be referring to this list when they work with variables in later lessons.
In this exercise, students have participated in an analysis and classification activity that tests their understanding of data types and Python variable-naming rules and conventions. They have also participated in a decision-making exercise—one that is rather typical in professional programming organizations—in which teamwide or project-specific conventions are discussed and determined.

	
	
	CLASS PERIOD 2

	3
	20
	Think, Pair, Share: Assigning Variables
The purpose of this activity is for students to reanalyze an existing sample program in preparation for using it as a model for a more complex Python program.
Tell students that they will be coding a new program (favorite_foods.py) that uses string variables. The sample program firstname.py, which they have seen before (in Lesson 3), will serve as a model for coding favorite_foods.py.
Instruct students to open firstname.py and run it, answering the prompt by typing their first name and pressing the Enter key.
Next, refer students to Student Resource 5.3, Analysis: Firstname Program. Ask students to work on their own to think about the questions and write down their answers. Explain that the first questions are a review. When they are done, have them share their answers with a partner.
Finally, ask students to share their answers with the class. (Try to make sure each pair shares an answer for one of the questions.) As you discuss the answers, be sure the class understands the following key points about the Firstname program:
The first executable line of code in the program prompts the user with a question (“What is your first name?”) and, using the capabilities of the input() function, assigns the value (that is, the text typed in by the user) to the variable firstname.
The second line of the program prints out the string "Hello, " (notice that part of what gets printed out is a comma and a space). Then it prints out the current value of the firstname variable. Finally, it prints out an exclamation point. Point out to the students that the literal strings (that is, the greeting and exclamation point) that Python prints out on the screen must be enclosed in quotation marks.
Be sure students understand the difference between literal strings (the value of a variable—for example, "Emily") and variable strings (for example, firstname).
Instruct the students to put Student Resource 5.3 in their notebooks and to add the title to the table of contents.
This exercise has allowed the students to check their own thinking and add to their understanding by listening to ideas from the rest of the class.

	4
[image:]
	20
	Design, Code, Debug: Favorite Foods Program
The purpose of this activity is to expand students’ skills in using variables (in this case, string variables).
Refer students to Student Resource 5.4, Design and Coding: Favorite Foods Program. Tell the students they will do one worksheet per programming pair.
Briefly go through the resource with the class. Explain to the students that they are being asked to code the program in two stages: (1) a simple version with a single variable (favorite_food) and (2) a more complex version using the variables favorite_food1 and favorite_food2.
Remind students that they used this same technique (simple version of a program followed by a more complex one) in another program. Ask them: What was that program? (Answer: snowman.py, which was done first as a basic program and then as a more advanced one.) Instruct the students to design and code favorite_foods.py.
As the students work, circulate around the class to answer questions and make sure students are making progress. Be sure students who are encountering problems have a way to finish the assignment outside of class.
This programming task reinforced conventions and methodologies taught earlier and added a new programming challenge (string variables).

	5
	10
	Share, Reflect: Favorite Foods Program
The purpose of this activity is to give the students additional practice in verbalizing their programming experiences (in particular, debugging a program with variables).
Ask volunteers to orally reflect on the favorite_foods.py programming experience. What bugs did they encounter? Add bugs to the class list. Are there any unanswered questions?
Using the Veyon program, run selected student programs for the entire class to see.

	
	
	CLASS PERIOD 3

	6
[image:]
	15
	Guided Practice: Debugging String Variables Using Thonny
The purpose of this activity is to introduce an important debugging technique for programs—especially those with variables: using Thonny’s Variables feature.
Before beginning the activity, review the difference between syntactic and semantic errors in Python programs. Ask students to recall what kind of behavior Python exhibits with syntax errors. (Answer: Python displays a “syntax error”.)
Tell students that debugging using Thonny’s Assistant and Debugger can help fix syntax errors before a program is run, and it can also help find and fix semantic errors (incorrect results), which are often more difficult to debug.
Refer students to Student Resource 5.5, Worksheet: Debugging String Variables Using the Thonny.
Go through Part 1 of the worksheet with the class, demonstrating each exercise in the Thonny as you talk. Following each mini-demonstration, instruct students, working in pairs, to repeat the exercise, with each programming partner working at the keyboard for about half the exercises.
Instruct students to keep Thonny open for the next activity.
Explain to students that after doing this exercise as a class, they should be ready to tackle debugging string variables on their own.

	7
[image:]
	20
	Independent Practice: Debugging Using Thonny (String Variables)
The purpose of this exercise is to give students additional, more independent practice in debugging string variables using Thonny’s Variables feature.
Instruct students to do Parts 2 and 3 of Student Resource 5.5, Worksheet: Debugging String Variables Using Thonny.
While the students are working, circulate around the class to make sure students are making progress.
To gauge student understanding, you may find it useful to collect and mark this assignment for credit/no credit.
This activity has given students additional practice in using Python to debug code involving string variables before it is committed to a program.

	8
[image:]
	15
	Guided Practice: Debugging Using Thonny (Numeric Variables)
The purpose of this activity is to give students practice in debugging using Thonny with numeric (integer and floating-point) variables.
Begin by reminding students that so far in this lesson, they have programmed only with string variables (example: favorite_food1). Now they begin working with variables that are used to hold the value of numbers.
Refer students to Student Resource 5.6, Worksheet: Debugging Numeric Variables Using Thonny, and make sure they still have the Shell pane open.
Go through Part 1 of the worksheet with the class, demonstrating each exercise in the Thonny’s Shell pane as you talk. Following each mini-demonstration, instruct students to repeat the exercise, with each programming partner working at the keyboard for about half the exercises.
Tell the students they will be doing Part 2 of the worksheet in the following class period.
After the students have finished this exercise as a class, they should be ready to tackle debugging numeric variables on their own.

	
	
	class period 4

	9
[image:]
	15
	Independent Practice: Debugging Using Thonny (Numeric Variables)
The purpose of this exercise is to give students additional, more independent practice in debugging numeric variables using Thonny.
Refer students to Student Resource 5.6, Worksheet: Debugging Numeric Variables Using Thonny, and then run each line of code as instructed.
While the students are working on Part 2, circulate around the class to make sure they are making progress.
To gauge student understanding, you may find it useful to collect and mark this assignment for credit/no credit.
This activity has given students additional practice in using Thonny to debug code involving numeric variables before it is committed to a program.

	10
[image:]
	25
	Design, Code, Debug: Temperature Program
The purpose of this activity is to expand students’ skills in using variables (in this case, numeric variables).
This activity also focuses on the following college and career skills:
Thinking critically and systemically to solve difficult problems
Demonstrating teamwork and collaboration
Direct students to Student Resource 5.7, Design and Coding: Temperature Program.
Explain to the class that the program package associated with this activity (the worksheet and the completed program) will be formally assessed. Direct students’ attention to the assessment criteria on the second page of the resource.
Before starting the activity, briefly ask students to think of times when it would be useful to convert temperatures from Fahrenheit to Celsius (centigrade) and vice versa. (For example, most other countries of the world, including our closest neighbors, Canada and Mexico, use Celsius. So, American travelers outside the United States would immediately be challenged to understand the local weather prediction.)
Next, go through the worksheet with the students, especially the Celsius-to-Fahrenheit and Fahrenheit-to-Celsius formulas.
Instruct the students to work in programming pairs to design and code the Temperature program.
As the students work, circulate around the class to be sure they are making progress. Be sure students who are having difficulties have an opportunity to complete the programming assignment outside of class.
(Testing note: The students can test the formulas with integer numbers—for example, 0 degrees Celsius and 32 degrees Fahrenheit—and the results will be returned in floating point, because the formula is expressed in floating point. If one element in a Python expression is a floating-point number, all other numbers are cast in floating point.)
This programming task has reinforced conventions and methodologies taught earlier and has added a new programming challenge (numeric variables).

	11
[image:]
	10
	Share, Reflect: Temperature Program
The purpose of this activity is to give the students additional practice in verbalizing their programming experiences (in particular, their experiences debugging a program with variables).
Ask volunteers to reflect orally on the temperature.py programming experience. Are there any unanswered questions? What bugs did they encounter? Add bugs to the class list.
Using the Veyon program, run selected programs for the entire class to see. Ask volunteers to focus on the results produced by each programming project as it runs. Are the results correct?
At the end of the class period, give the students a few minutes to correct any problems that have been brought to their attention and to print out their Python programs. Then tell the programming pairs to hand in the entire package for assessment. (The package should consist of the design document, a printout of the code, and the code itself, which should be in the assigned folder ready for your assessment.) If some students need more time, tell them they can turn in their assignment at the beginning of the next class period, and help them find access to a computer where they can complete their work.
Use Teacher Resource 5.4, Assessment Criteria: Temperature Program Package, to assess the program package.

	
	
	class period 5

	12
	25
	Analysis: Variables in Other Programming Languages
The purpose of this activity is to introduce students to some key differences in the use of variables in Python and in Java and C++. The intent is not to focus on the differences and analyze why they occur, but rather to sharpen the students’ powers of observation as they practice spotting important details in computer programs, both in Python and in other languages.
Explain to the students that in other programming languages, variables may be used somewhat differently than in Python. Provide a few of the following kinds of examples:
Python figures out a variable’s type by the value assigned to it (for example, if your program has a statement x=5, Python will assume that x is an integer).
In other languages, you must “declare” your variables to be a particular type before they can be used. Declared types can’t be changed later in the program.
Other languages have types not found in Python, such as a character variable (a single character, like the character a or x).
Refer students to Student Resource 5.8, Compare and Contrast: Variables in Other Programming Languages, which contains printouts of the Favorite Foods and Temperature programs in Java and C++.
For your convenience, the Java programs and C++ programs are available as ZIP files (Teacher Resource 5.2, Sample Java Programs: favorite_foods.java and temperature.java, and Teacher Resource 5.3, Sample C++ Programs: favorite_foods.cpp and temperature.cpp).
Instruct students to work in pairs to underline the variables in both programs, including the declaration of the variables, and then to fill in the Venn diagram to compare and contrast how variables are handled in the three languages.
While students are working, draw a large Venn diagram with three circles labeled “Java,” “C++,” and “Python” on chart paper. Then, near the end of the activity, ask students to contribute items to put in the different sections of your Venn diagram. Keep this Venn diagram posted so that the class can use it as a reference.
Exercises like this one sharpen students’ observational skills and broaden their understanding of other programming languages and of programming in general. For example, they should notice that a variable declaration requirement makes the programming experience more challenging. They should also notice that learning Python allows them to read and interpret unfamiliar programming languages, at least at a basic level.

	13
	25
	Defining Format: Variables
The purpose of this activity is to reinforce the key terms and concepts from this lesson.
This activity also focuses on the following college and career skills:
Working effectively with a diversity of individuals and perspectives
Prioritizing and completing tasks without direct oversight
Refer students to Student Resource 5.9, Defining Format: Variables. Explain to students that they are now ready to write their own definition of variable, bringing to bear all that they have learned about variables in this lesson. Using a Defining Format table, they will begin by defining what category the word variable falls into; they will then write out its defining features. Explain that they will also be defining the key types of variables to help them keep everything straight.
Have students get into groups and talk about what they have learned about variables in this lesson and then fill in the table. When students are finished, have each group compare its definitions with those of another group and note any important differences. Tell students that they can revise their definitions if necessary, based on what they learn from the other group. In particular, if they forgot to include any important aspects of the definitions, they should add them.
To conclude the lesson, have four students write one definition each on the board (so that you have a definition for each of the four terms). Then ask students to suggest possible alternative categories, add characteristics that they think are missing from the definitions, and point out any necessary corrections.
Explain to students that as they learn other programming entities, such as methods and functions, it is very important that they keep straight what a variable is, and that these important definitions should become second nature to them. Remind students that the knowledge of variables and how they work is a major step in learning how to program.

Extensions
Enrichment
Ask students to write a Python program to convert miles to kilometers and vice versa. The Temperature program is a model for this program. Students will need to use resources available to them to find the conversion formula and convert it to an algorithm.
Ask students to write a Python program to convert inches to centimeters and vice versa. The Temperature program is a model for this program. Students will need to use resources available to them to find the conversion formula and convert it to an algorithm.
Ask programming partners to create a student exercise similar to Part 2 of Student Resource 5.5, Worksheet: Debugging String Variables Using Thonny. Tell the partners to give the exercise to another programming pair to complete and provide feedback.
Cross-Curricular Integration
English Language Arts, Writing: Ask students to research other ways the terms variable, string, and floating are used in English and to write a short comparison between how they are used in everyday English and how they are used in programming. Students can also research the history of these words and write about how they came to have the meanings they currently do in the programming world.
Mathematics: Ask students to write a Python program to calculate the area of a triangle given the length of the sides.
Mathematics: Ask students to work with the math teacher to come up with other formulas used in geometry to calculate unknown information based on known information, and to write a program to solve one or more problems based on one of the formulas.
Copyright © 2009–2016 NAF. All rights reserved.
[bookmark: _Hlk78478797][bookmark: _Hlk78478798][bookmark: _Hlk78479050]Copyright ©. All rights reserved	1		NAF 2021
image3.jpeg

image1.jpeg

image2.jpeg

