

AOIT Introduction to Programming
Lesson 6 Using Arithmetic Operators to Manipulate Data
AOIT Introduction to Programming
Lesson 6
Using Arithmetic Operators to Manipulate Data
In this lesson, students learn how to manipulate data using the arithmetic operators introduced in Lesson 5. Students gain experience with new concepts and techniques by typing individual Python statements in the Thonny’s Shell pane, writing two Python programs, and debugging a program that contains semantic errors.
In this lesson, the students are also challenged to organize and manage multiple tasks and complex processes all at the same time, a situation often encountered by programming professionals.
This lesson is expected to take 3 class periods.
[image:]
Lesson Framework
Learning Objectives
Each student will:
Demonstrate the ability to order and calculate arithmetic operations correctly*
Create a program with statements that use arithmetic operators
Demonstrate the ability to debug arithmetic operations
*This is one of the 16 key learning objectives assessed by the NAFTrack Certification end-of-course exam for this course.
Academic Standards
The relevant Common Core State Standards are too extensive to list here but are an important basis for this lesson. For details, please refer to the separate document “Correlations to the Common Core Standards” (available in the Course Planning Tools section of the course materials).
Use product or service design processes and guidelines to produce a quality information technology (IT) product or service (Common Career Technical Core 2012, IT 2)
Describe quality assurance practices and methods employed in producing and providing quality IT products and services (Common Career Technical Core 2012, IT 9)
Program a computer application using the appropriate programming language (Common Career Technical Core 2012, IT-PRG 6)
Create original works as a means of personal or group expression (ISTE NETS for Students 2007, 1b)
Understand and use technology systems (ISTE NETS for Students 2007, 6a)
Transfer current knowledge to learning of new technologies (ISTE NETS for Students 2007, 6d)
Assessment
	Assessment Product
	Means of Assessment

	The Budget program package (Python program and related material) (Student Resource 6.1)
	Assessment Criteria: Budget Program Package (Teacher Resource 6.3)

Prerequisites
Experience using Thonny’s Shell and editor panes
Experience designing a Python program (including writing and responding to a problem statement, a set of requirements, and an algorithm)
Ability to code and run a Python program
Experience documenting a Python program using comment statements in the program
Experience testing and debugging a Python program
Experience using Python arithmetic operators
Instructional Materials
Teacher Resources
Teacher Resource 6.1, Python Programs: budget_buggy.py, budget_final.py, budget_initial.py, car_cost.py (separate ZIP file)
Teacher Resource 6.2, Presshentation and Notes: Arithmetic Operators and Operator Precedence (includes separate PowerPoint file)
Teacher Resource 6.3, Assessment Criteria: Budget Program Package
Teacher Resource 6.4, Key Vocabulary: Using Arithmetic Operators to Manipulate Data
Student Resources
Student Resource 6.1, Worksheet: Modifications to the Budget Program
Student Resource 6.2, Notes and Practice: Arithmetic Operators and Operator Precedence
Student Resource 6.3, Reading: Arithmetic Operators and Operator Precedence
Student Resource 6.4, Design and Coding: Car Cost Program
Equipment and Supplies
Students need to access sample program budget_buggy.py
LCD projector and computer (or Veyon) for PowerPoint presentation
Veyon software
Whiteboard, blackboard, or flip chart
[image:]
Lesson Steps
	Step
	Min.
	Activity

	
	
	class period 1

	1
[image:]
	25
	Analyze, Debug, and Fix: Python Program with Bugs
The purpose of this springboard activity is to allow the students, through exploration, to analyze, debug, and fix a program containing a semantic error. The activity involves understanding, analyzing, and employing the various operators and functions used in Python to manipulate data.
Tell the students that they will be modifying an existing sample program called Budget, which prompts the user for expense information (for example, “How much do you spend per month on food?”), assigns the input to a variable, and adds up the expense items to get a monthly budget total.
The sample program (budget_buggy.py) has a bug. Tell the students that their task in this exercise is to run the program, discover the bug, analyze what might be wrong, and fix the bug.
Instruct the students to open budget_buggy.py.
Direct the students, working in programming pairs, to run the program, respond to the input prompts, and observe the results.
(For your information, although the algorithm and existing code may look correct, Python concatenates the expense items instead of adding them and producing a sum. This is because the input() function, by itself, reads characters that a user enters at the prompt and always returns them as a string. The challenge for the students is to figure out what is wrong and how it can be fixed.)
Make sure the students understand why the results are not what would be desired and expected, and then instruct them to work in pairs to continue analyzing the problem and come up with a possible fix. (A solution the students could be expected to think of—because they have seen it before in the Temperature program in Lesson 5—is to include the float() conversion function along with the input()function—that is, float(input()).)
When one or more programming pairs have a solution, or after three minutes or so have gone by, reveal the float(input()) solution to the entire class.
Make sure the class understands how to implement the solution, and then ask the programming pairs to rename the program to budget.py, save it in their Lesson 6 folder, fix the bug, put a comment into the code to explain the fix, rerun the program to make sure it works as expected, and save it again.
Tell the students that they will be learning more about conversion functions in the next activity.

	2
[image:]
	10
	Guided Coding: Using Data Conversion Methods
The purpose of this activity is to use guided exploration to increase students’ understanding of how Python implements data types. This adds to their knowledge of the float()function and introduces an additional key data conversion function for numeric data: int().
Refer the students to Student Resource 6.1, Worksheet: Modifications to the Budget Program.
Tell students that the Budget program will be formally assessed and that they will be turning in the program package later in the lesson. Direct students’ attention to the assessment criteria on the last page of Student Resource 6.1.
Instruct students, still working in programming pairs, to follow the specific directions in Part 1 of the worksheet to code the alternative solution to the Python bug, save their program, and retest it.
At the end of the activity, ask the students to report out to the class on the questions at the end of Part 1. Be sure students understand what both data conversion methods (float()and int()) do and how to use them with other functions in a Python program.
The first two activities in this lesson have given the students a solution to the bug in the Budget program (the float()conversion function). Another possible solution is to use the int()conversion function, if the programming solution requires less numeric precision. It is important for students to realize that not every programming problem has a single solution. In future programming activities, encourage them to take a few minutes to analyze problems to find the best solution for a given set of circumstances.

	3
[image:]
	15
	Independent Coding: Improving a Program’s Interactivity
The purpose of this activity is to give the students additional practice in creating programs that interact more effectively with their users. In the activity, students are asked to improve the instructions and information that are part of the Budget program.
This activity also focuses on the following college and career skills:
Thinking critically and systemically to solve difficult problems
Demonstrating teamwork and collaboration
Explain to students that they will be making additional changes to the Budget program by providing more precise and helpful instructions to users so that people know what to do, and by providing context-setting information to users so that they are fully engaged in the problem the program is trying to solve.
Also explain that knowing how to interact appropriately with the computer and with the user not only increases the quality and level of sophistication of their programs but also increases their own personal level of programming professionalism, thereby helping them get an internship or job in the field.
Read Parts 2 and 3 of the worksheet (Student Resource 6.1, Worksheet: Modifications to the Budget Program) with the class to be sure the students know what to do.
Instruct students, still working in programming pairs, to complete Parts 2 and 3 of the worksheet. Tell them to complete the exercises as homework if they don’t finish during the class period.
At the end of the class period, ask a few volunteers to write their prompts and informational statements on the board, and ask for comments from the class: which statements seem to be the most informative and effective, and why? Give the students a few minutes to modify their programs based on the class discussion.
Tell the students that later in the lesson, they will come back to Part 4 of the worksheet and insert the cost of a car into the budget. For now, instruct them to put the worksheet into their notebook and to add an entry for it in the table of contents.
Learning to write interactive programs with clear and meaningful instructions is a foundational programming skill.

	
	
	CLASS PERIOD 2

	4
[image:]
	20
	Presentation: Arithmetic Operators and Operator Precedence
The purpose of this activity is to review, consolidate, and expand some important “building block” concepts that the students have already been using through modeling and exploration: arithmetic operators and operator precedence rules. The activity also develops students’ listening and note-taking skills. The presentation and accompanying student worksheet also serve as a model and encourage and help students to practice organizing related concepts for easier retrieval in future projects.
To prepare, make notes to guide class discussion using Teacher Resource 6.2, Presentation Notes: Arithmetic Operators and Operator Precedence. Have Teacher Resource 6.2, Presentation: Arithmetic Operators and Operator Precedence (separate PowerPoint file), ready to show as a full-screen slideshow using an LCD projector.
Refer the students to Student Resource 6.2, Notes and Practice: Arithmetic Operators and Operator Precedence. Instruct the students to take notes in Part 1 of this resource during the presentation.
Present the slideshow. Use the notes you prepared and the questions on the slides to encourage class discussion. As you go through the presentation with the class, tell the students they will put the information to immediate use in coding the Budget and Car Cost programs in this lesson.
This presentation is duplicated as Student Resource 6.3, Reading: Arithmetic Operators and Operator Precedence. If an LCD projector is unavailable, students can read the presentation, answer the discussion questions in their notebook, and discuss their answers as a class. This student resource is also useful for review.
To be sure the students understand the slides that focus on particularly difficult technical concepts, you might hide these slides after presenting them and ask students to take turns summarizing the key concepts with a partner. They should check to be sure they each say the same thing and accurately convey the information. If the class has difficulty doing this, a second pass of the slide might be in order.
After the presentation, divide the class into pairs or groups of three and have them compare their notes for completeness and accuracy. Invite each pair or triad to share their thoughts and questions.

	5
[image:]
	15
	Independent Practice: Arithmetic Operators and Operator Precedence
The purpose of this activity is to give the students an opportunity to further analyze and practice working with Python arithmetic operators and operator precedence rules.
Refer the students to Part 2 of Student Resource 6.2, Notes and Practice: Arithmetic Operators and Operator Precedence.
Direct students to work in pairs through the set of exercises using the Shell pane in Thonny. Tell students that during the first part of the exercise, one programming partner should type at the keyboard while the other reads the tasks and writes the results. Halfway through the exercise, the partners should switch roles.
At the end of the activity, direct programming pairs to exchange worksheets with another programming pair to check for accuracy and completeness. You might consider having the reviewers write their names at the bottom of the worksheet.
At the end of the activity, ask whether any of the students still have questions on any of the exercises in Part 2. Be sure all the students are confident enough in using arithmetic operators to design the program in the next activity.

	6
[image:]
	15
	Design: Python Program with Arithmetic Calculations
The purpose of this activity is to give the students a new challenge in designing a program that does arithmetic calculations using supplied formulas.
Tell students that the Car Cost program figures out the cost of a used car—the total cost, not just the base price. In designing and coding the program, they will use some of the operators they have just learned about and practiced in the last activity: addition, subtraction, multiplication, division, and exponentiation. They will also be practicing operator precedence, because the calculations require correct use of parentheses in the expressions. Tell students that they will add the output of this new program to the Budget program in the next class period.
Refer students to Student Resource 6.4, Design and Coding: Car Cost Program. Go through this resource with the students to be sure they understand the task. Clarify that they must convert the formulas for calculating the total car cost to algorithms and code. Instruct them to spend the rest of the class period designing this program so that they will be ready to start coding at the beginning of the next class period. Encourage students who work quickly to complete one or both of the extra challenges at the end of the instructions. You may want to give extra credit to students who successfully complete the extra-challenge design and code.
Remind the students that it is often helpful to use an existing program as a model for a new, similar program. Tell them to open budget.py if they think it will be helpful to refer to while they are designing Car Cost.
At the end of the class period, ask the students to exchange their work to check for accuracy and completeness. Tell the students to correct or complete their program designs for homework, if necessary, so that they will be ready to code at the beginning of the next class period. Tell them they can’t begin coding if they haven’t finished their design.
Using more complex mathematic formulas and working with two programs at the same time is a significant challenge for the students. Remind them that working to meet this kind of challenge is an important part of their programming education.

	
	
	CLASS PERIOD 3

	7
[image:]
	30
	Independent Coding: Python Program with Arithmetic Calculations
The purpose of this activity is to give the students a new challenge: coding a program that does arithmetic calculations using supplied formulas, and inserting the result from the new program into an existing program.
Instruct students to take out Student Resource 6.4, Design and Coding: Car Cost Program, which they completed in the previous class period or as homework.
Ask whether students have any questions related to the Car Cost program design. Be sure the students are confident that they can code this program on their own before you proceed.
Also, be sure the students know whether you expect them to do either of the extra challenges included in Student Resource 6.4 under “Requirements and Instructions.”
Instruct students to work in programming pairs to code the Car Cost program. They should work with the same partner they worked with in the Budget program. Remind the programming partners to swap roles: the partner who coded at the keyboard for the last project should pass that responsibility on to the other partner for this one.
Juggling data between programs and working on more than one project at the same time are important skills that are highly valued in professional software organizations.

	8
[image:]
	10
	Modifying Code: Using the Results of One Program in Another
The purpose of this activity is to challenge students to work with two programs at once and to make multiple modifications to an existing program.
This activity also focuses on the following college and career skills:
Working effectively with a diversity of individuals and perspectives
Prioritizing and completing tasks without direct oversight
Instruct students to open both car_cost.py and budget.py, if they are not already open.
Instruct students to take out Student Resource 6.1, Worksheet: Modifications to the Budget Program, and Student Resource 6.4, Design and Coding: Car Cost Program. Tell the students they will now be manually adding the calculated result from the Car Cost program (that is, the monthly car payment) to the Budget program.
Look through Part 4 of Student Resource 6.1 with the class to be sure the programming partners understand what to do for the final modification of the Budget program.
Remind students that the Budget program will be formally assessed. Again direct their attention to the assessment criteria at the end of the Budget worksheet (Student Resource 6.1).
Also remind students that they can use any reasonable numbers for their income and expense numbers, but that they need to keep their expenses under budget. If they are over budget, then they need to either increase their income or decrease their expenses, and then rerun the program to generate new results. Also mention that keeping an eye on the validity of program results (and not just blindly assuming that “the computer must be correct”) is an important part of professional programming.
Instruct the students to make the final modifications to the Budget program using the information and instructions in Part 4 of Student Resource 6.1.
As the students work, circulate around the classroom to be sure they are making progress. Be sure students who are having difficulties have an opportunity to complete the programming assignment outside of class.
Congratulate students on meeting some new programming challenges: using complex financial formulas and working with two programs at once.

	9
[image:]
	10
	Share, Reflect: Completed Programs
The purpose of this activity is to give the students additional practice in verbalizing their programming experiences (in particular, their experiences modifying and creating programs that do numeric calculations).
Instruct students to write a few simple reflections about their Budget and Car Cost programming experiences in their notebooks, prompting them with these questions:
Do you have any unanswered questions?
What bugs did you encounter?
After students have had a few minutes to write, ask them to share what they wrote. Add bugs to the class list.
Using the Veyon program, run selected programs for the entire class to see. Ask volunteers to focus on the results produced by each program as it runs. Are the results correct? (Ask a student volunteer to check the results from one or two programs by hand or with a calculator.)
Give programming pairs a few minutes to correct any errors that have come to light as a result of the discussion. If time is an issue, tell students they can hand in their package at the beginning of the next class period.
Instruct students to put together their Budget program package (the design and coding worksheet, the printout of the program, and the Python file saved in the Lesson 6 folder) and to hand it in for your formal assessment. Assess student work using Teacher Resource 6.3, Assessment Criteria: Budget Program Package.
Putting together this program is a major accomplishment, particularly because it requires handling multiple programs at the same time. Remind students that this is a useful skill, because they will certainly encounter other programs that feed into another.

Extensions
Enrichment
Ask students to design and code a program that prompts users for their age and converts it to both age in seconds and age in dog years. The results should be returned to the user using meaningful information (for example, “Your age in seconds is”).
Ask students to design and code a program to set the size of the Turtle Graphics window and completely fill it with a circle. (The size of the window can be arbitrary but must be realistic, given the size of the screen where the program will run.)
Ask students to modify the Budget program to check for and handle the kind of possible user input described in Part 2 of Student Resource 6.1, Worksheet: Modifications to the Budget Program. That is, if the user enters a number with a dollar sign ($) in front of it, instruct students to convert it to the expected data type.
Technology Integration
Consider showing and discussing one or more of the following tutorials and videos during the lesson. For YouTube videos: if your school does not allow access to YouTube, you may wish to download the video to your computer in advance using KeepVid (see www.keepvid.com) or a similar program.
“Hands-on Python Tutorial: Beginning with Python.” Andrew N. Harrington, http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/functions.html
“Defining Your Own Python Function.” John Sturtz, https://realpython.com/defining-your-own-python-function/#:~:text=Function%20Calls%20and%20Definition%20%20%20%20Component,the%20%20...%20%201%20more%20rows%20
The Order of Operations Is Wrong,” YouTube video, 4:11, https://www.youtube.com/watch?v=y9h1oqv21Vs
Cross-Curricular Integration
Mathematics: Ask students to work with the math teacher to come up with a typical quadratic equation that is used in one or more school math classes. Then ask students to design and code a program to solve the equation. Students should then demonstrate the program to the teacher (along with the math class, if possible) and ask the teacher for verification and comments on the program and results.
Chemistry: Ask students to work with the chemistry teacher to come up with a formula to calculate gram molecular weight. Then ask students to design and code a program to solve the formula. Students should then demonstrate the program to the teacher (along with the chemistry class, if possible) and ask the teacher for verification and comments on the program and results.
Physics: Ask students to work with the physics teacher to come up with a formula to calculate distance fallen vs. speed for a dropped object. Then ask students to design and code a program to solve the formula. Students should then demonstrate the program to the teacher (along with the physics class, if possible) and ask the teacher for verification and comments on the program and results.
	[image:]		
	NAF 2021

[bookmark: _Hlk78478797][bookmark: _Hlk78478798][bookmark: _Hlk78479050]Copyright ©. All rights reserved	1	NAF 2021
image4.jpeg

image1.jpeg

image2.jpeg

image3.jpeg

image5.jpeg

