AOIT Introduction to Programming
Lesson 6 Using Arithmetic Operators to Manipulate Data
AOIT Introduction to Programming
Lesson 6
Using Arithmetic Operators to Manipulate Data
Student Resources
	Resource
	Description

	Student Resource 6.1
	Worksheet: Modifications to the Budget Program

	Student Resource 6.2
	Notes and Practice: Arithmetic Operators and Operator Precedence

	Student Resource 6.3
	Reading: Arithmetic Operators and Operator Precedence

	Student Resource 6.4
	Design and Coding: Car Cost Program

Student Resource 6.1
Worksheet: Modifications to the Budget Program
Student Names:___ Date:___________
Directions: This multipart worksheet directs you to make various modifications to sample program budget_buggy.py. Follow the specific instructions at the beginning of each part, below.
When you make your first modification, change the program name to budget.py and save it in your Lesson 6 folder.
This program package will be formally assessed. Read through the assessment criteria at the end of the worksheet before you begin.
Program Modifications, Part 1
If you didn’t find a solution to the Buggy Budget problem, or if you chose a solution different from the one below, take the time now to implement the following solution.
The first modified statement will look like this:
convert input data to floating point
movies = float(input(" Movie tickets: "))

By default, the input() function prompts the user and then returns the user input as a string. Since in this case the input is numeric (and decimal), you need to convert the presumed string data to a floating-point number using float(). When you have gathered all the data you need from the user, you can do numeric computations on it.
Make the changes to all four assignment statements in your Budget Python program. Be sure to include at least one comment explaining the changes.
After you have made the changes, rerun the program to be sure that when you input either floating-point or integer data, the results come back as floating-point data.
Other Data Conversion Functions
There are other data conversion functions in Python; for example:
int()

To the right of the int() function above, write what you think it does.
In the space below, write what you think would be a valid Python statement to convert a floating-point number to an integer and assign it to a variable named approximate_answer.

Program Modifications, Part 2
Notice that the instructions to the user ask for input “in dollars and cents.” Suppose the user took the instructions too literally and typed in $50.10 for one of the items. What do you think would happen?

Run your Budget program again to see. What is the result?

How might you fix the problem?

How could you change the instructions to make it less likely that the user would type in a dollar sign ($)? Write your solution here. Then make the modification to the program, save it, and rerun it.

Program Modifications, Part 3
Make the following modifications to your program and then save it, rerun it, and debug and fix any errors you have:
At the beginning of the program (before you prompt for the budget items), prompt the user for a monthly income.
Assign the income amount to an appropriately named variable. Make sure you convert the input to floating point, just as you did for the monthly expenses.
Near the end of the program but before printing out the monthly expenses, print out the monthly income (for example, “Your monthly income is”).
At what you think is an appropriate location in the program, calculate the amount of money the user has left at the end of the month (after all expenses have been paid). Write the formula below:

Assign the amount left to a variable named remainder.
Print out a statement to the user stating how much he or she has left and reminding the user to put it into a savings account. Write the final message to the user below:

If in testing your program you find that the user is left in debt (that is, the remainder is a negative number) at the end of the month, then go back and either increase the monthly income or decrease the expenses.
Program Modifications, Part 4
Using the result from your Car Cost program, add a car payment to your Budget program, and then save it, rerun it, and debug and fix any errors you have. To add the car payment:
Add a user prompt for a monthly car payment. Name the variable car_cost.
Important: Make sure when you run your Budget program and respond to the car cost prompt that you use the actual result from your Car Cost program.
Put the monthly car cost into the statement that adds up all the monthly expenses, so that your expense total includes your monthly car payment.
If your expenses exceed your income, rerun your program with a higher income or lower expenses.

Make sure that your assignment meets or exceeds the following assessment criteria:
Program Package
· The package contains all components: (1) Budget design and coding worksheet, (2) printout of the Budget program, and (3) budget.py program in the Lesson 6 folder.
Design Document
· The algorithm represents a complete solution to the problem statement.
· The algorithm contains an appropriate level of detail for the target audience and contains both major and minor steps in the correct order.
· The document is neat and legible and does not contain spelling or grammatical errors.
Program Printout
· The prolog contains the information specified in the design worksheet.
· The program comments accurately describe the Python statements and are detailed enough so that peer programmers can understand the entire program.
· The comments do not contain spelling or grammatical errors.
Python Code
· The program meets the requirements stated in the design document.
· The program runs without errors and produces the intended results.

Student Resource 6.2
Notes and Practice: Arithmetic Operators and
Operator Precedence
Student Names:___ Date:___________
Directions: While you are watching the “Arithmetic Operators and Operator Precedence” presentation, take notes and answer the questions in Part 1, below. Then do the exercises in Part 2 in the Shell in Thonny, record the results, and answer the questions in the space provided.
Part 1: Notes and Analysis
Fill in the missing information about Python operators and operator precedence in the table below.
	Operator
	Symbol
	Example
	Evaluates To…

	Exponentiation
	**
	10 ** 2
	

	Multiplication
	
	
	

	Division
	
	
	15

	Addition
	
	
	

	Subtraction
	
	16 - 6
	

	Modulus or remainder
	
	
	5

What does PEMDAS stand for?

Explain PEMDAS in the context of evaluating expressions in Python programs.

In the following expressions, which operation would Python do first? Which would it do second? What would the expression evaluate to?
5 + 10 ** 2

24 – 3 * 3

10 / 2 * 5
How could you add parentheses to the following expressions to make the expression evaluate as indicated?
5 + 5 ** 2 (You want it to evaluate to 100.)

10 * 2 / 2 (You want it to evaluate to 10.)

5 - 1 + 4 (You want it to evaluate to 0.)

Part 2: Independent Practice
Do the following exercises in the Shell in Thonny.
1. (Addition) Type 2 + 3 and press Enter. What is the result? Is the answer correct? Is it what you expected? If not, analyze the unexpected results.

 (Subtraction) Type 333 – 222 and press Enter. What is the result? Is the answer correct? Is it what you expected? If not, analyze the unexpected results.

(Multiplication) Enter 20 * 30. What is the result? Is the answer correct? Is it what you expected? If not, analyze the unexpected result.

(Division) Enter 2 / 3. What is the result? Is the answer correct? Is it what you expected? If not, analyze the unexpected result. If you enter 2 // 3 instead, what happens?

(Division) Enter 2.0 / 3.0. Are the results different from what you got in Exercise 4 above? If you enter 2.0 // 3.0 instead, what happens?

(Division) Enter 2.0 / 3 and 2 / 3.0. Explain the results.

(Exponentiation) Enter 3 ** 2. What is the result? Is the answer correct? Is it what you expected? If not, analyze the unexpected result.

(Exponentiation) Enter 2 ** 100. What is the result? What kind of number was returned?

(Exponentiation) Enter 3 ** 2 ** 3. What is the result? How does Python evaluate multiple exponentiations?

(Remainder) Enter 27 % 5. What is the result? Explain the operation and the result.

What is the purpose of using parentheses in expressions?

Enter 2 * 6 – 3 / 2 into the Shell. What is the result? Explain in what order Python did the operations.

If you wanted Python to first subtract 3 from 6, then multiply the result by 2, and finally divide that result by 2, how would you change the expression to get the result you wanted? Write the new expression below and then enter it into the Shell. Did you get the results you expected?

Type the following expressions into the Shell in Thonny, record the result, and explain the result:

	Expression
	Result
	Explanation

	1.0 + 2.0 / 3.0
	
	

	2 ** 3 + 10
	
	

	2 ** (3 + 10)
	
	

	1 ** 2 ** 3 ** 4
	
	

	7 / 9
	
	

	7.0 / 9.0
	
	

Student Resource 6.3
Reading: Arithmetic Operators and
Operator Precedence
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide1.JPG]
This presentation lists and defines the arithmetic operators used in Python and provides examples of their usage.
The presentation also explains the default operator precedence rules (that is, how expressions containing multiple operators are evaluated by Python).
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide2.JPG]
The operators (and their symbols) used in Python programming are the same ones commonly used in mathematics and other programming languages.
Answers:
 Subtraction: 1
 Multiplication: 6
 Division: 2.5
 Floor division: 2 (This is sometimes called integer division.)
 Exponentiation: 9
 Remainder: 2 (Calculates the remainder left after 27 is divided by 5.)
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide3.JPG]
The decimal number examples are called floating point in Python.
The division example evaluates to 0.6666666666666666 (the number of decimal places depends on internal computer operations). In doing numeric programming, you decide whether to use integers or floating-point numbers based on the kind of precision you need in your results.
Answers:
 Subtraction: 1.0
 Multiplication: 6.0
 Division: 0.6666666666666666
 Floor division: 0.0
 Exponentiation: 9.0
 Remainder: 2.0
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide4.JPG]
If you use expressions that return very large numbers, like this example, you may see results returned in exponential notation.
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide5.JPG]
If you use parentheses to group operations, they “trump” any of the individual operations. If there are no parentheses, the individual operations are evaluated in the order shown in items 2 to 6 in the slide.
For example, an exponentiation operation would be evaluated before a multiplication operation.
This is the same order of operations used in arithmetic.
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide6.JPG]
In the first example, the division operation was done first.
In the second example, exponentiation was done first.
In the third example, the use of parentheses ensured that the addition operation was done before the exponentiation operation.
Answers:
First example: division
Second example: exponentiation
Third example: addition
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide7.JPG]
In the first example, the expression would be evaluated in the following order:
 Multiplication
 Division
 Subtraction
The answer in the first example is 10.
In the second example, the expression would be evaluated in the following order:
 Subtraction
 Multiplication
 Division
The answer in the second example is 2.
To be sure expressions are evaluated the way you intend, use parentheses!
[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide8.JPG]
Before you convert formulas to expressions and use them in Python programs, always calculate by hand or with a calculator to be sure your program results are what you expect.

Student Resource 6.4
Design and Coding: Car Cost Program
Student Names:___ Date:____________
Directions: Following the steps outlined below, write the algorithm and pseudocode for the Car Cost program and then code it. The problem statement and requirements have already been filled in. Read them carefully before you begin to design and code the program.
Problem Statement
Write a Python program that calculates the total cost (base cost plus add-on items like tax and license) of a used car that might fit into the budget of a typical 18-year-old student. In addition, calculate the monthly cost of the car using a 36-month payment schedule.
Requirements and Instructions
Name the program car_cost.py and save it in your Lesson 6 folder.
In the prolog (as comment statements), put in the following information: the program name, the authors’ names, the date, the name of the design and coding worksheet (this document), and a place for unresolved bugs (if any).
Prompt the user for the base price of the car he or she wants to buy, convert it to floating point, and store the information in a variable called base_price.
Calculate the sales tax and store it in a variable called sales_tax. The formula is as follows:
base price times 0.0825
Store the registration fee ($192.00) in a variable called registration.
Store the dealer preparation fee ($200.00) in an appropriately named variable.
Store the delivery fee ($720.00) in an appropriately named variable.
Calculate the total cost of the car by adding up the base price and all the “extras,” and store the result in an appropriately named variable.
Print out the total cost of the vehicle for the user’s information.
Calculate the monthly payment with an assumed 9% interest rate compounded monthly for 3 years. Store the payment information in an appropriately named variable. The following formula does the calculation for you. Convert it to a Python statement:
total cost times (0.009 + (0.009/(1.009 ** 36 – 1.0)))
Print out the payment as an integer number. Tell the user something like “Over a three-year period, your monthly payment will be approximately…”
Extra challenge 1: There are other costs to owning a car that are not included in the original Car Cost program. Modify the program to include at least two of the following additional costs: monthly cost of auto insurance; monthly cost of gasoline based on an estimate of miles driven per month; estimated yearly maintenance cost of oil changes, replacement parts, and other maintenance items; depreciation cost due to the car’s declining value; parking fees; driving lessons; and the cost of car washes.
Extra challenge 2: Rather than creating a separate Car Cost program and entering the result into the Budget program, include the Car Cost Python code in the Budget program.
Algorithm
Write the algorithm and pseudocode for the Car Cost program below. When you code the program, be sure to include important elements of your algorithm as program comments.

Copyright © 2009–2015 NAF. All rights reserved.
[bookmark: _Hlk78478797][bookmark: _Hlk78478798][bookmark: _Hlk78479050]Copyright ©. All rights reserved	1	NAF 2021
image3.jpeg
Python uses the same operators with floating point

Addition + 3.0+2.0 5.0
Subtraction = 3.0-2.0
Multiplication * 3.0%2.0

Division / 2.0/3.0

Floor division // 2.0//3.0
Exponentiation ok 3.0%*%2.0
Remainder (modulus) % 27.0%5.0

What do you think each example evaluates to?

image4.jpeg
Special notation is used for large floating-point numbers

If a floating-point calculation gets large enough, the
result is returned in exponential notation:

2.0%*100=1.26765060002282294e+30

In scientific notation this would be:
1.26765060002282294x10730

image5.jpeg
Python observes operator precedence rules

By default Python evaluates operations in the same order
used in arithmetic:

1. Parentheses (used to group operations in expressions)
(multiple instances are evaluated right to left)

2. Exponentiation

{3. Multiplication

(evaluated at the same level, left to right)
4. Division (and Remainder)

5. Addition
(evaluated at the same level, left to right)
6. Subtraction

This is sometimes called the PEMDAS rule. Do you see why?

image6.jpeg
Here are some PEMDAS examples

I
1.0 + 2.0/ 3.0 = 1.6666666666666665

Which operation was done first?

2 %% 3410 =18

Which operation was done first?

2 % (3 + 10) = 8192

Which operation was done first?

image7.jpeg
In expressions with multiple operations, it’s better to use
parentheses to ensure the result you want

2*¥6-4/2="

What is the answer?

(2*(®-4)/2=72272

What is the answer?

image8.jpeg
Operators are the building blocks of Python expressions
I

« Operators are used in virtually all numeric expressions.

« The PEMDAS rule tells you how Python will evaluate
arithmetic expressions by default.

« To be sure Python evaluates your expressions in the
way you intend, use parentheses to isolate operations.

image1.jpeg
AQIT
Introduction to Programming

Unit 2, Lesson 6

Arithmetic Operators and
Operator Precedence

image2.jpeg
Python uses common arithmetic operators with integers

Addition + 3+2 5
Subtraction = 3-2

Multiplication * 3*2

Division /f 5/2

Floor division // 5//2
Exponentiation ot 3**

Remainder (modulus) % 27%5

What do you think each example evaluates to?

