AOIT Introduction to Programming
Lesson 6 Using Arithmetic Operators to Manipulate Data
AOIT Introduction to Programming
Lesson 6
Using Arithmetic Operators to Manipulate Data
Teacher Resources
	Resource
	Description

	Teacher Resource 6.1
	Python Programs: budget_buggy.py, budget_final.py, budget_initial.py, car_cost.py (separate ZIP file)

	Teacher Resource 6.2
	Presentation and Notes: Arithmetic Operators and Operator Precedence (includes separate PowerPoint file)

	Teacher Resource 6.3
	Assessment Criteria: Budget Program Package

	Teacher Resource 6.4
	Key Vocabulary: Using Arithmetic Operators to Manipulate Data


Teacher Resource 6.2
Presentation Notes: Arithmetic Operators and Operator Precedence
Before you show this presentation, use the text accompanying each slide to develop presentation notes. Writing the notes yourself enables you to approach the subject matter in a way that is comfortable to you and engaging for your students. Make this presentation as interactive as possible by stopping frequently to ask questions and encourage class discussion.
	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide1.JPG]
This presentation lists and defines the arithmetic operators used in Python and provides examples of their usage.
The presentation also explains the default operator precedence rules (that is, how expressions containing multiple operators are evaluated by Python).

	Presentation notes

	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide2.JPG]
The operators (and their symbols) used in Python programming are the same ones commonly used in mathematics and other programming languages. 
Answers:
 Subtraction: 1
 Multiplication: 6
 Division: 2.5
 Floor division: 2 (This is sometimes called integer division.)
 Exponentiation: 9
 Remainder: 2 (Calculates the remainder left after 27 is divided by 5.)

	Presentation notes

	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide3.JPG]
The decimal number examples are called floating point in Python.
The division example evaluates to 0.6666666666666666 (the number of decimal places depends on internal computer operations). In doing numeric programming, you decide whether to use integers or floating-point numbers based on the kind of precision you need in your results.
Answers:
 Subtraction: 1.0
 Multiplication: 6.0
 Division: 0.6666666666666666 
 Floor division: 0.0
 Exponentiation: 9.0
 Remainder: 2.0

	Presentation notes

	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide4.JPG]
If you use expressions that return very large numbers, like this example, you may see results returned in exponential notation.

	Presentation notes

	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide5.JPG]
If you use parentheses to group operations, they “trump” any of the individual operations. If there are no parentheses, the individual operations are evaluated in the order shown in items 2 to 6 in the slide.
For example, an exponentiation operation would be evaluated before a multiplication operation.
This is the same order of operations used in arithmetic.

	Presentation notes

	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide6.JPG]
In the first example, the division operation was done first.
In the second example, exponentiation was done first.
In the third example, the use of parentheses ensured that the addition operation was done before the exponentiation operation.
Answers:
First example: division
Second example: exponentiation
Third example: addition

	Presentation notes

	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide7.JPG]
In the first example, the expression would be evaluated in the following order:
 Multiplication
 Division
 Subtraction
The answer in the first example is 10.
In the second example, the expression would be evaluated in the following order:
 Subtraction
 Multiplication
 Division
The answer in the second example is 2.
To be sure expressions are evaluated the way you intend, use parentheses!

	Presentation notes

	[image: C:\Users\Mika\Documents\Pearson\2014\April\6\Programming_Lesson6_Presentation_ROOT_040314\Slide8.JPG]
Before you convert formulas to expressions and use them in Python programs, always calculate by hand or with a calculator to be sure your program results are what you expect.

	Presentation notes


Teacher Resource 6.3
Assessment Criteria: Budget Program Package
Student Names: ______________________________________________________________
Date: _______________________________________________________________________
Using the following criteria, assess whether the students met each one.
	
	
	Met
	Partially Met
	Didn’t Meet

	Program Package: The package contains all components: (1) Budget design and coding worksheet, (2) printout of the Budget program, and (3) budget.py program in the Lesson 6 folder.
	
	□
	□
	□

	Design Document: The algorithm represents a complete solution to the problem statement.
	
	□
	□
	□

	Design Document: The algorithm contains an appropriate level of detail for the target audience and contains both major and minor steps in the correct order.
	
	□
	□
	□

	Design Document: The document is neat and legible and does not contain spelling or grammatical errors.
	
	□
	□
	□

	Program Printout: The prolog contains the information specified in the design worksheet.
	
	□
	□
	□

	Program Printout: The program comments accurately describe the Python statements and are detailed enough so that peer students can understand the entire program.
	
	□
	□
	□

	Program Printout: The comments do not contain spelling or grammatical errors.
	
	□
	□
	□

	Python Code: The program meets the requirements stated in the design document.
	
	□
	□
	□

	Python Code: The program runs without errors and produces the intended results.
	
	□
	□
	□


Additional Comments:
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
Teacher Resource 6.4
Key Vocabulary: Using Arithmetic Operators to Manipulate Data
	Term
	Definition

	arithmetic operator
	Denotes an operation on one or more numbers that produces another number.
Example: Plus sign (+) for addition 

	built-in function
	Function that is part of the standard Python language and can be used without requiring an import statement. 
See also function.

	expression
	In programming, an expression is a combination of values, variables, operators, and functions that is valid according to the syntax of the programming language and that computes and then produces another value.
In simpler terms, something that can be evaluated by a programming language.
Example: 5 + 1 evaluates to 6
Example: "a" + "b" evaluates to "ab" 

	floating-point data
	Numeric data whose decimal point can “float”—that is, it can be placed anywhere relative to the significant digits of the number. 
Example: 98.6

	function
	Defines code internal to a program or another module that produces a particular action or result when called. A Python function can return one or more values.
Example: len() (the length function)

	integer data
	Numeric data with no fractional part. In some releases of Python, integer data can be either a plain integer or a long integer.

	numeric data
	Data that represents a number.
Numeric data is either integer or floating point.
See also integer data, floating-point data.

	operator
	A symbol for an operation.
Examples: Plus sign (+) for addition, double equal sign (==) to test for equality

	operator precedence
	The order in which operations are carried out in an expression.

	system-defined function
	Function that the user can access by importing a Python module that contains functions.
See also function.

	user-defined function
	Function that is defined by someone using the Python language for a particular purpose.
See also function.



[bookmark: _Hlk78478797][bookmark: _Hlk78478798][bookmark: _Hlk78479050]Copyright ©. All rights reserved	1	NAF 2021
image4.jpeg
Special notation is used for large floating-point numbers

If a floating-point calculation gets large enough, the
result is returned in exponential notation:

2.0%*100=1.26765060002282294e+30

In scientific notation this would be:
1.26765060002282294x10730




image5.jpeg
Python observes operator precedence rules

By default Python evaluates operations in the same order
used in arithmetic:

1. Parentheses (used to group operations in expressions)
(multiple instances are evaluated right to left)

2. Exponentiation

{3. Multiplication

(evaluated at the same level, left to right)
4. Division (and Remainder)

5. Addition
(evaluated at the same level, left to right)
6. Subtraction

This is sometimes called the PEMDAS rule. Do you see why?





image6.jpeg
Here are some PEMDAS examples

I
1.0 + 2.0/ 3.0 = 1.6666666666666665

Which operation was done first?

2 %% 3410 =18

Which operation was done first?

2 % (3 + 10) = 8192

Which operation was done first?





image7.jpeg
In expressions with multiple operations, it’s better to use
parentheses to ensure the result you want

2*¥6-4/2="

What is the answer?

(2*(®-4)/2=72272

What is the answer?





image8.jpeg
Operators are the building blocks of Python expressions
I

« Operators are used in virtually all numeric expressions.

« The PEMDAS rule tells you how Python will evaluate
arithmetic expressions by default.

« To be sure Python evaluates your expressions in the
way you intend, use parentheses to isolate operations.




image1.jpeg
AQIT
Introduction to Programming

Unit 2, Lesson 6

Arithmetic Operators and
Operator Precedence




image2.jpeg
Python uses common arithmetic operators with integers

Addition + 3+2 5
Subtraction = 3-2

Multiplication * 3*2

Division /f 5/2

Floor division // 5//2
Exponentiation ot 3**

Remainder (modulus) % 27%5

What do you think each example evaluates to?





image3.jpeg
Python uses the same operators with floating point

Addition + 3.0+2.0 5.0
Subtraction = 3.0-2.0
Multiplication * 3.0%2.0

Division / 2.0/3.0

Floor division // 2.0//3.0
Exponentiation ok 3.0%*%2.0
Remainder (modulus) % 27.0%5.0

What do you think each example evaluates to?





