AOIT Introduction to Programming
Lesson 5 Working with Variables
AOIT Introduction to Programming
Lesson 5
Working with Variables
Student Resources
	Resource
	Description

	Student Resource 5.1
	Classification: Variable Types in Python

	Student Resource 5.2
	Reference and Practice: Variable Names in Python

	Student Resource 5.3
	Analysis: Firstname Program

	Student Resource 5.4
	Design and Coding: Favorite Foods Program

	Student Resource 5.5
	Worksheet: Debugging String Variables Using Thonny

	Student Resource 5.6
	Worksheet: Debugging Numeric Variables Using Thonny

	Student Resource 5.7
	Design and Coding: Temperature Program

	Student Resource 5.8
	Compare and Contrast: Variables in Other Programming Languages

	Student Resource 5.9
	Defining Format: Variables

Student Resource 5.1
Classification: Variable Types in Python
Directions: Below is a list of variable names that you will need to classify as string, floating point, or integer. First, work with your group to come up with two examples of values for each variable and write the examples in the second column. Next, identify what you think is the correct (or most likely) variable type: string data, integer data, or floating-point data. The first one is done for you.
	Variable Name
	Two Example Values

	Variable Type
	Comments from Reviewing Group

	firstname

	Joe, Pat
	string
	

	x

	
	
	

	temperature

	
	
	

	food1

	
	
	

	pi

	
	
	

	city

	
	
	

	age

	
	
	

	depth

	
	
	

	number_guessed

	
	
	

	grade

	
	
	

	shirt_size

	
	
	

Student Resource 5.2
Reference and Practice: Variable Names in Python
Student Names:__ Date:___________
Directions: This worksheet contains Python variable naming conventions that you will be using throughout this course and whenever you program in Python. Read the Python variable naming conventions and practical guidelines in Part 1, and then follow the instructions for Part 2 of the worksheet.
Part 1: Python Variable Naming Conventions
Read the naming conventions and examples below.
Python Variable Naming Conventions
Variable names can contain only numbers, letters, and underscores. So, firstname, favorite_food, firstName and favorite_food1 are all valid names. A name like my variable name is not a valid name because it has spaces in it.
Variable names can’t start with a number. So, 2temperature is not a valid name.
The case of a name matters in Python. That means if you use an uppercase letter in a name (for example, Firstname), you can’t reference it in a Python program as firstname because Python won’t recognize it as being the same name. This is called case sensitivity, and it is common in modern programming languages.
When you reference the value of a string variable in a Python program or test it in Shell, you must enclose it in quotation marks. You can use either single (') or double (") quotation marks, but you can’t mix the two. For example, either of these would be valid: "Emily" or 'Emily'. However, "Emily' would not be valid. You can also nest double and single quotation marks to include them in the variable value, if that is your intention (for example, you could use "'Emily'", which would return 'Emily').
You should never reference the name of a variable by putting quotation marks around it. Doing that would produce an invalid name. (For example, you would never reference a variable as "firstname" with the quotation marks.)
Practical Guidelines (Best Practices) for Naming Variables in Python
Choose descriptive names. A variable name like diameter is better than a name like di, which could stand for many words.
Use names consistently. If you already have a firstname variable, don’t add a variable LASTNAME or last_name. Use lastname instead.
It is a Python tradition to start variable names with a lowercase letter. This is not a requirement but a common convention in many languages, including Python. The second part of a longer name is often capitalized, in the camel case style (for example, myTurtle).
Avoid starting a variable name with an underscore (_). This is because Python sometimes creates variables for itself and starts them with underscores. So, avoid names like _firstname, because it increases your chances of interfering with Python internal processes.
Avoid extremely long names. If you have a variable like TheDiameterOfTheCircle, you will get tired of typing it, and you’ll be more likely to make typing errors. Use something simpler and yet descriptive like diameter.
Part 2: Valid and Invalid Variable Names in Python
Directions: All of the names in the following table are either invalid, valid but not following the recommended conventions (sometimes called best practices), or both. For each proposed variable name, decide whether it is valid and whether it conforms to a best practice. If you answer “no” to either or both of these, provide a suggested correction. Also provide two possible values for each name. The first name is done for you as an example.
	Variable Name
	Valid?
(Yes/No)
	Best Practice?
(Yes/No)
	Suggested Correction
	Most Likely Type
and Two Possible Values

	(Example)
r
(indicating radius)

	Yes
	No
	radius
	floating point
2.0
4.5

	3rd_inning_score
	
	
	

	

	food 1
	
	
	

	

	YourSistersName

	
	
	

	

	_pi_r_squared_

	
	
	

	

	city_50902456
	
	
	
	

	dog_great_dane
	
	
	
	

Student Resource 5.3
Analysis: Firstname Program
Student Name:___ Date:___________
Directions: Below is the Firstname program in Python, which you first saw in an earlier lesson. Follow these steps to complete the analysis:
1. Read through the program and analyze it by talking with your programming partner about what is going on in each line (both code and comments).
2. Working on your own, write answers to the review questions and the analysis questions that follow the printout of the program; then share your answers with your programming partner.
Firstname Sample Program in Python
Read through this program carefully and try to analyze what is going on in each line of code (each line of code is performing more than one task).
#
firstname.py
Prompts for user first name and prints "Hello, "
plus the name the user entered in response to the prompt.
#
July 16, 2021
This work is licensed under CC-BY-NC.
#

prompt the user for a value and assign input
into variable firstname
firstname = input("What is your first name? ")

print text "hello" along with the current value
of variable firstname
print("Hello, " + firstname + "!")

Review Questions
Write answers to the following review questions in the space provided.
What is the output of firstname.py?

Where does the program get the value for the firstname variable?

What is firstname called in Python?

What is "Emily" (or whatever name the user types in response to the prompt) called in Python?

Analysis Questions
Write answers to the following analysis questions in the space provided.
1. What does the input() function do?

1. What is the assignment statement, and what does it do?

1. Python processes the assignment statement in the following order: (1) get input and (2) assign the value to the variable. However, the statement is in this order (reading left to right): (1) variable name, (2) assignment character (=), and (3) input prompt. Explain in your own words what is going on.

1. Explain in your own words how the print statement works.

Student Resource 5.4
Design and Coding: Favorite Foods Program
Student Name(s):___ Date:____________
Directions: Following the steps outlined below, write the algorithm and pseudocode for the Favorite Foods program. The problem statement and requirements have already been filled in. Read them carefully before you begin to design and code the program.
You will write this program in two stages, as indicated. In Stage 1, write the program using a single variable (favorite_food). When you have finished designing Stage 1, code the program, run it, and correct any errors you have. The Stage 1 program is similar to firstname.py. Use firstname.py as a model.
When the Stage 1 program is running without errors and producing the results you expect, design and code Stage 2, which involves modifying the Stage 1 program to include two variables (favorite_food1 and favorite_food2) instead of one.
Stage 1: Single Variable (favorite_food)
Problem Statement
Write a Python program that prompts the user for his or her favorite food and prints out the information.
Requirements and Instructions
Name the program favorite_foods.py and save it in your Lesson 5 folder.
In the prolog (as comment statements), put in the following information: the program name, what the program does (this could be the problem statement), the authors’ names, the date, the name of the design and coding worksheet (this document), and a place for unresolved bugs (if there still are any when you finish the program).
Using the input() function, assign input into the favorite_food variable. The prompt should be “What is your favorite food?”
Print “Your favorite food is” followed by the value of the favorite_food variable.
Algorithm
In the space below, write the algorithm for Stage 1 of favorite_foods.py. When you code the program, be sure to include important elements of your algorithm as program comments. If you need help in remembering how to do this, look at your Snowman design document and the snowman_advanced.py program.

Stage 2: Two Variables (favorite_food1 and favorite_food2)
Problem Statement
Modify your Stage 1 Python program to prompt the user for two favorite foods and print out the information.
Requirements and Instructions
Change the comments in the program prolog to reflect the revisions you are about to make (for example, the problem statement is changing).
Change your favorite_food variable to favorite_food1, and rerun the program. It should still run without errors.
Add a new assignment statement below the existing one. Prompt with “What is another of your favorite foods?” Assign the user input to variable favorite_food2.
Change the print statement to “We’re going to have favorite_food1 and favorite_food2 for lunch today.”
Run your program, and correct any errors you find. Be sure none of the words in your print statement run together. For example, be sure the print statement doesn’t read something like “We’re going to have pizzaand hamburgersfor lunchtoday.”
If you encounter any program bugs, add the information to the prolog along with the bug fixes.
Algorithm
In the space below, write the algorithm for Stage 2 of favorite_foods.py. When you code the program, be sure to include important elements of your algorithm as program comments.

Student Resource 5.5
Worksheet: Debugging String Variables Using Thonny
Student Name(s):___ Date:____________
Directions: These exercises are designed to give you practice using Thonny to debug Python statements and portions of statements before you put them into your Python program. This kind of debugging in bits and pieces is an important professional technique for producing bug-free programs quickly and efficiently.
(Note: It is easy to do this in an interpretive language like Python, where each instruction is immediately translated and acted upon by the computer. It is either difficult or impossible to do in procedural or object-oriented languages like C++ or Java, where you don’t have the source code because the code is compiled.)
The exercises are focused on variable naming, in general, and string variables. To do these exercises, you need to be in Thonny and write the following lines of code in the Shell pane at the shell prompt (>>>).
Part 1: Guided Practice
Under the guidance of your teacher, complete the following exercises using the shell inside of Thonny. The first exercise has been done for you as a model.
Sample Exercise: Assign a Value to a Variable and Check the Value
In Thonny, go to View and select Variables. The Variables pane will open up and display variables as your code gets executed.
Enter the following (that is, type it in and press the Enter key):
firstname = "Emily"

Notice that you need to enclose the literal string "Emily" in quotation marks. You can use either single or double quotation marks.
What happened and why?
Python has stored the literal string "Emily" into the firstname variable. This is displayed in the Variables pane with the variable name on the left and it’s value on the right.
Python responds with another prompt (>>>) to indicate that it is waiting for the user’s next request or response.
Now enter the following:
firstname

What happened and why?
Python responds with the value of the firstname variable, enclosed in quotation marks to indicate that it is a string ('Emily').
Python responds with another prompt (>>>) to indicate that it is waiting for the user’s next request or response.
Now enter the following:
print(firstname)
What happened and why?
Python prints the value of the variable firstname. Python does not put single quotation marks around the name Emily (you would not normally want quotation marks around printed variable values).
Assign a Value to a Different Variable and Check the Value
Enter the following (that is, type it in and press the Enter key):
favorite_food2='hamburgers'

Now enter the following:
favorite_food2

What happened and why?

Now enter the following:
favoritefood2

What happened and why? (Hint: You get an error message. What do you think it means?)

Are double and single quotation marks equivalent in this exercise? (Try it and see.)

Check the Validity of a Variable Name
Enter the following (that is, type it in and press the Enter key):
2favorite_food='pizza'

What happened and why?

Do an Arithmetic Operation on the Value of a String Variable
Enter the following (that is, type it in and press the Enter key):
food1='pizza'
food2='hamburgers'

Then enter the following:
food1+food2
What happened and why? (Hint: What does the plus sign signify for strings?) The term for this is concatenation.

Do Another Arithmetic Operation on the Value of a String Variable
Enter the following:
food1='pizza'

Then enter the following:
food1 * 5

What happened and why?

Part 2: Independent Practice with Valid Variable Names
Complete the following exercises using the Shell in Thonny. For each step, write your result and answer the questions as indicated.
Fill out the following table with two possible values for each of the following variables.
Then repeat the exercises you did in Part 1 with at least one of the two values for each name.
	Name
	Possible Values
(Two Examples)

	(Example)
food2

	'hamburgers'
"apples"

	book_title
	

	city
	

	color
	

Did you complete the exercise with no problems, or did you get some surprises? Describe your experience. If you encountered no problems, describe the technique you used that made it easy. If you encountered problems, pick one of those problems and write (1) the symptoms of the problem (in other words, what happened) and (2) your analysis of what went wrong.

Part 3: Independent Practice with Invalid Variable Names
Two of the variable names in the following table are valid, and two are invalid. Using the hell in Thonny, try to assign values to the variables. For each, answer the question (“Valid?”), and for each invalid name, summarize the error message and explain why the name is invalid. The first one has been done for you.
	Name
	Valid?
(Yes/No)
	Error Message in Assistant pane (If Invalid)
and Why the Name Is Invalid

	(Example)
color
	Yes
	None

	3rd_inning_score
	
	

	lastname%

	
	

	country

	
	

Student Resource 5.6
Worksheet: Debugging Numeric Variables Using Thonny
Student Name(s):___ Date:____________
Directions: These exercises are designed to give you practice using the shell in Thonny to debug Python statements and portions of statements before you put them into your Python program. This kind of debugging in bits and pieces is an important professional technique for producing bug-free programs quickly and efficiently.
These exercises are focused on numeric variables. To do these exercises, you need to be in the shell in Thonny at the shell prompt (>>>).
Part 1: Guided Practice
Under the guidance of your teacher, complete the following exercises using the shell in Thonny:
1. Enter two assignment statements: x = 5 and y = 7. (Notice that the values 5 and 7 are not enclosed in quotation marks. What do you think would happen if they were?)
1. Enter x + y. (Python returns 12.)
1. Enter x * y. (Python returns 35.)
1. Enter x - y. (Notice that Python can handle negative numbers.)
1. Enter x / y. (Python returns 0.7142857142857143. Notice that even though 5 and 7 are integers, Python returns a floating-point number. To get Python to treat 5 and 7 as integers and get a result of 0, you need to enter x // y.)
Part 2: Independent Practice
Directions: In this part of the worksheet, you will learn how to get the results you would probably be expecting in this exercise. Complete the following exercises using the Shell in Thonny. For each step, write your result and answer the questions, as indicated.
1. Repeat the same sequence as in Part 1, except use decimal numbers (for example, 5.0 and 7.0) in the assignment statements. What is the result?

Next, repeat the sequence using 5.55 and 7.77. What is the result?

Check the answers with a calculator or by hand. Are the results exactly the same? If not, why do you think they differ?

Student Resource 5.7
Design and Coding: Temperature Program
Student Name(s):___ Date:____________
Directions: Following the steps outlined below, write the algorithm and pseudocode for the Temperature program. The problem statement and requirements have already been filled in. Read them carefully, along with the assessment criteria at the end of this resource, before you begin to design and code the program.
Problem Statement
Write a Python program that converts Fahrenheit temperatures to Celsius (centigrade) and vice versa. Prompt the user for temperature values to convert.

Requirements and Instructions
Name the program temperature.py and save it in your Lesson 5 folder.
In the prolog (as comment statements), put in the following information: the program name, the authors’ names, the date, the name of the design and coding worksheet (this document), and a place for unresolved bugs (if any).
Instead of using the input() function by itself, as you did for the Firstname program, you need to use float(input()), because you want the numbers the user types in to be converted to floating point. You will learn more about the float() conversion function in the next lesson.
Prompt the user for the Celsius-to-Fahrenheit conversion with “Enter a temperature in Celsius (centigrade): ”
Use the following conversion formula for the Celsius-to-Fahrenheit conversion:
(9.0 / 5.0) * celsius + 32.0
Store the results of the Celsius-to-Fahrenheit conversion in variable fahrenheit.
Prompt the user for a Fahrenheit-to-Celsius conversion with “Enter a temperature in Fahrenheit: ”
Use the following conversion formula for the Fahrenheit-to-Celsius conversion:
(5.0 * (fahrenheit – 32.0)) / 9.0
Store the results of the Fahrenheit-to-Celsius conversion in variable celsius.
Testing hint: To do a quick check of your formulas, answer the prompt for the Celsius temperature with 0 or 0.0 (the converted number will be 32.0). Answer the prompt for the Fahrenheit temperature with 32 or 32.0 (the converted number will be 0).

Algorithm
On the back of this page, write the algorithm for temperature.py. When you code the program, be sure to include important elements of your algorithm as program comments.

Make sure your assignment meets or exceeds the following assessment criteria:
Program Package
· The package contains all components: (1) Temperature design and coding worksheet, (2) printout of the complete Temperature program, and (3) temperature.py.
Design Document
· The algorithm represents a complete solution to the problem statement.
· The algorithm contains an appropriate level of detail for the target audience and contains both major and minor steps in the correct order.
· The document is neat and legible and does not contain spelling or grammatical errors.
Program Printout
· The comments accurately describe the Python statements and are detailed enough for peer programmers to understand the entire program.
· The comments do not contain spelling or grammatical errors.
· The program contains a prolog with information agreed to as the class standard.
Python Code
· The program runs without errors.

Student Resource 5.8
Compare and Contrast: Variables in Other
Programming Languages
Student Name(s):___ Date:____________
Directions: Below are the Favorite Foods program and the Temperature program in Java and C++. Underline the variables in all four programs, including the declaration of the variables. Then fill in the Venn diagram following the program printouts to compare and contrast how variables are handled in Python, Java, and C++.
In the first program (Favorite Foods program in Java), the variables have been underlined for you as an example.
Favorite Foods Program in Java
//
// favorite_foods.java
// Inputs two favorite foods and displays a simple menu.
// July 16, 2021
// This work is licensed under CC-BY-NC.
//
import java.io.Console;

public class FavoriteFoods {
 public static void main(String[] args) {
 Console con = System.console();
 String favoritefood1 =
 con.readLine("What is your favorite food? ");
 String favoritefood2 =
 con.readLine("What is another food you like? ");
 System.out.println("Today we're having " + favoritefood1 +
 " and " + favoritefood2);
 }
}

Favorite Foods Program in C++
//
// favorite_foods.cpp
// Inputs two favorite foods and displays a simple menu.
// July 16, 2021
// This work is licensed under CC-BY-NC.
//

#include <iostream>

using namespace std;

int main()
{
	char favoritefood1[128];
	char favoritefood2[128];

 cout << "What is your favorite food? ";
	cin >> favoritefood1;
 cout << "What is another of your favorite foods? ";
	cin >> favoritefood2;

	cout << "Today we are having " << favoritefood1 << " and "
		<< favoritefood2 << ".\n";
}

Temperature Program in Java
//
// temperature.java
// Converts Celsius to Fahrenheit and Fahrenheit to Celsius.
// July 16, 2021
// This work is licensed under CC-BY-NC.
//

import java.io.Console;

public class Temperature {
 public static void main(String[] args) {
 Console con = System.console();
 String input_string;
 Double Celsius;
 Double Fahrenheit;

 // convert Celsius to Fahrenheit
 // read in a value into a string
 input_string = con.readLine("Enter a temperature in Celsius: ");
 // convert the string to a floating-point number
 Celsius = Double.valueOf(input_string);
 // do the conversion to Fahrenheit
 Fahrenheit = (9.0/5.0)*Celsius+32.0;
 // print out the results
 System.out.println(Celsius+" degrees Celsius is "+
 Fahrenheit+" degrees Fahrenheit.");

 // convert Fahrenheit to Celsius
 input_string = con.readLine("Enter a temperature in Fahrenheit: ");
 Fahrenheit = Double.valueOf(input_string);
 Celsius=5.0/9.0*(Fahrenheit-32.0);
 System.out.println(Fahrenheit+" degrees Fahrenheit is "+
 Celsius+" degrees Celsius.");
	}
}
Temperature Program in C++
//
// temperature.cpp
// Converts Celsius to Fahrenheit and Fahrenheit to Celsius.
// July 16, 2021
// This work is licensed under CC-BY-NC.
//

#include <iostream>

using namespace std;

int main()
{
	float Celsius, Fahrenheit;

 // read in Celsius in floating point
 cout << "Enter a temperature in Celsius ";
	cin >> Celsius;

 // convert Celsius to Fahrenheit
	Fahrenheit = (9.0/5.0)*Celsius+32.0;
	// print out the results
	cout << Celsius << " in Celsius is " << Fahrenheit << " Fahrenheit\n";

	cout << "Enter a temperature in Fahrenheit ";
	cin >> Fahrenheit;

	Celsius = 5.0/9.0*(Fahrenheit-32.0);
	cout << Fahrenheit << " in Fahrenheit is " << Celsius << " Celsius\n";
}

Comparison of How Python, Java, and C++ Handle Variables
Directions: Write how Python, Java, and C++ are different and how they are the same with respect to their handling of variables.
 (
How is Python different from Java and C++?
How is C++ different from Python and Java?
How are Python and Java alike?
How are all three alike?
How are Java and C++ alike?
How are Python and C++ alike?
C++
Java
Python
How is Java

different from Python and C++?
)

Student Resource 5.9
Defining Format: Variables
Student Name(s):__ Date:___________
Directions: Using the Defining Format table below, define the following terms related to variables. First, enter a category for each term. In the next column, list the characteristics of the term. An example is given in the first row.
	Term
	Category
	Characteristics

	Software
	is code that
	1. is written in a programming language
2. controls the operation of a computer…

	Variable

	
	

	String Variable

	
	

	Integer Variable

	
	

	Floating-Point Variable

	
	

Copyright © 2009–2015 NAF. All rights reserved.
[bookmark: _Hlk78478797][bookmark: _Hlk78478798][bookmark: _Hlk78479050]Copyright ©. All rights reserved	1	NAF 2021
