
Lesson 3: Attributes

45 minutes

Overview

How do I decide what attributes an object should have?

In the previous unit, students created subclasses of the

Painter class and objects of different types. Students

revisit classes and objects to learn how to design classes

and identify appropriate attributes for these classes.

Students define instance variables to represent these

attributes while exploring encapsulation and learn the

difference between public and private access.

Standards Full Course Alignment

CSA Conceptual Framework

MOD-2 - Programmers use code to represent a

physical object or nonphysical concept, real or

imagined, by defining a class based on the

attirbutes and/or behaviors of the object or concept

MOD-3 - When mulitple classes contain common

attributes and behaviors, programmers create a new

class containing the shared attributes and behaviors

forming a hierachy. Modifications made at the

highest level of the hierarchy apply to the

subclasses.

Agenda

Warm Up (5 minutes)

Revisiting the Painter Class

Activity (35 minutes)

Data Encapsulation and Instance Variables

Designing an Object

Wrap Up (5 minutes)

Your Object's Story

Assessment: Check for Understanding

AP Classroom Topic Questions

Objectives

Students will be able to:

Create instance variables to

represent attributes

Differentiate between public

and private access

Explain the purpose of

encapsulation

Preparation

Print copies of the Classes and

Objects Manipulatives (one set for

each student)

(Optional) Cut out the

manipulatives on pages 2-5 on

the Classes and Objects

Manipulatives

Gather several sticky notes, small

scrap pieces of paper, tape, and

rubber bands or yarn

Check the Teacher's Lounge for

verified teachers on the CSA

Forum to find additional

strategies or resources shared by

fellow teachers

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the students

Classes and Objects

Manipulatives - Handout

Instance Variables and Attributes

- Video

U2L3 Extra Practice - Handout

https://staging-studio.code.org/courses/csa-2022/standards
https://forum.code.org/t/csa-unit-2-lesson-3-attributes/36395/2
https://docs.google.com/presentation/d/1jDs4rxSItK6A5rhDZiEgEMUNfUSrXd6CVSd4609DPuM/edit?usp=sharing
https://youtu.be/49XzLCs8wgU
https://docs.google.com/document/d/1vIxRV6Bz1gOcYBEV3awI2k3vSP4_ddRkQLLQ7XJaY3Y/edit?usp=sharing



Vocabulary

access modifier - a keyword used

to set the visibility of classes,

variables, constructors, and

methods

encapsulation - an object-

oriented programming concept

where the instance variables of a

class are hidden from other

classes and can be accessed only

through the methods of the class

instance variable - a variable

defined in a class that represents

an attribute of an object

Teaching Guide

Warm Up (5 minutes)

Revisiting the Painter Class

 Remarks

In the previous unit, we used the methods in the Painter class to move a Painter object around

The Neighborhood. The state of the Painter object changed as it moved and painted.

 Discuss: Click through the animated slide to display the prompts. Use the Retrieve-Pair-Share

strategy to discuss the prompts.

What attributes does a Painter object have?

How were those attributes changed? Were we able to change them directly?

Discussion Goal: Students identify the attributes in the Painter class, including the x location, y

location, amount of paint, and the direction it is facing. Students note that these attributes changed

when using methods to move and paint and may be unsure about whether they could directly modify

these values.

 Teaching Tip

Have students recall how they moved a Painter object around The Neighborhood. Ask students

questions about whether or not they could specify coordinates or the amount of paint a Painter

object had.

Activity (35 minutes)

Data Encapsulation and Instance Variables (15 minutes)

 Remarks

We used the methods in the Painter class to change the state of a Painter object. Let's find out

what would happen if we tried to directly change the values.

 Do This: Review the lesson objectives.

 Do This: Direct students to Level 1 to predict the program's outcome, then run the program to

compare their predictions to the actual outcome.

Predict: Accessing Attributes

 Discuss: Click through the animated slide to display the prompts.

What do you notice about the code in this program?

What do you wonder about the code in this program?

Discussion Goal: Students note that the program attempted to access the attributes of a Painter

object directly but it resulted in an error. Students identify that the attributes are private instead of

public like its constructors and methods. Students may wonder about the cause of the error and why

these values cannot be directly modified.

 Remarks

The attributes of a Painter object is private . Making these attributes private is a component of

encapsulation.

 Do This: Click through the animated slide to define encapsulation, access modifier, public , and

private .

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

When would encapsulation be useful?

Why would we use the keyword public ?

Why would we use the keyword private ?

Discussion Goal: Students realize that encapsulation protects the attributes of a class and ensures that

only the class can control what is stored. Students note that the keyword public should be used when

something needs to be accessible from outside of the class, while the keyword private should be used

when something should be accessible only from within the class.

 Remarks

We write instance variables to represent attributes of a class.

 Do This: Click through the animated slide to identify the attributes of the Painter class in the UML

diagram and define instance variable.

 Do This: Click through the animated slide to demonstrate the examples of classes and their

attributes.

 Remarks

It is important to consider the needs of a program when deciding what instance variables we need to

write in a class. We don't need to represent every characteristic of an object. We only need to

represent what is important for the program.

 1







 Display: Show the video – Instance Variables and Attributes.

Designing an Object (20 minutes)

 Remarks

Before writing a class for a program, software engineers identify the attributes of an object to plan the

instance variables and methods that they need.

 Discuss: Consider your favorite hobby. You want to create a program to track some aspect of your

hobby. What are some other classes we might design for this program?

Discussion Goal: Students share their favorite hobbies and related objects. Students suggest classes

they might write to represent these objects and identify their attributes and behaviors.

 Teaching Tip

Share a personal interest and model how you would create a UML diagram for a class related to that

interest.

Group: Place students in pairs.

 Distribute: Give each pair a set of Classes and Objects Manipulatives, several sticky notes, small scrap

pieces of paper, tape, and rubber bands or yarn.

Do This: Click through the animated slides to demonstrate designing a class:

 Identify the attributes and behaviors that are needed

 List the instance variables

 Briefly introduce private methods

 Write the class name and constructor

 Write the methods

 Teaching Tip

Students learn about private methods in a later unit. Introduce that methods can be private but

do not spend time explaining what that means or how it works.

You can choose to demonstrate designing a class using a teacher's set of the manipulatives or to

have students follow along using their set of manipulatives.

 Do This: Have students use the Classes and Objects Manipulatives to design a class of their choice.

Do This: Click through the animated slides to demonstrate creating objects from the class:

 Declaring the reference variable

 Instantiating the object

 Pointing the reference variable to the object

 Do This: Have students use the Classes and Objects Manipulatives to create objects from their

classes.

 Teaching Tip

Gather the Classes and Objects Manipulatives to reuse in upcoming lessons.

Wrap Up (5 minutes)

Your Object's Story

 Discuss: Click through the animated slide to display the prompts.

What is the story behind your object? What are things your object can do?

What are things someone should never be able to do or change about your object?

Discussion Goal: Students share what their objects represent and the behaviors of their objects.

Students suggest attributes that should not be accessible by other classes.

 Do This: Review the concepts covered in this lesson.

 Display: Key Vocabulary

Assessment: Check for Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Check for Understanding

AP Classroom Topic Questions

To assign questions from the AP Classroom Question Bank that align with this lesson, create a custom

quiz in AP Classroom by searching the Question Bank for the Essential Knowledge statements listed at

the top of this lesson plan. You can find instructions and video demonstrations to do this on AP Central.

The following Topic Questions in AP Classroom can be assigned as a formative assessment for this

lesson:

Topic Questions 5.1

Note: Some Learning Objectives and Essential Knowledge statements in the suggested Topic Questions

are covered in later units.

If you are interested in licensing Code.org materials for commercial purposes contact us.

 2


https://apcentral.collegeboard.org/instructional-resources/ap-classroom
https://creativecommons.org/
https://code.org/contact

