
Lesson 8: Mutator Methods

45 minutes

Overview

How can I change the values of an object's instance

variables after the object has been created?

Students discover the need for mutator methods to

change the values stored in the instance variables of a

class. Students also revisit the void keyword and recall

edge cases. Students practice writing and calling mutator

methods for their classes.

Standards Full Course Alignment

CSA Conceptual Framework

CON-1 - The way variables and operators are

sequenced and combined in an expression

determines the computed result.

MOD-1 - Some objects or concepts are so

frequently represented that programmers can draw

upon existing code that has already been tested,

enabling them to write solutions more quickly and

with a greater degree of confidence

MOD-2 - Programmers use code to represent a

physical object or nonphysical concept, real or

imagined, by defining a class based on the

attirbutes and/or behaviors of the object or concept

MOD-3 - When mulitple classes contain common

attributes and behaviors, programmers create a new

class containing the shared attributes and behaviors

forming a hierachy. Modifications made at the

highest level of the hierarchy apply to the

subclasses.

Agenda

Warm Up (5 minutes)

Revisiting the Painter Class

Activity (30 minutes)

Modifying Private Data

Edge Cases and User Input

Writing Mutator Methods

Objectives

Students will be able to:

Change the state of an object

using mutator methods

Preparation

Check the Teacher's Lounge for

verified teachers on the CSA

Forum to find additional

strategies or resources shared by

fellow teachers

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the students

Mutator Methods - Video

U2L8 Extra Practice - Handout

Vocabulary

Boolean expression - a logical

statement that gives either a

true or false value

Sentinel Value - a special value

used to notify the program to

stop accepting input

mutator method - changes the

value stored in an instance

variable

relational operator - an operator

used to compare values or

expressions

https://staging-studio.code.org/courses/csa-2022/standards
https://forum.code.org/t/csa-unit-2-lesson-8-mutator-methods/36390/2
https://youtu.be/unh7__NcIS8
https://docs.google.com/document/d/1c6A3aHC15YpLu8taRWj1xWJtuhYWAehtkv-ANxdWkwI/edit?usp=sharing

Wrap Up (10 minutes)

Debugging Wall

Assessment: Check for Understanding

AP Classroom Topic Questions

Teaching Guide

Warm Up (5 minutes)

Revisiting the Painter Class

 Remarks

We now know how to access the values stored in private instance variables, but what if we needed

to change them after we have already created the object? Let's revisit the Painter class and the

methods it used to modify the values stored in its instance variables.

 Discuss: Click through the animated slide to display the prompts. Use the Retrieve-Pair-Share

strategy to discuss the prompts.

What did it mean for a method to return void ?

What methods in the Painter class were void methods?

Why did these methods return void ?

Discussion Goal: Students recall that void methods do not return a value and identify the methods in

the Painter class that were void methods, such as move() and paint() . Students note that these

methods were meant to perform an action and not provide any information.

Activity (30 minutes)

Modifying Private Data (10 minutes)

 Remarks

We learned about accessor methods in the previous lesson that we could use to get the value stored

in an instance variable. We can also use mutator methods to modify a value stored in an instance

variable.

 Do This: Review the lesson objectives.

 Do This: Direct students to Level 1 on Code Studio to predict the program's outcome, then run the

program to compare their predictions to the actual outcome.

Predict: Mutator Methods

 Discuss: Click through the animated slide to display the prompts.

What do you notice about the code in this program?

What do you wonder about the code in this program?

 1

Discussion Goal: Students notice that the methods change the values stored in the instance variables.

Students may wonder how these methods are able to change the values since instance variables are

private .

 Display: Show the video – Mutator Methods.

 Remarks

Mutator methods are void methods, which means they do not return a value and therefore cannot

be called as part of an expression. As void methods, they can perform an action, like changing the

state of an object.

 Do This: Click through the animated slide to demonstrate writing and calling a mutator method.

 Remarks

When designing a class, programmers make decisions about what data to make accessible and

modifiable from an external class. Data can be either accessible or modifiable, or it can be both or

neither.

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

What is different about the way mutator methods work in comparison to accessor methods?

Should all instance variables have mutator methods? When would we not want an instance variable to

be modified?

Are there values that should be considered invalid for certain instance variables?

Discussion Goal: Students identify similarities between mutator methods and accessor methods, such

as both working with the instance variables of a class. Students also identify differences, such as

mutator methods taking a parameter to set a new value to the instance variable and does not return a

value while accessor methods do not have a parameter and return the current value stored in the

instance variable.

Edge Cases and User Input (10 minutes)

 Remarks

We can use an if statement to check for invalid values. For example, we may want to make sure

that a user doesn't enter a negative value for a price or a quantity.

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

Where have you used operators like less than, greater than, or equal?

Discussion Goal: Students recall using operators in math or previous computer science courses.

Group: Place students in pairs.

 Do This: Direct students to Level 2 on Code Studio to investigate the program with a partner.

Students make the changes to the program as prompted.

Investigate: Exploring Edge Cases

 Do This: Click through the animated slide to introduce relational operators.

 2





 Do This: Click through the animated slide to define Boolean expression.

 Do This: Click through the animated slide to define sentinel value.

Writing Mutator Methods (10 minutes)

 Do This: Direct students to Level 3 on Code Studio to complete Levels 3 through 5. Students write

mutator methods in the Dessert class on Level 3, then continue to Level 4 to use the Dessert class

mutator methods. On Level 5, students complete a choice level to use the Scanner class and a sentinel

value to repeatedly take input from a user.

Writing Mutator Methods

 Teaching Tip

Students use the Dessert classes they have developed in previous lessons to write accessor

methods for their instance variables. These classes are revisited throughout the curriculum. Students

expand on this problem and these classes to add new behaviors and create arrays of Dessert

objects in future units.

 Remarks

This is a good time to commit our code and save our new version of our Dessert class to the

Backpack.

 Do This: Play the music clip to cue committing their code and saving the new version of the

Dessert class to the Backpack.

Wrap Up (10 minutes)

Debugging Wall

 Remarks

We saw some new types of errors today! Let's discuss these errors we encountered and update our

Debugging Wall with the strategies we used to debug them.

 Discuss: Click through the animated slide to display the prompts. Use the Hold That Thought

strategy to discuss the prompts.

What errors did you encounter while writing your code?

How did you find and fix the error?

Discussion Goal: Students share errors that they encountered while writing their code and strategies

they used to debug the errors.

 Teaching Tip

Ask students to consider both syntax and logic errors they might have encountered, such as not

specifying a parameter for a mutator method or setting an invalid value for an instance variable.

 3-5

3 4 5

 Do This: Have students choose a strategy as a class and add it to the Debugging Wall.

 Do This: Review the concepts covered in this lesson.

 Display: Key Vocabulary

Assessment: Check for Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Check for Understanding

AP Classroom Topic Questions

To assign questions from the AP Classroom Question Bank that align with this lesson, create a custom

quiz in AP Classroom by searching the Question Bank for the Essential Knowledge statements listed at

the top of this lesson plan. You can find instructions and video demonstrations to do this on AP Central.

The following Topic Questions in AP Classroom can be assigned as a formative assessment for this

lesson:

Topic Questions 2.4

Topic Questions 3.1

Topic Questions 5.5

Note: Some Learning Objectives and Essential Knowledge statements in the suggested Topic Questions

are covered in later units.

If you are interested in licensing Code.org materials for commercial purposes contact us.

 6


https://apcentral.collegeboard.org/instructional-resources/ap-classroom
https://creativecommons.org/
https://code.org/contact

