
Lesson 6: Class Hierarchies

45 minutes

Overview

How can I create hierarchies of classes to simplify

program code?

Students learned about inheritance in the previous unit to

create subclasses of the Painter class. In this lesson,

students revisit inheritance to learn about using the DRY

principle to refactor redundant code. Students also learn

about the Object class and deepen their understanding

of inheritance.

Standards Full Course Alignment

CSA Conceptual Framework

MOD-3 - When mulitple classes contain common

attributes and behaviors, programmers create a new

class containing the shared attributes and behaviors

forming a hierachy. Modifications made at the

highest level of the hierarchy apply to the

subclasses.

Agenda

Warm Up (10 minutes)

CS Pyramid

Activity (30 minutes)

The DRY Principle

Refactoring Code

Using Inheritance

Wrap Up (5 minutes)

Software Engineering Skills

Assessment: Check for Understanding

AP Classroom Topic Questions

Objectives

Students will be able to:

Construct class hierarchies

Refactor code to improve its

readability and reusability

Preparation

Create code review groups if you

are not reusing the same groups

Check the Teacher's Lounge for

verified teachers on the CSA

Forum to find additional

strategies or resources shared by

fellow teachers

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the students

U2L6 Extra Practice - Handout

Vocabulary

DRY principle - a software

development principle that stands

for "Don't Repeat Yourself" which

aims to reduce repetition in code

refactor - to improve the

readability, reusability, or structure

of program code without altering

its functionality

Teaching Guide

https://staging-studio.code.org/courses/csa-2022/standards
https://forum.code.org/t/csa-unit-2-lesson-6-class-hierarchies/36392/2
https://docs.google.com/document/d/1Hn0IfIEIpZo1vqkyVq6OZh9KRmygfCFQQ2pjuZIK8HM/edit?usp=sharing



Warm Up (10 minutes)

CS Pyramid

 Remarks

We have learned a lot of new terms so far! Let's review some of these terms through a game of CS

Pyramid.

Group: Place students in pairs.

 Do This: Review the instructions for playing CS Pyramid.

 Do This: Play the music clip to cue the CS Pyramid activity, and direct students to play CS Pyramid.

Click through the animated slide to display each pyramid, and direct students to switch roles with each

new pyramid.

Activity (30 minutes)

The DRY Principle (10 minutes)

 Remarks

In the previous unit, we learned about inheritance and writing efficient programs. Software engineers

use the DRY principle to reduce repetitive code and decide when inheritance hierarchies are needed.

 Do This: Review the lesson objectives.

 Do This: Click through the animated slide to review inheritance, efficiency, and redundant code.

 Teaching Tip

Have students recall where they saw these concepts in the previous unit. Ask students where and

how they used these concepts when working with the Painter class in The Neighborhood.

 Do This: Direct students to Level 1 on Code Studio to predict the program's outcome, then run the

program to compare their predictions to the actual outcome.

Predict: Redundant Code

 Discuss: Click through the animated slide to display the prompts.

What do you notice about the code in this program?

What do you wonder about the code in this program?

Discussion Goal: Students notice that there is redundant code and suggest that the program is not

efficient. Students may wonder how inheritance can be implemented to improve the program.

 Do This: Define DRY principle.

 Discuss: Use the Retrieve-Pair-Share strategy to discuss the prompt.

Why should we use the DRY principle?

 1







Discussion Goal: Students recall redundant code and efficiency and share examples of how they used

the DRY principle to reduce redundant code in the programs they wrote in The Neighborhood. Students

suggest also using the DRY principle to make sure repetitive attributes and behaviors in an inheritance

hierarchy are shared through a superclass instead of within multiple subclasses.

 Teaching Tip

Ask students to consider what additional code they would have to write in the PainterPlus class if

it was not a subclass of the Painter class.

Refactoring Code (10 minutes)

 Do This: Click through the animated slide to introduce the code segments and the redundant code.

 Discuss: To refactor code is to improve the readability, reusability, or structure of program code

without altering its functionality. Using inheritance, how can we refactor the code to follow the DRY

principle?

Discussion Goal: Students note that the classes have the same instance variables and method.

Students suggest refactoring the code to create a superclass and subclass so the instance variables and

method are shared.

 Do This: Explain the refactored code segment and identify the superclass and subclasses.

Group: Place students in pairs.

 Do This: Direct students to Level 2 on Code Studio to investigate the program with a partner.

Students make the changes to the program as prompted.

Investigate: Superclasses and Subclasses

 Do This: Click through the animated slide to demonstrate that a superclass reference can be used to

refer to an object of a superclass or subclass type.

 Teaching Tip

To help students understand the syntax, ask students guiding questions. For example:

What is the relationship between a superclass and a subclass?

Since a subclass is more specific than a superclass, can a subclass reference store a superclass

object?

 Do This: Click through the animated slide to demonstrate that a superclass reference can be used as

a formal parameter in a method to accept superclass and subclass types.

 Do This: Click through the animated slide to demonstrate that when a subclass’s constructor does not

explicitly call a superclass’s constructor using super, Java inserts a call to the superclass’s no-argument

constructor.

 Do This: Click through the animated slide to introduce the Object class.

 Teaching Tip

The java.lang package is not accessible in Java Lab for security reasons. Students will receive an

error if they attempt to explicitly import the java.lang package. Java Lab uses a version of the

java.lang package with the classes students will need for the course that all programs implicitly

 2



import.

Using Inheritance (10 minutes)

 Do This: Direct students to Level 3 on Code Studio. Students complete a choice level to create a

subclass of the Dessert class and create objects of their subclasses.

Refactoring Desserts

 Teaching Tip

Students use the Dessert class they have developed in previous lessons to refactor the given code

into subclasses of the Dessert class. These subclasses are revisited throughout the curriculum.

Students add to the Dessert class in this lesson to practice refactoring code. Students expand on

this problem and these classes to add new behaviors and create arrays of Dessert objects in

future units.

 Remarks

This is a good time to commit our code and save our Dessert subclasses to the Backpack.

 Do This: Play the music clip to cue committing their code and saving the Dessert subclasses to the

Backpack.

 Do This: Click through the animated slide to have students participate in the Code Review Call and

Response.

 Do This: Direct students to complete a code review on Level 4.

Code Review: Refactoring Desserts

Wrap Up (5 minutes)

Software Engineering Skills

 Remarks

You have learned a lot about software engineering practices and strategies! Let's take a moment to

reflect on your progress in developing your software engineering skills.

 Do This: Have students respond to the reflection prompts on the Unit 2 Guide.

 Do This: Review the concepts covered in this lesson.

 Display: Key Vocabulary

 3

 4

Assessment: Check for Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Check for Understanding

AP Classroom Topic Questions

To assign questions from the AP Classroom Question Bank that align with this lesson, create a custom

quiz in AP Classroom by searching the Question Bank for the Essential Knowledge statements listed at

the top of this lesson plan. You can find instructions and video demonstrations to do this on AP Central.

The following Topic Questions in AP Classroom can be assigned as a formative assessment for this

lesson:

Topic Questions 9.2

Note: Some Learning Objectives and Essential Knowledge statements in the suggested Topic Questions

are covered in later units.

If you are interested in licensing Code.org materials for commercial purposes contact us.

 5


https://apcentral.collegeboard.org/instructional-resources/ap-classroom
https://creativecommons.org/
https://code.org/contact

