
Lesson 1: Project Planning

45 minutes

Overview

How can I identify the requirements and things I need

to know to complete a project?

Students are introduced to the Natural Language

Processing Project and evaluate requirements and

examples to identify questions and key features. Before

beginning work on the project, students expand their

understanding of program structure and comments by

identifying best practices and exploring the use of

Javadocs to generate program documentation.

Standards Full Course Alignment

CSA Conceptual Framework

MOD-2 - Programmers use code to represent a

physical object or nonphysical concept, real or

imagined, by defining a class based on the

attirbutes and/or behaviors of the object or concept

Agenda

Warm Up (10 minutes)

Natural Language Processing

Activity (30 minutes)

Project Introduction

Documentation

Wrap Up (5 minutes)

Three W's

Assessment: Check for Understanding

AP Classroom Topic Questions

Objectives

Students will be able to:

Identify project requirements

Write single-line, multi-line, and

Javadoc comments

Preparation

Print copies of the Unit 6 Guide

(one for each student)

Check the Teacher's Lounge for

verified teachers on the CSA

Forum to find additional

strategies or resources shared by

fellow teachers

Links

Heads Up! Please make a copy of

any documents you plan to share

with students.

For the students

Project Characteristics - Handout

U6L1 Extra Practice - Handout

Unit 6 Guide - Handout

Vocabulary

HTML - Stands for Hypertext

Markup Language; the standard

system for tagging text files to be

displayed on the World Wide Web

Javadocs - The documentation

tool for Java that generates an

HTML document from comments

written inside /** */ and

formatted using @ tags

Natural Language Processing

(NLP) - The ability of a computer

https://staging-studio.code.org/courses/csa-2022/standards
https://forum.code.org/t/csa-unit-6-lesson-1-projects-and-documentation/36345/2
https://docs.google.com/document/d/1F4REIiOPekn8Umu2wIFP2RRE_DMyBXL65_qVnU1yKx0/edit?usp=sharing
https://docs.google.com/document/d/1lXZ3RMlOkZQRiL0KT1CCIMImZxM-MNwoxQug89sVoiI/edit?usp=sharing
https://docs.google.com/document/d/1-Kwx3qvUpaTit5A1e69GrfnSPnoluupyJf1HdnRs_iM/edit?usp=sharing

program to understand human

language

documentation - written

descriptions of the purpose and

functionality of code

Teaching Guide

Warm Up (10 minutes)

Natural Language Processing

 Remarks

Throughout this unit, we will explore how natural language processing is used to understand the

structure and meaning of text. We will learn common strategies and techniques used to develop

programs that can understand, manipulate, and respond to human language.

 Do This: Define natural language processing (NLP).

 Display: Show the video – Software Engineering: Natural Language Processing.

 Discuss: Click through the animated slide to display the prompts. Use the Retrieve-Pair-Share

strategy to discuss the prompts.

What are some other examples of where you have seen or experienced NLP?

What are some examples of where you think NLP could be useful?

Discussion Goal: Students share examples that they have seen or experienced, such as chatbots on

websites or virtual assistants. Students suggest applications of NLP that they feel could be useful.

Activity (30 minutes)

Project Introduction (15 minutes)

 Do This: Review the lesson objectives.

 Remarks

For the unit project, you will create a program that uses natural language processing techniques to

analyze, manipulate, or generate text. Let's start by reviewing the project requirements to identify

what we know and what we need to know, then we will look at some examples to identify specific

characteristics and features that we need to develop.

 Do This: Introduce the project requirements and rubric.

 Discuss: Click through the animated slide to display the prompts. Use the Retrieve-Pair-Share

strategy to discuss the prompts.

What are things in the project requirements and rubric that we already know?

What are some things we need to know?





Discussion Goal: Students identify concepts they already know in the project requirements and the

rubric, such as file and user input. Students suggest things they need to know, such as how to write

algorithms using natural language processing techniques, ArrayList s, and String manipulations.

 Remarks

Now that we have an idea of what we know and what we need to know, let's take a look at some

examples of this project to understand the type of work you will need to complete.

Group: Place students in pairs.

 Distribute: Give each pair a copy of the Project Characteristics handout.

 Do This: Direct students to Level 1 on Code Studio. Students analyze the example projects and

generate a list of common characteristics and key features on the Project Characteristics handout.

Natural Language Processing Project Examples

 Teaching Tip

Emphasize to students that while these are examples of the unit project, they are not representative

of the only ways they can approach or develop the project.

It may be helpful to model the process for students first, then facilitate a discussion about the key

features of the example projects they reviewed.

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

What words and phrases are in the rubric that aligns with your list of criteria?

Discussion Goal: Students make connections between the features of the example projects that they

noticed and the project's requirements. Students also notice that there are multiple ways to achieve

each requirement.

Documentation (15 minutes)

 Remarks

Now that we have a solid understanding of the requirements of this project, we can start working

through the things we identified that we need to know. We will be learning a lot throughout this unit

that will be useful for completing this project. First, let's learn about documenting our code.

 Distribute: Give each student a copy of the Unit 6 Guide.

 Discuss: Use the Retrieve-Pair-Share strategy to discuss the prompt.

Based on our experiences with writing and reading each other's code, what are some best practices

we should follow when writing and documenting code?

Discussion Goal: Students share strategies to write and document code, such as naming conventions

for variables and methods, using white space and indentation to make code easily readable, and

writing comments to explain the purpose of individual lines or blocks of code.

 Teaching Tip

 1





You could choose to capture the strategies shared on poster paper, a presentation slide, or a digital

whiteboard.

 Do This: Define documentation.

 Remarks

Good documentation makes it easier for other software engineers to understand what is going on in

your code. There are multiple ways to document your code, such as the single-line and multi-line

comments we use in our programs already.

Today we're going to learn about one more commenting technique that can create documentation

that looks like the documentation we've been looking at and using throughout the year.

 Do This: Click through the animated slide to identify the types of documentation in the open-source

code example and introduce Javadocs.

 Discuss: Use the Hold That Thought strategy to discuss the prompt.

What do you notice? What do you wonder?

Discussion Goal: Students connect the comments shown in the open-source code example to

comments they have seen or written in previous programs. Students identify the @ tags and might

wonder if there are other tags, the purpose of the tags, or if the tags are used somewhere else in the

program.

 Teaching Tip

Guide students to notice the differences between multi-line comments and Javadocs. Ask students

how multi-line comments are written and have them compare those to Javadocs comments.

 Do This: Click through the animated slide to explain that Javadocs generates an HTML document

from comments written inside /** */ and formatted using @ tags and to define HTML.

 Do This: Click through the animated slide to introduce the Javadocs tags for specifying parameters

and returns.

 Do This: Direct students to Level 2 on Code Studio to add Javadocs comments to their Dessert

class. Have students share their documentation with a neighbor for feedback regarding the clarity and

structure of their comments.

Documenting Program Code

 Teaching Tip

Students will likely not have time to document the entire Dessert class. Students should focus on

adding documentation where indicated in the level instructions and then sharing their work with a

neighbor for feedback.

Wrap Up (5 minutes)

Three W's

 2

 Discuss: Click through the animated slide to display the prompts.

What did we learn today?

So what?

Now what?

Discussion Goal: Students share the concepts they learned from the lesson, including how to identify

project requirements and characteristics from examples and create Javadocs documentation. Students

suggest problems where they might use these natural language processing strategies and Javadocs

documentation and make predictions about upcoming lessons or problems.

 Do This: Review the concepts covered in this lesson.

 Display: Key Vocabulary

Assessment: Check for Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Check for Understanding

AP Classroom Topic Questions

To assign questions from the AP Classroom Question Bank that align with this lesson, create a custom

quiz in AP Classroom by searching the Question Bank for the Essential Knowledge statements listed at

the top of this lesson plan. You can find instructions and video demonstrations to do this on AP Central.

If you are interested in licensing Code.org materials for commercial purposes contact us.

 3


https://apcentral.collegeboard.org/instructional-resources/ap-classroom
https://creativecommons.org/
https://code.org/contact

