

Background

- Folate receptor alpha (FR α) is overexpressed in ovarian cancer and is a clinically validated target for therapeutic intervention
- Mirvetuximab soravtansine-gynx is an FR α ADC with a DM4 microtubulin payload which is approved for the treatment of platinum-resistant ovarian cancer (PROC)
 - limited to high FR α tumor expression levels
 - associated with ocular toxicity and neuropathy
- LY4170156 is an ADC composed of an Fc-silent, FR α specific humanized IgG1 ADC linked to exatecan, a topoisomerase-I inhibitor, via a proprietary cleavable polysarcosine (PSAR) linker at a homogenous DAR of 8¹
- LY4170156 demonstrated preclinical *in vivo* efficacy across all FR α expression levels and mirvetuximab soravtansine-gynx resistant ovarian models, as well as across multiple tumor types¹

Results from the first-in-human phase 1 study of LY4170156, an antibody drug conjugate (ADC) targeting folate receptor alpha (FR α) in recurrent platinum resistant high-grade serous ovarian cancer (HGSOC)

Isabelle Ray-Coquard¹, Chrisann Kyi², Bhavana Pothuri³, Ana Oaknin⁴, Nehal Lakhani⁵, Takafumi Koyama⁶, Shigehisa Kitano⁷, William B. McKean⁸, Ainhoa Madariaga⁹, Meena Okera¹⁰, Myong Cheol Lim¹¹, Alejandro Perez-Fidalgo¹², Giuseppe Curigliano¹³, Domenica Lorusso¹⁴, Ramez N. Eskander¹⁵, Shannon N. Westin¹⁶, Chunxiao Wang¹⁷, Marine Manvelyan¹⁷, Emin Avsar¹⁷, David M. O'Malley¹⁸

¹Centre Leon Berard, University Claude Bernard, Lyon, France; ²Memorial Sloan Kettering Cancer Center, New York, NY, USA; ³Division of Gynecologic Oncology, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA; ⁴Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital Campus, Barcelona, Spain; ⁵START Center for Cancer Research, Grand Rapids, MI, USA; ⁶Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; ⁷Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ⁸Utah Cancer Specialists, START Center for Cancer Research, Salt Lake City, UT, USA; ⁹Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain; ¹⁰Medical Oncology, Cancer Research SA, Adelaide, Australia; ¹¹National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea; ¹²Department of Medical Oncology, Hospital Clínico Universitari de València, Valencia, INCLIVA, Spain; ¹³European Institute of Oncology, IRCCS, Milan, Italy and University of Milano, Milano, Italy; ¹⁴Gynaecological Oncology Unit, Humanitas Hospital, San Pio X, Milan, and Humanitas University, Rozzano (MI), Italy; ¹⁵Obstetrics, Gynecology, and Reproductive Science Department, University of California San Diego, La Jolla, CA, USA; ¹⁶Department of Gynecologic Oncology and Reproductive Medicine, The MD Anderson Cancer Center, Houston, TX, USA; ¹⁷Eli Lilly and Company, Indianapolis, IN, USA; ¹⁸Division of Gynecologic Oncology, The Ohio State University, James Comprehensive Cancer Center, Columbus, OH, USA

OBJECTIVES

Determine the safety and efficacy of LY4170156 in patients with high-grade serous ovarian cancer (HGSOC) and other solid tumors (NCT06400472)

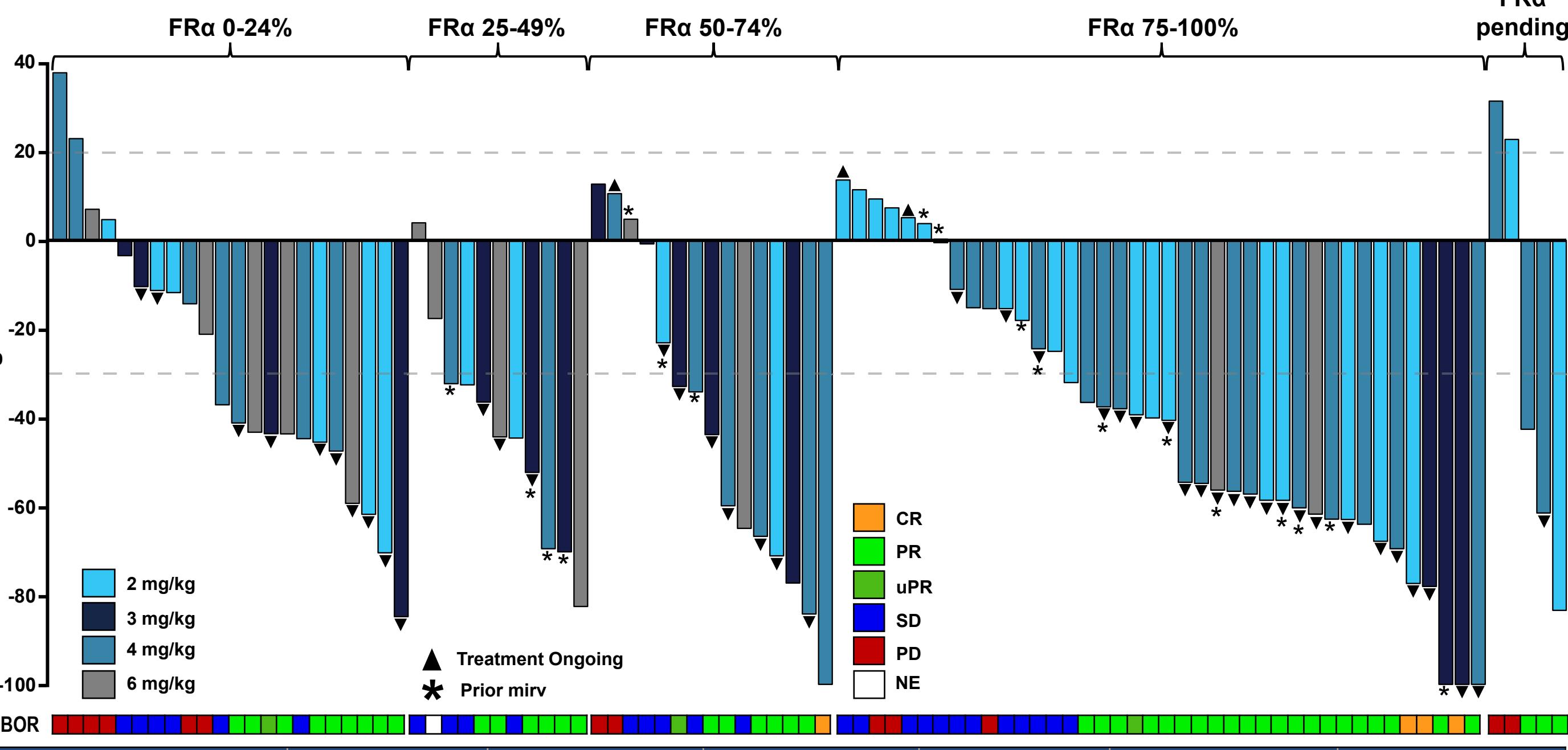
CONCLUSIONS

- LY4170156 was well-tolerated among HGSOC pts with no grade ≥ 3 drug related ocular, neuropathy, or alopecia events
- LY4170156 showed promising clinical activity in heavily pre-treated patients across all FR α expression levels and regardless of prior mirvetuximab soravtansine-gynx treatment
- FRAmework-01, is a global phase 3 trial investigating LY4170156 monotherapy in patients with PROC, and in combination with bevacizumab in patients with PSOC (NCT07213804)

Study is sponsored by Eli Lilly and Company

European Society for Medical Oncology (ESMO)
13th Annual Meeting; Berlin, Germany;
October 17-21, 2025

Declaration of Interests: advisory board (personal) - Roche, GSK, Mersana, Deciphera, Amgen, Onxera, Merck Serono, Agenus, Novartis, Macrogenics, Clovis, EQRx, Esai, SUTRO, BMS, Adaptimmune, Daiichi-Sankyo, Immunogen, SEAGEN, PMVPharma, AbbVie, LOXO LILLY, PHARMAND, Gennab, Incyte, Regeneron Pharmaceuticals; advisory board (institutional) - AstraZeneca, translational research (institutional) - BMS (COLIBRI trial), MSD (NEOPREMBROV trial); past president (non-financial interest) - GINECO; and principal investigator (non-financial interest) - FAGOI


Copyright ©2025 Eli Lilly and Company. All rights reserved.

Study Design

- Key inclusion criteria are
 - Diagnosis of recurrent platinum-resistant ovarian cancer and other select metastatic and advanced solid tumors
 - Patients who progressed on prior mirvetuximab soravtansine-gynx were eligible
 - ≥ 18 years of age and ECOG PS 0-1
- Dose escalation utilized a mTPI-2 design and evaluated LY4170156 at dose levels ranging from 2-6 mg/kg Q3W IV
 - Dose escalation was followed by a randomized dose optimization cohort in HGSOC (2 mg/kg, 4 mg/kg, and 6 mg/kg)
 - 3-6 patients were enrolled per dose level to evaluate dose-limiting toxicities (DLTs) in Cycle 1 (21 days)
 - Selected dose levels were backfilled up to a total of 20 patients
- Key endpoints were safety, PK², RP2D determination, and antitumor activity per RECIST v1.1
- Data cutoff date was 30 Jul 2025

Results

Fig 1. Antitumor activity by dose level and FR α expression

Efficacy Evaluable Patients	FR α 0-24% (n=25)	FR α 25-49% (n=12)	FR α 50-74% (n=16)	FR α $\geq 75\%$ (n=46)	FR α pending (n=5)	Total (N=104)
ORR ^a , % (n/N)	40 (10/25)	50 (6/12)	50 (8/16)	54 (25/46)	60 (3/5)	50 (52/104)
CR, n	-	-	1	3	-	4
PR, n	10 ^b	6	7 ^b	22 ^b	3	48 ^c
DCR ^d , % (n/N)	68 (17/25)	83 (10/12)	81 (13/16)	83 (38/46)	60 (3/5)	78 (81/104)

Efficacy evaluable patients are those who have a baseline assessment and at least one post-baseline response assessment or discontinued treatment prior to the first post-baseline response assessment. ^aORR includes patients with CR and PR (confirmed, and unconfirmed [ongoing and pending confirmation]). ^bIncludes 1 unconfirmed PR, ongoing and pending confirmation. ^cIncludes 3 unconfirmed PRs, ongoing and pending confirmation. ^dIncludes 2 SDs with non-measurable lesions not shown in the waterfall plot. FR α expression levels at 2+ and/or 3+ intensity were assessed using Ventana RxRx IHC assay.

Table 2. Safety

	Treatment-Emergent AEs ($\geq 20\%$), All Doses and Patients									
	2 mg/kg (n=35)		3 mg/kg (n=17)		4 mg/kg (n=39)		6 mg/kg (n=14)		Total (N=105)	
Adverse Event, %	Any	G ≥ 3	Any	G ≥ 3	Any	G ≥ 3	Any	G ≥ 3	Any	G ≥ 3
Nausea	60	3	47	-	69	-	79	14	64	3
Fatigue ^a	60	3	41	-	46	-	71	7	53	2
Anemia	20	9	41	18	44	31	71	57	39	25
Vomiting	46	3	24	0	33	-	36	7	36	2
Neutropenia ^a	17	6	35	18	41	31	57	57	34	24
Diarrhea	26	-	29	-	44	3	29	0	33	1
Abdominal pain	43	6	6	-	23	-	14	7	26	3
Constipation	34	3	12	-	18	-	29	-	24	1
Decreased appetite	11	-	24	-	31	-	36	-	24	-
Dose reductions due to TEAEs, %	-		24		36		64		26	

^aConsolidated terms: fatigue includes fatigue and asthenia; neutropenia includes neutropenia and neutrophil count decreased

- 50 pts are ongoing, 12 discontinued due to AEs (10 due to related AEs)
- 8% had grade 4 neutropenia, 2% had febrile neutropenia (no prophylactic GCSF used)
- Grade ≥ 3 related ocular toxicities or peripheral neuropathy were not observed

References:

- Viricel W, et al. *Cancer Res*. 2023; 83 (7_Supplement): 1544
- Pothuri B, et al. Poster #236eP to be presented at ESMO, Oct 17-21, 2025

Results from the first-in-human phase 1 study of LY4170156, an antibody drug conjugate (ADC) targeting folate receptor alpha (FR α) in recurrent platinum resistant high-grade serous ovarian cancer (HGSOC)

Isabelle Ray-Coquard¹, Chrisann Kyi², Bhavana Pothuri³, Ana Oaknin⁴, Nehal Lakhani⁵, Takafumi Koyama⁶, Shigehisa Kitano⁷, William B. McKean⁸, Ainhoa Madariaga⁹, Meena Okera¹⁰, Myong Cheol Lim¹¹, Alejandro Perez-Fidalgo¹², Giuseppe Curigliano¹³, Domenica Lorusso¹⁴, Ramez N. Eskander¹⁵, Shannon N. Westin¹⁶, Chunxiao Wang¹⁷, Marine Manvelyan¹⁷, Emin Avsar¹⁷, David M. O'Malley¹⁸

¹Centre Leon Berard, University Claude Bernard, Lyon, France; ²Memorial Sloan Kettering Cancer Center, New York, NY, USA; ³Division of Gynecologic Oncology, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA; ⁴Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ⁵START Center for Cancer Research, Grand Rapids, MI, USA; ⁶Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; ⁷Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ⁸Utah Cancer Specialists, The START Center for Cancer Research, Salt Lake City, UT, USA; ⁹Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain; ¹⁰Medical Oncology, Cancer Research SA, Adelaide, Australia; ¹¹National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea; ¹²Department of Medical Oncology, Hospital Clinico Universitario de Valencia, Valencia, INCLIVA, Spain; ¹³European Institute of Oncology, IRCCS, Milan, Italy and University of Milano, Milano, Italy; ¹⁴Gynaecological Oncology Unit, Humanitas Hospital, San Pio X, Milan, and Humanitas University, Rozzano (MI), Italy; ¹⁵Obstetrics, Gynecology, and Reproductive Science Department, University of California San Diego, La Jolla, CA, USA; ¹⁶Department of Gynecologic Oncology and Reproductive Medicine, The MD Anderson Cancer Center, Houston, TX, USA; ¹⁷Eli Lilly and Company, Indianapolis, IN, USA; ¹⁸Division of Gynecologic Oncology, The Ohio State University, James Comprehensive Cancer Center, Columbus, OH, USA

OBJECTIVES

- Determine the safety and efficacy of LY4170156 in patients with high-grade serous ovarian cancer (HGSOC) and other solid tumors (NCT06400472)

BACKGROUND

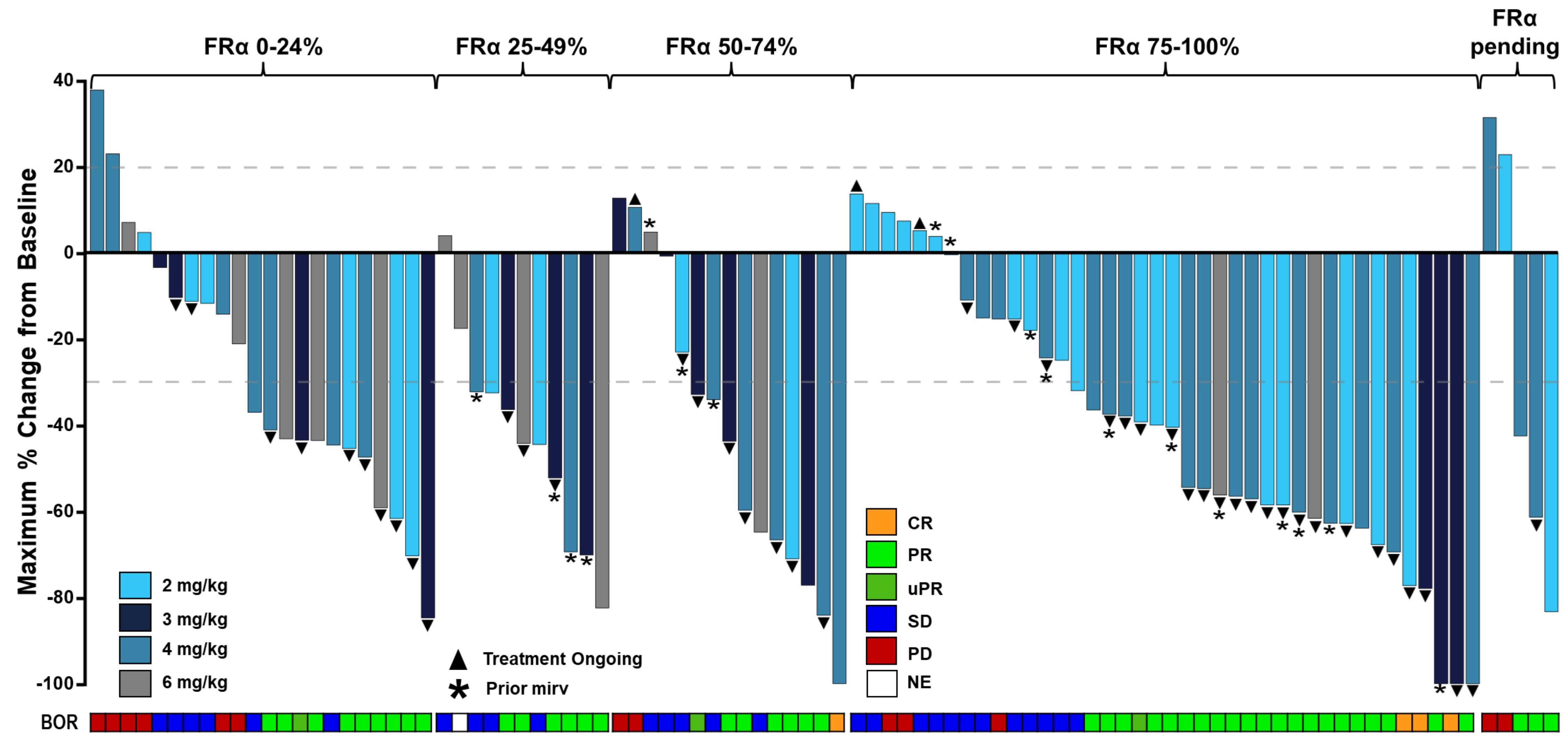
- Folate receptor alpha (FR α) is overexpressed in ovarian cancer and is a clinically validated target for therapeutic intervention
- Mirvetuximab soravtansine-gynx is an FR α ADC with a DM4 microtubulin payload which is approved for the treatment of platinum-resistant ovarian cancer (PROC)
 - limited to high FR α tumor expression levels
 - associated with ocular toxicity and neuropathy
- LY4170156 is an ADC composed of an Fc-silent, FR α specific humanized IgG1 ADC linked to exatecan, a topoisomerase-I inhibitor, via a proprietary cleavable polysarcosine (PSAR) linker at a homogenous DAR of 8¹
- LY4170156 demonstrated preclinical in vivo efficacy across all FR α expression levels and mirvetuximab soravtansine-gynx resistant ovarian models, as well as across multiple tumor types¹

¹Viricel W, et al. Poster presented at AACR 2023

STUDY DESIGN

- Key inclusion criteria are
 - Diagnosis of recurrent platinum-resistant ovarian cancer and other select metastatic and advanced solid tumors
 - Patients who progressed on prior mirvetuximab soravtansine-gynx were eligible
 - ≥18 years of age and ECOG PS 0-1
- Dose escalation utilized a mTPI-2 design and evaluated LY4170156 at dose levels ranging from 2-6 mg/kg Q3W IV
 - Dose escalation was followed by a randomized dose optimization cohort in HGSOC (2 mg/kg, 4 mg/kg, and 6 mg/kg)
 - 3-6 patients were enrolled per dose level to evaluate dose-limiting toxicities (DLTs) in Cycle 1 (21 days)
 - Selected dose levels were backfilled up to a total of 20 patients
- Key endpoints were safety, PK², RP2D determination, and antitumor activity per RECIST v1.1
- Data cutoff date was 30 Jul 2025

RESULTS

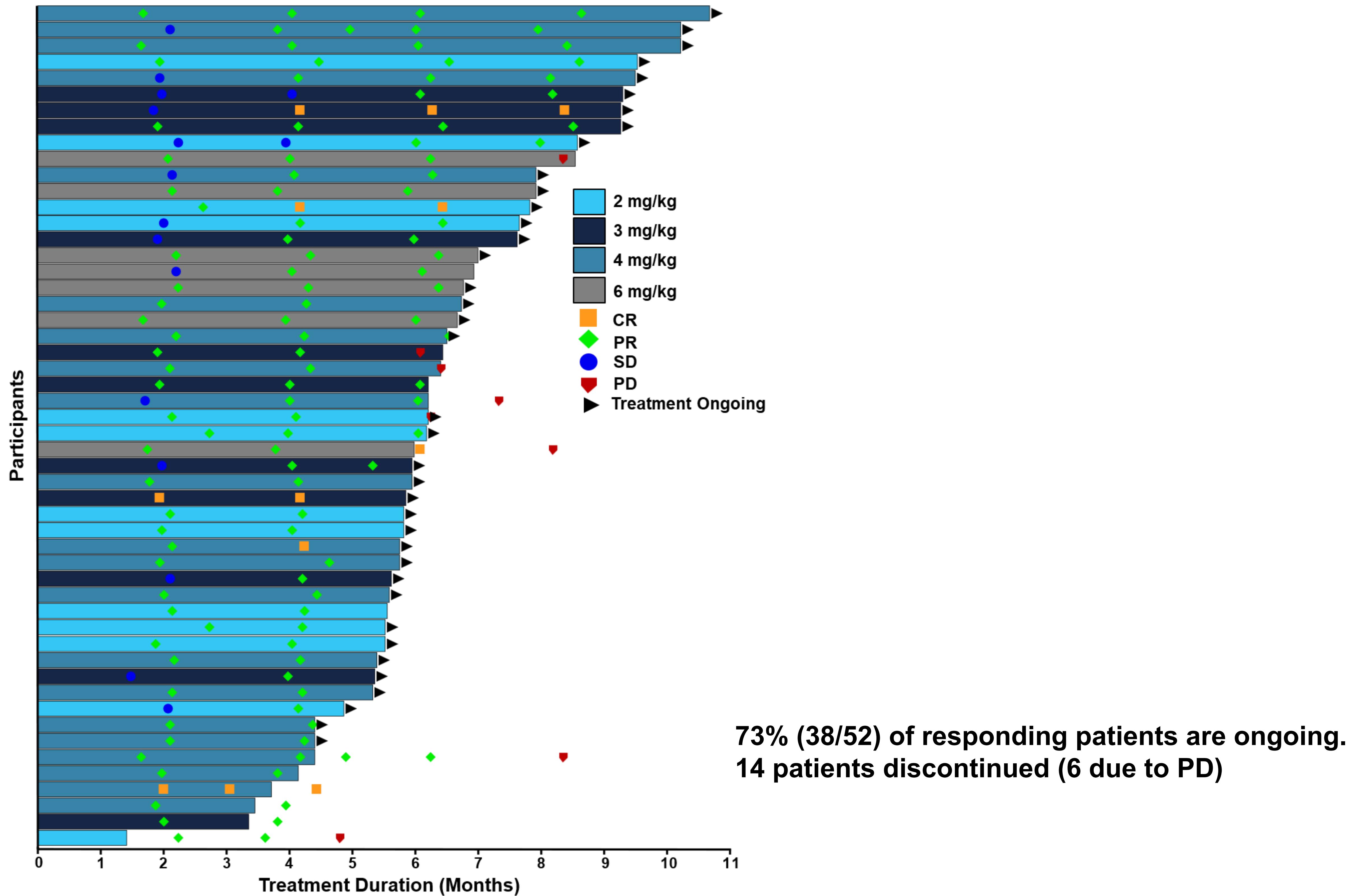

Table 1. Baseline Characteristics

Characteristics	LY4170156 N=105 ^a
Median age, years (range)	63 (40-89)
Race, n (%)	
White / Asian	68 (65) / 16 (15)
Black or African American / Not Reported	2 (2) / 19 (18)
ECOG PS, n (%)	
0 / 1	38 (36) / 67 (64)
Histology, n (%)	
Serous	97 (92)
Endometrioid	3 (3)
Carcinosarcoma	1 (1)
Other	4 (4)
FRα expression by IHC central testing, n (%)	
<75% at 2+ and/or 3+ intensity	54 (51)
≥75% at 2+ and/or 3+ intensity	46 (44)
Pending	5 (5)
Median prior systemic regimens (range)	5 (1-11)
Selected Prior Therapy, n (%)	
Mirv / Bevacizumab	18 (17 ^b) / 92 (88)
PARPi / Topotecan	69 (66) / 10 (10)
Platinum-resistant ^c	101 (96)

^a4 doses of LY4170156 were evaluated: 2 mg/kg (n=35), 3 mg/kg (n=17), 4 mg/kg (n=39), and 6 mg/kg (n=14). ^b61% had FRα ≥75%. ^c3 had missing data

RESULTS

Fig 1. Antitumor activity by dose level and FR α expression



Efficacy Evaluable Patients	FR α 0-24% (n=25)	FR α 25-49% (n=12)	FR α 50-74% (n=16)	FR α \geq 75% (n=46)	FR α pending (n=5)	Total (N=104)
ORR ^a , % (n/N)	40 (10/25)	50 (6/12)	50 (8/16)	54 (25/46)	60 (3/5)	50 (52/104)
CR, n	-	-	1	3	-	4
PR, n	10 ^b	6	7 ^b	22 ^b	3	48 ^c
DCR ^d , % (n/N)	68 (17/25)	83 (10/12)	81 (13/16)	83 (38/46)	60 (3/5)	78 (81/104)

Efficacy evaluable patients are those who have a baseline assessment and at least one post-baseline response assessment or discontinued treatment prior to the first post-baseline response assessment. ^aORR includes patients with CR and PR (confirmed and unconfirmed [ongoing and pending confirmation]). ^bIncludes 1 unconfirmed PR, ongoing and pending confirmation. ^cIncludes 3 unconfirmed PRs, ongoing and pending confirmation. ^dIncludes 2 SDs with non-measurable lesions not shown in the waterfall plot. FR α expression levels at 2+ and/or 3+ intensity were assessed using Ventana RxRx IHC assay

RESULTS

Fig 2. Treatment Duration in Responders

RESULTS

Table 2. Safety

Treatment-Emergent AEs ($\geq 20\%$), All Doses and Patients										
Adverse Event, %	2 mg/kg (n=35)		3 mg/kg (n=17)		4 mg/kg (n=39)		6 mg/kg (n=14)		Total (N=105)	
	Any	G ≥ 3	Any	G ≥ 3						
Nausea	60	3	47	-	69	-	79	14	64	3
Fatigue ^a	60	3	41	-	46	-	71	7	53	2
Anemia ^a	20	9	41	18	44	31	71	57	39	25
Vomiting	46	3	24	-	33	-	36	7	36	2
Neutropenia ^a	17	6	35	18	41	31	57	57	34	24
Diarrhea	26	-	29	-	44	3	29	-	33	1
Abdominal pain	43	6	6	-	23	-	14	7	26	3
Constipation	34	3	12	-	18	-	29	-	24	1
Decreased appetite	11	-	24	-	31	-	36	-	24	-
Dose reductions due to TEAEs, %	-		24		36		64		26	

^aConsolidated terms: fatigue includes fatigue and asthenia; neutropenia includes neutropenia and neutrophil count decreased

- 50 pts are ongoing, 12 discontinued due to AEs (10 due to related AEs)
- 8% had grade 4 neutropenia, 2% had febrile neutropenia (no prophylactic GCSF used)
- Grade ≥ 3 related ocular toxicities or peripheral neuropathy were not observed

CONCLUSIONS

- ❖ LY4170156 was well-tolerated among HGSOC pts with no grade ≥ 3 drug related ocular, neuropathy, or alopecia events
- ❖ LY4170156 showed promising clinical activity in heavily pre-treated patients across all FR α expression levels and regardless of prior mirvetuximab soravtansine-gynx treatment
- ❖ FRAmework-01, is a global phase 3 trial investigating LY4170156 monotherapy in patients with PROC, and in combination with bevacizumab in patients with PSOC (NCT07213804)

REFERENCES / ACKNOWLEDGEMENTS

Reference

¹Viricel W, et al. Poster presented at AACR 2023

²Pothuri B. et al. Poster #236eP to be presented at ESMO, Oct 17-21, 2025

Acknowledgements

We thank the clinical trial participants, their caregivers, and the trial investigators and study staff without whom this work would not be possible. Medical writing support was provided by Naimah Bolaji, PhD, a full-time employee of Eli Lilly and Company