Association of Tirzepatide With Kidney Parameters in People With Obesity and Prediabetes From SURMOUNT-1 Over 176 Weeks

Hiddo J. L. Heerspink¹, Daniel H. van Raalte², Katherine Tuttle³, David Z. I. Cherney⁴, Petter Bjornstad⁵, Carolina Piras De Oliveira⁶, Georgios K. Dimitriadis⁶, Dachuang Cao⁶, Bruno Linetzky⁶, Irina Jouravskaya⁶, Ryan Griffin⁶

¹University of Groningen, University Medical Center Groningen, Groningen, the Netherlands, ²Amsterdam University Medical Center, Amsterdam, the Netherlands, ³Providence Inland Northwest Health and University of Washington School of Medicine, Spokane, USA, ⁴Toronto General Hospital, University of Toronto, Toronto, Canada, ⁵University of Washington Medicine Diabetes Institute, Seattle, USA, ⁶Eli Lilly and Company, Indianapolis, USA

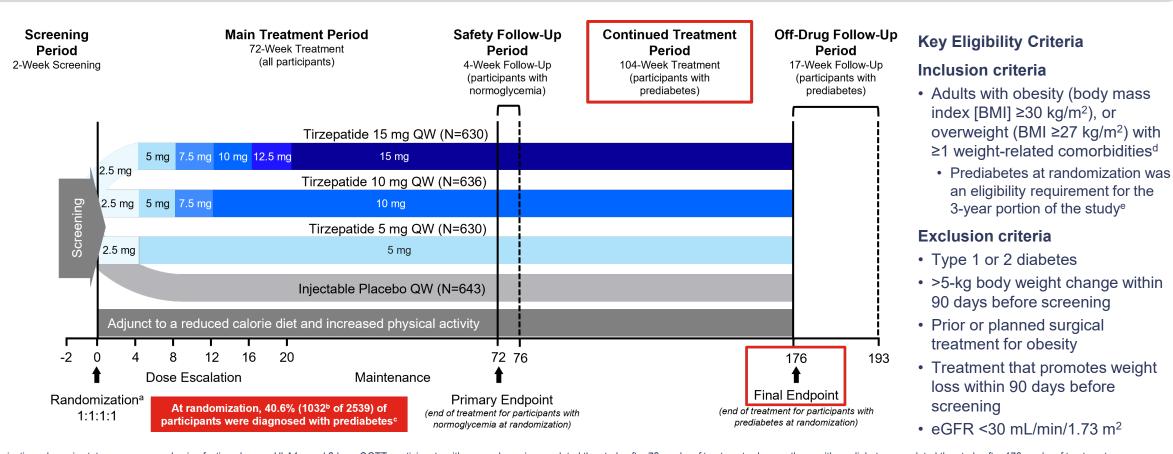
American Diabetes Association – 85th Annual Scientific Sessions; Chicago, IL, USA; 20 – 23 June 2025

Presenter Disclosures

• H. J. L. Heerspink has received consulting fees from: AstraZeneca, Alexion, Bayer Pharmaceuticals, Boehringer Ingelheim, CSL Behring, Dimerix, Eli Lilly and Company, Gilead Sciences, Janssen, Merck, Novartis, Novo Nordisk, Roche, and Travere Therapeutics; and research support from: AstraZeneca, Boehringer Ingelheim, Janssen, and Novo Nordisk

Background and Aims

- Obesity and type 2 diabetes (T2D) lead to kidney damage and decline in eGFR over time^{1,2}
- Tirzepatide is a once-weekly dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist approved for the treatment of T2D,³ obesity, and obstructive sleep apnea^{a,4}
- Tirzepatide has been associated with kidney protective effects
 - In a post hoc analysis of the SURPASS-4 trial, in people with T2D with obesity or overweight, tirzepatide was associated with improved eGFR and UACR compared to insulin glargine after 72 weeks treatment¹
 - In a post hoc analysis of the SURMOUNT-1 trial, in participants with obesity or overweight, tirzepatide was associated with improved cystatin-C-based eGFR and UACR compared to placebo after 72 weeks treatment⁵
- Effects of tirzepatide on kidney parameters over longer follow-up periods are unknown


eGFR=estimated glomerular filtration rate; UACR=urine albumin-creatinine ratio.

^{1.} Heerspink HJL, et al. Lancet Diabetes Endocrinol. 2022;10:774-785. 2. Maric-Bilkan C. Med Clin North Am. 2013;97:59-74. 3. MOUNJARO (tirzepatide) [US Highlights of Prescribing Information]. Indianapolis, IN: Eli Lilly and Company, 2024.

Objective and Study Design

Objective

To analyze kidney parameters over 176 weeks in people with obesity and prediabetes treated with tirzepatide as compared with placebo in a post hoc analysis of SURMOUNT-1

^aAt randomization, glycemic status was assessed using fasting glucose, HbA1c, and 2-hour OGTT; participants with normoglycemia completed the study after 72 weeks of treatment, whereas those with prediabetes completed the study after 176 weeks of treatment; br62 participants treated with tirzepatide (5 mg: n=247; 10 mg: n=245; 15 mg: n=253) and 270 participants treated with placebo had prediabetes at randomization; and participants treated with placebo had prediabetes at randomization; As defined by the 2019 American Diabetes Association guidelines; see Jastreboff AM, et al. N Engl J Med. 2022;387:205-216; Alphyertension, dyslipidemia, obstructive sleep apnea, or cardiovascular disease; Prediabetes defined as FBG of 100-125 mg/dL (5.6-6.9 mmol/L), 2-hour glucose following OGTT of 140-199 mg/dL (7.8-11.0 mmol/L), and HbA1c of 5.7-6.4% (39-47 mmol/mol). BMI=body mass index; eGFR=estimated glomerular filtration rate; FBG=fasting blood glucose; HbA1c=glycated hemoglobin; OGTT=oral glucose tolerance test; QW=once weekly.

1. American Diabetes Association. Diabetes Care. 2019:42(Suppl1):S13-S28.

Post Hoc Analysis Methods

- UACR and eGFR (CKD-EPI Creatinine-Cystatin Equation 2021) were assessed in the pooled tirzepatide (5 mg, 10 mg, and 15 mg) group and placebo group
- Change from baseline to Week 176 was analyzed using mixed models for repeated measures with on-treatment data for participants with prediabetes at randomization for:
 - Creatinine-cystatin-C-based eGFR (Cr-Cys-C-eGFR) subgroups:
 - Baseline <90 mL/min/1.73 m²
 - Baseline ≥90 mL/min/1.73 m²
 - Creatinine-based eGFR (Cr-eGFR)
 - Cystatin-C-based eGFR (Cys-C-eGFR)
 - UACR subgroups:
 - Baseline UACR <30 mg/g
 - Baseline UACR ≥30 mg/g

Baseline Demographics and Clinical Characteristics From the SURMOUNT-1 Trial¹

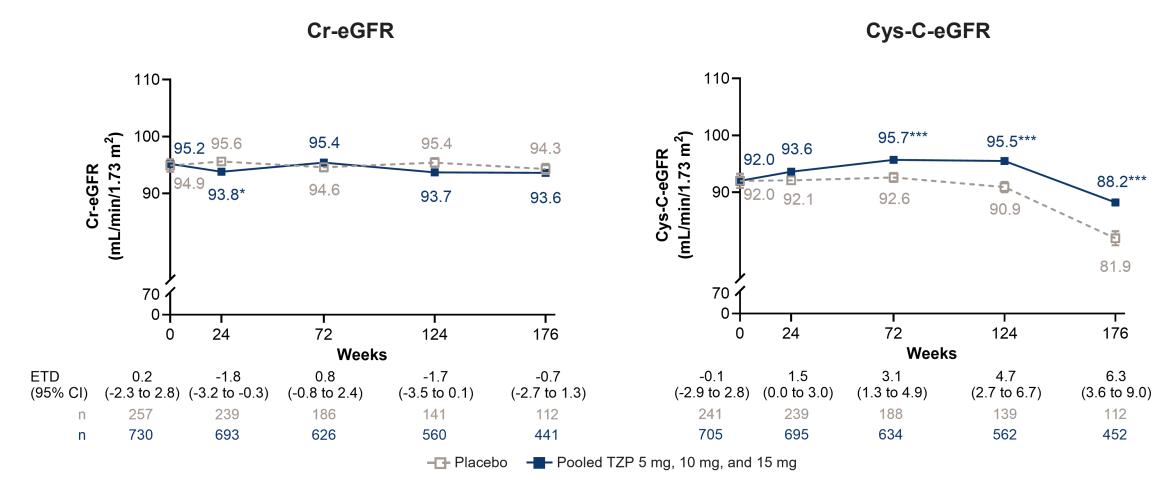
Characteristic	All Participants With Prediabetes at Baseline (N=1032)	
Age, years	48.2 (11.8)	
Female, n (%)	659 (63.9)	
Race, n (%)		
White	758 (73.4)	
Asian	105 (10.2)	
Black	77 (7.5)	
Other ^a	79 (7.7)	
Multiple	13 (1.3)	
Weight, kg	107.3 (23.4)	
BMI, kg/m ²	38.8 (7.1)	
HbA1c, %	5.8 (0.3)	
FPG, mg/dL	101.3 (9.6)	
SBP, mm Hg	125.6 (12.7)	

Baseline Kidney Function

Parameter	Placebo (N=270)	Pooled TZP 5 mg, 10 mg, and 15 mg (N=762)	Total (N=1032)
Cr-Cys-C-eGFR, mL/min/1.73 m ² , mean (SD)	97.3 (17.8)	97.0 (17.5)	97.1 (17.6)
Cr-Cys-C-eGFR category, n (%)			
<90 mL/min/1.73 m ²	158 (58.5)	492 (64.6)	650 (63.0)
≥90 mL/min/1.73 m ²	85 (31.5)	216 (28.3)	301 (29.2)
Cr-eGFR, mL/min/1.73 m ² , mean (SD)	97.2 (17.6)	97.2 (17.1)	97.2 (17.3)
Cys-C-eGFR, mL/min/1.73 m ² , mean (SD)	92.3 (19.8)	91.7 (19.2)	91.9 (19.3)
UACR, mg/g, median (IQR)	7.0 (4.0-13.0)	7.0 (4.3-12.0)	7.0 (4.0-12.0)
UACR category			
Normal albuminuria (UACR <30 mg/g)	240 (88.9)	684 (90.0)	924 (89.7)
Microalbuminuria (UACR ≥30-≤300 mg/g)	27 (10.0)	67 (8.8)	94 (9.1)
Macroalbuminuria (UACR >300 mg/g)	3 (1.1)	9 (1.2)	12 (1.2)

Tirzepatide Treatment Was Associated With a Significantly Smaller Decline in Cr-Cys-C-eGFR vs. Placebo Over 176 Weeks

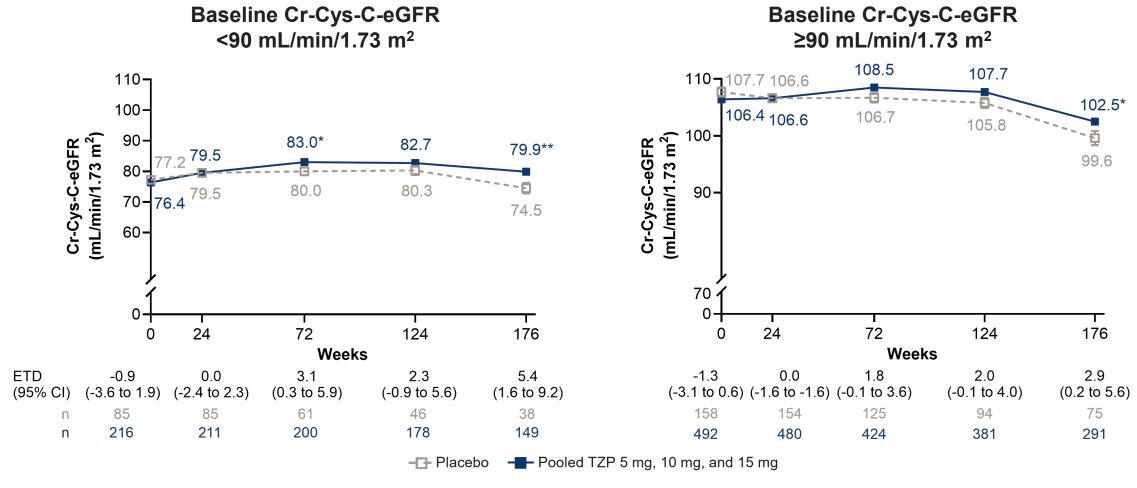
	Slope (Per ` Cr-Cys-C-eGFR mL/min per 1.73 n		
N	Pooled TZP 5 mg, 10 mg, and 15 mg	Placebo	Difference (95% CI)
1032	-0.56 (0.16)	-1.56 (0.31)	1.01 (0.33-1.69)


Notes: Data are mean decline (SE). Mixed effect regression model including random effects for intercept and time within participant. Change in eGFR included baseline, country, sex, treatment, time, treatment*time as variables.

^{*}p<0.05, **p<0.01, ***p<0.001 vs. placebo.

Notes: Data are LSM (SE) unless stated otherwise. The MMRM model for post-baseline measures included baseline value, country, sex, treatment, time, treatment*time (type III sum of squares) as variables. The ANOVA model for baseline measures include treatment (type III sum of squares) as a variable.

Tirzepatide Treatment Was Associated With a Smaller Decline in Cys-C-eGFR vs. Placebo Over 176 Weeks

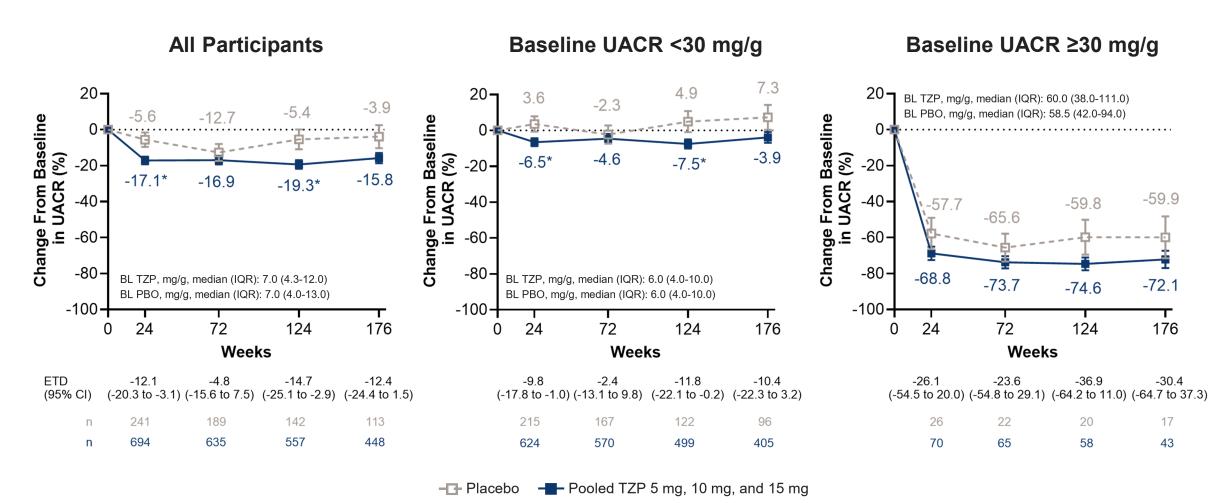


*p<0.05, ***p<0.001 vs. placebo.

Notes: Data are LSM (SE) unless stated otherwise. The MMRM model for post-baseline measures included baseline value, country, sex, treatment, time, treatment*time (type III sum of squares) as variables. The ANOVA model for baseline measures include treatment (type III sum of squares) as a variable.

ANOVA=analysis of variance; Cl=confidence interval; Cr-eGFR=creatinine-based estimated glomerular filtration rate; Cys-C-eGFR=cystatin-C-based estimated glomerular filtration rate; ETD=estimated treatment difference; LSM=least squares mean: MMRM=mixed model for repeated measures: SE=standard error: TZP=tirzepatide.

Tirzepatide Treatment Was Associated With a Smaller Decline in eGFR vs. Placebo After 176 Weeks, Regardless of Baseline eGFR



^{*}p<0.05, **p<0.01 vs. placebo.

Notes: Data are LSM (SE) unless stated otherwise. The MMRM model for post-baseline measures included baseline value, country, sex, treatment, time, treatment*time (type III sum of squares) as variables. The ANOVA model for baseline measures include treatment (type III sum of squares) as a variable.

ANOVA=analysis of variance; Cl=confidence interval; Cr-Cys-C-eGFR=creatinine-cystatin-C-based estimated glomerular filtration rate; eGFR=estimated glomerular filtration rate; ETD=estimated treatment difference; LSM=least squares mean: MMRM=mixed model for repeated measures: SE=standard error; TZP=tirzepatide.

Tirzepatide Was Associated With a Numerically Greater Percentage Reduction in UACR vs. Placebo After 176 Weeks

^{*}p<0.05 vs. placebo.

Notes: Data are estimate (SE) unless stated otherwise. The MMRM model for post-baseline measures was calculated as the log(actual measurement/baseline) with log(baseline value), country, sex, treatment, time, treatment*time (type III sum of squares) as variables. The ANOVA model for baseline measures was calculated as the log(actual measurement) and included treatment (type III sum of squares) as a variable.

BL=baseline; ANOVA=analysis of variance; CI=confidence interval; ETD=estimated treatment difference; IQR=interquartile range; MMRM=mixed model for repeated measures; PBO=placebo; SE=standard error; TZP=tirzepatide; UACR=urine albumin-creatinine ratio.

Conclusion

- From this post hoc analysis of the SURMOUNT-1 trial in participants with obesity or overweight, with prediabetes and normal kidney function at baseline, treatment with tirzepatide was associated with:
 - A smaller decline of Cr-Cys-C-eGFR over 176 weeks to that of the placebo group
 - A numerically greater percentage reduction in UACR between tirzepatide and placebo
- The association between tirzepatide treatment and Cr-Cys-C-eGFR did not appear to be different in participants with baseline eGFR <90 or ≥90 mL/min/1.73 m²
- These findings support further in-depth analysis of the effect of tirzepatide in participants with obesity and chronic kidney disease, with or without T2D, in the ongoing Phase 2b TREASURE-CKD trial and Phase 3 trials, SURPASS-CVOT and SURMOUNT-MMO

Disclosures

- H. J. L. Heerspink has served as consultant for: AstraZeneca, Alexion, Alnylam, Bayer Pharmaceuticals, Boehringer Ingelheim, Dimerix, Eli Lilly and Company, Novartis, Novo Nordisk, Roche, and Travere Therapeutics; and has received grant support from: AstraZeneca, Boehringer Ingelheim, Janssen, and Novo Nordisk. All payments and honoraria are to his employer; D. H. van Raalte has received grants from: AstraZeneca, Boehringer Ingelheim, and Merck; and has received consulting fees from: AstraZeneca, Boehringer Ingelheim, Eli Lilly and Company, and Merck; K. Tuttle has received consulting fees from: Bayer Pharmaceuticals, Boehringer Ingelheim, Eli Lilly and Company, Novo Nordisk; has received payment or honoraria for speaking from: Bayer Pharmaceuticals and Novo Nordisk; has participated on data safety monitoring or advisory boards for: AstraZeneca, the George Clinical Institute for Global Health, National Institutes of Health, and the US National Institute of Diabetes and Digestive and Kidney Diseases; and reports a leadership or fiduciary role as: Chair of the Diabetic Kidney Disease Collaborative Task Force, American Society of Nephrology; **D. Z. I. Cherney** has received grants or contracts from: AstraZeneca, Boehringer Ingelheim, CSL Behring, Eli Lilly and Company, Janssen, Merck, Novo Nordisk, and Sanofi; and consulting fees and speaking honoraria from: AbbVie, AstraZeneca, Bayer Pharmaceuticals, Boehringer Ingelheim, Bristol Myers Squibb, CSL Behring, Eli Lilly and Company, Gilead Sciences, Janssen, Maze Therapeutics, Merck, Mitsubishi Tanabe Pharma, Novartis, Novo Nordisk, Otsuka, Prometic, Sanofi, and Yeungene; **P. Bjornstad** has received advisory panel, consultancy, or research support from: AstraZeneca, Bayer Pharmaceuticals, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly and Company, Horizon Pharma/Amgen, LG Chem, Merck, and Novo Nordisk; serves on steering committees for: Eli Lilly and Company and Novo Nordisk; and chairs data monitoring committees for: Bayer Pharmaceuticals; G. K. Dimitriadis, D. Cao, B. Linetzky, I. Jouravskaya, and R. Griffin are employees and shareholders of: Eli Lilly and Company; C. Piras De Oliveira was an employee of: Eli Lilly and Company at the time of the study
- Medical writing assistance was provided by Joanna Best, PhD, of ProScribe Envision Pharma Group, and was funded by Eli Lilly and Company

Lilly Content QR Code

Scan the QR code for a list of all Lilly content presented at the congress.

Other company and product names are trademarks of their respective owners.