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Abstract

Advances in black-box model performance have increased interest in understanding their internal
mechanisms, particularly as these models demonstrate exceptional predictive capabilities across
critical domains. While numerous explanation methods exist, research has not systematically
measured their combined effects, creating a knowledge gap regarding the potential benefits of
integrating multiple techniques. This thesis addresses this gap through a systematic evaluation
of established explanation methods—including SHAP, LIME, and Partial Dependence Plots—and
three novel approaches, with a specific focus on models processing tabular data.
The research methodology combines synthetic data experiments with a real-world user study to
examine whether different explanation methods vary in subjective and objective understanding and
if their combination enhances the overall understanding of the model. The user study, involving
129 participants, was designed to quantitatively and qualitatively assess the understanding of the
explanation method and the underlying model. The assumptions of the synthetic data evaluation
were specifically designed to test the characteristics of the underlying data that each explanation
method was intended to uncover.
The synthetic data evaluation validated key assumptions of the novel approaches. At various
breakpoints in the training process, SHAP values are embedded into a lower-dimensional space
using UMAP (Uniform Manifold Approximation and Projection), a non-linear dimensionality re-
duction technique for high-dimensional data visualization. Increased model complexity correlates
with larger shifts in embedding positions across these breakpoints, and distinct clusters that high-
light differences among subgroups are observed. Frequent Pattern Mining indicated that features
with strong interactions tend to have high Lift values—a metric that quantifies how much more
frequently two features occur together compared to what would be expected by chance—and that
Feature Context Embeddings, which generate vector representations of features based on the con-
texts in which they are used, effectively group related features. The findings of the synthetic data
evaluation demonstrate that the novel explanation approaches are capable of capturing properties
of the underlying data, which establishes a practical basis for real-world applications.
Results from the user study demonstrate that extending existing explanation techniques, most no-
tably by using UMAP to enhance SHAP to better expose model learning patterns, produces statis-
tically significant improvements in subjective understanding and feature importance interpretation.
The findings indicate that the UMAP-based SHAP extension was well understood subjectively, al-
though objective understanding scores were lower than for PDP and standard SHAP, likely due to
varying abstraction depths. Education significantly impacted both types of understanding, with
higher education correlating with better subjective understanding but not with improved objective
performance. Notably, the enhanced understanding of the model, generated by combining two ex-
planations, could be reliably predicted by summing their individual contributions, and the results
suggest a potential diminishing effect when integrating different approaches, although this effect
was not statistically significant at the 5% level. The results of the user study demonstrate that
combining two explanation method does improve overall understanding of the model.
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Kurzfassung

Fortschritte in der Leistung von Black-Box-Modellen haben das Interesse an einem tieferen Verständ-
nis ihrer internen Mechanismen gesteigert, insbesondere da diese Modelle in kritischen Bereichen
außergewöhnliche Vorhersagefähigkeiten demonstrieren. Obwohl zahlreiche Erklärungsverfahren
existieren, wurde deren kombinierte Wirkung bisher nicht systematisch untersucht, was eine Wis-
senslücke hinsichtlich der potenziellen Vorteile der Integration mehrerer Techniken schafft. Diese
Arbeit schließt diese Lücke durch eine systematische Evaluierung etablierter Erklärungsverfahren
– darunter SHAP, LIME und Partial Dependence Plots – sowie drei neuartige Ansätze, wobei ein
besonderer Schwerpunkt auf Modellen liegt, die tabellarische Daten verarbeiten.
Die Arbeit kombiniert eine Analyse anhand synthetischer Daten mit einer realen Nutzerstudie,
um zu untersuchen, ob verschiedene Erklärmethoden in Bezug auf das subjektive und objektive
Verständnis variieren und ob ihre Kombination das Gesamtverständnis des Modells verbessert. Die
Nutzerstudie mit 129 Teilnehmern wurde so konzipiert, dass sie das Verständnis der Erklärmethode
sowie des zugrunde liegenden Modells sowohl quantitativ als auch qualitativ bewertet. Die An-
nahmen für die Evaluierung synthetischer Daten wurden speziell entwickelt, um die Eigenschaften
der zugrunde liegenden Daten zu testen, die jedes Erklärungsverfahren aufdecken soll.
Die Evaluierung mit synthetischen Daten bestätigte zentrale Annahmen der neuartigen Ansätze.
An verschiedenen Breakpoints im Trainingsprozess wurden die SHAP-Werte in einen Embedding-
Raum mittels UMAP (Uniform Manifold Approximation and Projection) projiziert – einer nichtlin-
earen Dimensionsreduktionsmethode zur Visualisierung hochdimensionaler Daten. Eine zunehmende
Modellkomplexität korrelierte mit stärkeren Verschiebungen in den Embedding-Positionen an diesen
Breakpoints, und es bildeten sich Cluster, die Unterschiede zwischen den Subgruppen hervorhoben.
Frequent Pattern Mining ergab, dass Merkmale mit starken Interaktionseffekten tendenziell hohe
Lift-Werte aufweisen – ein Maß dafür, wie viel häufiger zwei Merkmale gemeinsam auftreten als
zufällig erwartet – und dass Feature Context Embeddings, die Vektorrepräsentationen der Merk-
male basierend auf dem Kontext ihrer Verwendung erzeugen, verwandte Merkmale effektiv grup-
pierten. Die Ergebnisse der Evaluierung mit synthetischen Daten zeigen, dass die neuartigen
Erklärungsansätze in der Lage sind, Eigenschaften der zugrunde liegenden Daten zu erfassen und
somit eine Grundlage für ihre Anwendbarkeit in realen Szenarien zu schaffen.
Die Ergebnisse der Nutzerstudie zeigen, dass die Erweiterung bestehender Erklärungsverfahren
– insbesondere durch den Einsatz von UMAP zur Verbesserung von SHAP, um die Lernmuster
des Modells besser sichtbar zu machen – statistisch signifikante Verbesserungen im subjektiven
Verständnis und in der Interpretation der Merkmalswichtigkeit bewirkt. Die Ergebnisse deuten
darauf hin, dass die auf UMAP basierende SHAP-Erweiterung subjektiv gut verstanden wurde,
wohingegen das objektive Verständnis niedriger ausfiel als bei PDP und SHAP, was vermutlich
auf unterschiedliche Abstraktionstiefen zurückzuführen ist. Die Bildung hatte einen signifikanten
Einfluss auf beide Verständnistypen, wobei ein höherer Bildungsgrad mit einem besseren subjek-
tiven Verständnis korrelierte, jedoch nicht mit einer verbesserten objektiven Leistung. Das durch
die Kombination zweier Erklärungen entstandene Modellverständnis konnte zuverlässig durch die
Summe ihrer Einzelbeiträge vorhergesagt werden, und die Ergebnisse deuten auf einen möglichen
abnehmenden Effekt bei der Integration unterschiedlicher Ansätze hin, obwohl dieser Effekt auf
dem 5%-Niveau statistisch nicht signifikant war. Insgesamt zeigen die Ergebnisse der Nutzer-
studie, dass die Kombination von zwei Erklärungsverfahren das Gesamtverständnis des Modells
verbessert.
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Chapter 1

Introduction

The annual increase in data is enormous. Although the exact figures can vary depending on the
source and measurement method, it is generally assumed that the volume of data generated and
stored increases by around 25 to 30% each year. Along with this continuous growth in data,
there is also a growing trend towards ever larger and more complex machine learning models in
order to make the best possible use of this data. The noteworthy progressions in machine learning
algorithms, specifically with the introduction of Random Forests and Deep Neural Networks, have
led to a new era of outstanding predictive performance.

Well-known platforms such as OpenAI, Google and Amazon operate models with billions of pa-
rameters and the areas of application in which machine learning models can be used are constantly
becoming more extensive. Prominent areas of application include medicine, where models can be
used to diagnose certain diseases or develop personalized medicine, biology, where machine learning
models can be used to analyze genomes and their function, or chemistry, where they can be applied
to develop lighter, more conductive or more elastic materials. The list of areas of application is
long. Chui et al. [48] list 19 industries in which machine learning models are already being used.
In dermatology, for example, convolutional neural networks have been used to accurately detect
skin cancer with high accuracy[57]. Saliency Maps have been used to highlight areas, which were
effected by the cancer [23]. Mertes et al.[49] found that applying Counterfactuals to explain di-
agnoses can significantly increase trust, satisfaction with the explanation and prediction accuracy
when asked to predict the network’s prediction.

In many of these applications, it is beneficial or even essential to understand models, either in
part or exhaustively, to draw meaningful conclusions from their use and ensure they perform
their assigned tasks effectively. However, measuring explainability remains a complex challenge.
Additionally, the depth of understanding required varies depending on the context. High-stakes
decisions, such as whether to proceed with surgery, demand a far deeper understanding than models
with no direct impact on individuals’ well-being.

In certain cases, understanding the decision-making process is not just desirable but legally re-
quired. Recent regulatory changes, particularly under the General Data Protection Regulation
(GDPR) [73], explicitly state that ”data subjects should have the right to [...] obtain an explana-
tion of the decision, and to challenge the decision” and ”shall have the right to obtain meaningful
information about the logic involved” [24].

Although evaluating explanation methods that clarify model behavior is an active area of research,
little attention has been given to the combined effects of multiple explanation methods on model
interpretability. Moreover, widely used explanation methods such as SHAP, LIME, and Partial
Dependence Plots each provide insights into different aspects of a model but only capture a single
perspective and often to comprehensively explain increasingly complex models.

This thesis aims to develop and identify explanation methods—and their combinations—that are
particularly helpful in understanding machine learning models for tabular data. It addresses four
main research questions through synthetic data analysis and a user study:

• RQ1: Can the new explanation approaches depict specific model properties effectively?
In particular, do UMAP-based SHAP embeddings accurately reflect variability in feature
importance projections and form distinct clusters? Do features with strong interaction effects,
as revealed by Frequent Pattern Mining, exhibit higher Lift values? And do Feature Context
Embeddings, which create vector representations of features based on the context in which
they are used, group related features effectively?
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• RQ2: Are there differences in the subjective and objective understanding of the explanation
methods when various influencing factors are taken into account?

• RQ3: To what extent does the perceived usefulness of individual explanation methods affect
the overall added value when multiple explanation methods are combined? Does the relative
usefulness of one explanation method influence this effect?

• RQ4: Does a higher subjective and objective understanding of the explanation methods
result in more accurate inferences based on the provided explanations?

The remainder of this thesis is structured as follows. Chapter 2 discusses the desirable properties
and various approaches for evaluating and classifying explanation methods. Chapter 3 presents
the explanation methods, including three novel approaches. Chapter 4 outlines two evaluation
strategies—one based on synthetic data and another on a real-world user study—to assess these
methods. Chapter 5 demonstrates which model properties can be successfully recovered using
the novel explanation methods on synthetic data and presents the findings from the user study.
Finally, Chapter 6 concludes the thesis with a summary of the work, key contributions and findings,
limitations of the work and future research directions.
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Chapter 2

Related Work

Numerous methods have been developed to explain the decisions of machine learning models, both
holistically and in terms of the contributions of individual features or specific decisions. However,
not all models require such explanations due to their inherent simplicity. A key distinction can be
made between models that are inherently interpretable due to their straightforward structure or
built-in transparency, and those whose structure and operation are complex and therefore difficult
to interpret.

Murdoch et al. [56] argue that a model should have several properties in order to be inherently in-
terpretable. According to the authors, an inherently interpretable model should have the smallest
possible number of parameters (sparsity), the ability to reproduce the decision process itself (sim-
ulatability), the ability to interpret individual aspects of the model separately (modularity), and
the ability to consider the interaction of individual features in combination, either through mean-
ingful indices such as BMI or price-earnings ratio (domain-based feature engineering) or through
dimensionality reduction methods (model-based feature engineering). Other work [41] does not
emphasize sparsity but instead introduces algorithmic transparency, which demands clarity in the
procedures and training processes behind the model.

Inherently interpretable models include linear regression, in which the individual characteristics
are assigned coefficients that directly measure the influence of the characteristics or decision trees,
which represent a series of yes-no decisions that are easy to understand and visualize. Each node
in the tree represents a feature, and the branches to the child nodes represent the possible answers
to the question posed by the node.

However, many modern machine learning models, such as deep neural networks, random forests,
and gradient-boosted trees, are not inherently interpretable due to their complexity and the in-
teractions between numerous parameters and therefore require explanation methods to provide
insights into their decision-making processes. These methods are often referred to as black-box
models.

Depending on the use-case either black-box or inherently interpretable model might be more ap-
plicable.

Some researchers argue that ”for any given task, the set of almost-equally performant models
typically includes at least one simple and explainable model” [83]. They suggest that practitioners
should prioritize interpretable models [69] and consider additional factors that may influence a
model’s success beyond accuracy alone, such as resource availability and risk [19]. Others challenge
the notion of a strict trade-off between accuracy and explainability, and find no significant difference
in explainability between black-box and interpretable models and claim that black-box models can
often be both the most accurate and the most explainable models to end users [9]. Holliday et al.
[30] on the other hand came to the conclusion that explanations did lead to an increase in user
trust in machine learning algorithms. In cases where researchers opt for a black-box model and
subsequently employ explanation methods for deeper understanding, those methods should yield
clear and actionable insights.

2.1 Desiderata for Explanation Methods

To evaluate whether an explanation method is genuinely effective, clear objectives
have to be established that a useful explanation should meet. This section outlines
several desiderata that will serve as criteria for assessing the quality of the selected
explanation methods.
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2.1.1 Explanation Relevance

Nauta et al. [58] define twelve explanation properties (the so-called Co-12 properties). The prop-
erties are grouped into three categories. The content category assesses the intrinsic quality of
the explanation, and properties belonging to this group include correctness (how accurately the
explanation reflects the behavior of the underlying system), completeness (the extent to which
the explanation covers all aspects of the system’s behavior), consistency (the degree to which the
explanation method yields the same result for identical inputs), continuity (how smoothly the ex-
planation changes with small variations in input), contrastivity (the capability of the explanation
to distinguish between different outcomes), and covariate complexity (the level of intricacy in fea-
ture interactions within the explanation). The second category, the presentation category, focuses
on how the explanation is delivered and consists of compactness (the succinctness of the explana-
tion), composition (the organization and structure of the explanation), and confidence (the clarity
and accuracy of the probability or certainty information provided). The third category, the user
category, evaluates how well the explanation meets the needs of its audience. Properties in this
group include context (how relevant the explanation is to the user’s specific situation), coherence
(the extent to which the explanation aligns with the user’s existing knowledge and beliefs), and
controllability (the degree to which the user can interact with or influence the explanation).

Another categorization of the desiderata is provided by Zhou et al. [85], who divided the desiderata
of explainability into interpretability and fidelity. Interpretability is defined as the capacity to pro-
vide a comprehensible explanation to a human audience. The authors identified three key aspects of
interpretability: clarity, meaning that the explanation is unambiguous; parsimony, indicating that
the explanation is simple and concise; and broadness, describing the general applicability of the
explanation methods. Fidelity is further subdivided into completeness and soundness. Complete-
ness refers to the extent to which the explanation accounts for the entire model, while soundness
refers to the correctness of the explanation.

According to Murdoch et al. [56], three aspects should be considered when choosing a suitable
explanation method. First, the explanation method should have a high degree of predictive accu-
racy in order to be able to make predictions by approximating the relationships in the data. If
the underlying model is unable to express these relationships, the explanation method will hardly
allow insightful conclusions about the actual relationships in the data. Second, the explanation
method should maximize descriptive accuracy by effectively capturing the relationships learned
from complex models and deciphering non-linear relationships between variables. Third, the ex-
planation method must be relevant to the target audience [63]. Perhaps the information is useful
to statisticians while providing little useful information to the people affected by an algorithm’s
decisions. who are affected by the decisions of an algorithm. Buschek et al. [15] argue that rel-
evance is based on mindset, engagement and knowledge outcomes. Murdoch et al. further argue
that increased relevance might be introduced by using a novel form of output and show the model
and data from different perspectives.

2.1.2 Explanation User Groups

Langer et al. [40] as well as Arrieta et al. [8] determine relevance based on five different stake-
holder groups. The authors distinguish between users, developers, affected parties, deployers, and
regulators—each of whom has distinct expectations for explainability. Developers, for instance,
might focus on explainability to enhance debugging and verification processes, while regulators are
more concerned with fairness, accountability, and legal compliance. Mohseni et al. [52] broadly
distinguish between AI Novices, Data Experts, and AI Experts. AI Novices are defined as users
who interact with AI products daily without possessing a deep understanding of machine learning
systems. The authors identify four desiderata from the perspective of AI Novices: (1) algorithmic
transparency, which enables them to construct a mental model of the system; (2) trust and reliance,
which are critical for applications such as recommendation systems and autonomous systems; (3)
bias mitigation, with examples including criminal risk assessment and insurance rate prediction;
and (4) data privacy, which is particularly relevant in personalized advertising contexts. In con-
trast, Data Experts primarily focus on model visualization and inspection as well as model tuning
and selection whereas AI Experts are concerned with model interpretability and model debugging.

Langer et al. [40] further highlight that the satisfaction of desiderata involves two key dimensions:
epistemic and substantial satisfaction. Epistemic satisfaction is achieved when stakeholders can
evaluate and understand whether an AI system meets their needs, such as assessing fairness or
transparency. Substantial satisfaction, on the other hand, is achieved when the system inherently
exhibits the desired attributes, such as genuine fairness, transparency, or usability. The key dis-
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tinction, therefore, is that epistemic satisfaction is tied to perception, while substantial satisfaction
concerns the system’s actual characteristics.

2.2 Classification of Explanation Methods

The explanation methods used in this work can be categorized based on different crite-
ria, depending on their scope, applicability, and how they interact with the underlying
model. Two fundamental classification schemes distinguish between model-specific
and model-agnostic methods, as well as local and global approaches.

2.2.1 Model-specific and Model-agnostic explanation methods

Explanation methods can broadly be categorized into model-specific and model-agnostic approaches,
depending on whether they are tailored to a particular model architecture or can be applied uni-
versally across different models [40].
Model-specific methods are adapted to the structure and function of the respective model, which
may be due to the peculiarities of the model or to the different areas of application. In image
generation, methods such as Grad-CAM are used to emphasize image areas that were relevant in
the decision-making process of a neural network, whereas other methods identify abstract features
that are most relevant for a specific outcome. In text generation, attention maps can be used to
visualize which parts of the input text were given particular attention when generating the output
text. Model-specific approaches have also been developed for other types of models, such as those
handling structured or sequential data.

Figure 2.1: Left: Original image of the St. Stephen’s Cathedral in Vienna. Center: Saliency
map produced by computing the gradient with respect to the architectural style. Right: Saliency
map computed with respect to the gradient discerning indoor versus outdoor characteristics of the
image. The underlying model is an adapted version of the VGG architecture, using a multi-task
output, trained on a synthetic dataset.

Model-agnostic methods are not tied to a specific model and can therefore be used in various areas
of application. For the classic application area of regression and classification-based evaluation of
tabular data, methods such as SHAP or LIME are used to visualize the influence of individual
characteristics on the prediction[11]. Other techniques like Permutation Feature Importance[4]
and Partial Dependence Plots[25] offer complementary insights by quantifying the overall effect of
features on model outputs.

2.2.2 Local and global explanation methods

Another fundamental way to categorize explanation methods is by distinguishing between local
and global approaches [40].

Global explanation methods aim to provide insights into the overall behavior of a model. No-
table examples include Feature Importance, which quantifies the contribution of each feature to
model predictions, Partial Dependence Plots, and Global Surrogate Models.

In contrast, local explanation methods focus on explaining the model’s output for specific instances,
either real or representative. Examples of local approaches include LIME (Local Interpretable
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Model-Agnostic Explanations) [66], which constructs a linear model around a point of interest by
considering similar instances, Counterfactuals [82], which illustrate how the model’s output would
change if certain input features were modified, and Anchors [67], which define rule-based conditions
under which other input variations do not affect the prediction.

2.2.3 Other classification approaches

Apart from the applicability and scope of explanation methods, other dimensions exist by which
explanations can be classified. One such dimension is the functioning-based approach [8][71][79],
which categorizes explanation methods according to how they extract information from the model.
Speith [79] identifies five categories within the functioning-based approach. The first category,
local perturbations, involves slightly altering input values to determine the importance of fea-
tures—LIME being an example of this approach. The second category, leveraging structure,
makes use of the model’s inherent architecture and closely relates to the model-specific expla-
nation methods discussed in subsection 2.2.1. For instance, two of the three novel explanation
methods introduced in section 3.5 and section 3.6 exploit the disentangled nature of decision trees
to extract information. The third category, meta-explanation, does not operate directly on the
machine learning model but instead works with explanations that have already been generated for
that model; the novel approach presented in section 3.2 falls into this category. The fourth cate-
gory, architecture modification, involves altering the model’s structure to improve interpretability,
as seen in Self-Explaining Neural Networks [6]. Finally, the fifth category is the example-based
approach, which creates examples that meet certain criteria, with Anchors being a notable example
by generating if-then rules.
Another classification is based on the result produced by an explanation [79][44], which groups
explanations into feature importance, surrogate models, and example-based explanations. Addi-
tionally, [41] identifies text explanations, where a language model is used to generate a natural
language description of the model’s behavior.
Mohseni et al. [52] group the explanations into six categories, ”How Explanations”, which holisti-
cally show how the model works, ”Why Explanations”, which demonstrate why a prediction was
made, ”Why-Not Explanations”, which describe why a model did not arrive at a specific con-
clusion, ”What-If Explanations”, which investigate how changes would affect the model output,
”How-to Explanations”, which describe how to arrive at a different conclusion, and ”What-Else
Explanations”, which show other examples that yield similar model outputs.

2.3 Evaluating Post-Hoc Explanation Methods

Explanation methods that are not intrinsic are typically referred to as post-hoc ex-
planation methods [53]. The following section reviews various evaluation techniques
for these post-hoc methods, in order to assess the chosen explanation approaches and
verify that they meet the desiderata outlined in section 2.1.

According to Gilpin et al. [28], ‘[a]n explanation can be evaluated in two ways: according to
its interpretability and according to its completeness’. The authors define completeness as the
degree to which an explanation allows conclusions to be drawn about other situations, while inter-
pretability is defined as a set of ‘descriptions that are simple enough to be understood by a person
using a vocabulary that makes sense to the user’, using understandable terms[22], either in visual
representations or in a vocabulary in the sense of words.

2.3.1 Evaluation Metrics and Nested Frameworks

Mohseni et al. [52] identify five different measurable aspects: the mental model of the system,
explanation usefulness and satisfaction, user trust and reliance, human-AI performance, and com-
putational measures. The first aspect, the mental model, can be evaluated in three ways: by
assessing participants’ understanding of the model using subjective instruments (free-text ques-
tions and Likert scales), by posing questions about the model’s output, and by investigating model
errors. User satisfaction and usefulness can be measured similarly—through subjective feedback
methods (again using free-text questions, Likert scales, and self-reports) and by case studies in-
volving domain and AI experts—while also considering engagement with the explanation, task
duration, and cognitive load. Trust and reliance can be evaluated using these subjective methods
as well. Although there are no direct measures of trust, sustained use of explanations is taken
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as an indication. Performance can be quantified both in terms of the model’s accuracy and the
users’ ability to perform tasks or detect errors. Finally, computational methods can be applied,
including simulation studies (where synthetic data is generated to test whether the explanation
method captures key data aspects), sanity checks (such as input variance tests to see how slight
image transformations affect saliency maps), and comparative evaluations—as done in the study
by Samek et al. [70], where saliency maps are compared by flipping the most salient pixels to
observe the resulting performance drop.
In addition, the authors develop a design and evaluation framework intended to help determine
which evaluation methods are appropriate at each stage of building an explainable system. The
framework is organized as a nested model with three layers that guide the design and evaluation
of intelligible machine learning systems: At the outer layer, the overall system goals are defined,
determining what should be explained and why, and these goals are linked to evaluation criteria
that capture user needs, regulatory requirements, and desired outcomes. These goals are based
on the points addressed in section 2.1. The middle layer focuses on the explanation interface. At
this stage, an explanation interface is created and evaluated to determine whether the explanation
is understood, whether users are satisfied with it, and whether they can develop a mental model
of the system. The previously mentioned evaluation methods are employed here. At the inner-
most layer, the focus is on interpretable algorithms, which requires evaluating whether inherently
interpretable models or post-hoc explanation techniques should be chosen based on assessing the
model’s trustworthiness and the fidelity of the ad-hoc explainer.

2.3.2 Alternative Categorization and Qualitative Evaluations

Nauta et al. [58] list a wide range of different evaluation methods that are mapped to the Co-12
properties listed in section 2.1. For instance, correctness can be assessed using synthetic data. Here,
data is created in a way which would force the model to have a particular structure, the explanation
method should then successfully recover this information. Completeness can be assessed by giving
the input of the explanation method to the model. If the explanation is complete, the model should
arrive at the same conclusion as if it had had the original input. Similar to the evaluation done by
Samek et al. [70], completeness can also be assessed by removing the whole explanation rather than
individual pixels. If all features are deleted at once, the accuracy should drop significantly. A third
way of assessing the completeness can be achieved by comparing the output of the explanation to
the output of the model being explained. Surrogate Models (described in chapter 3) are particularly
straightforward to evaluate in this regard, as the coefficient of determination directly measures how
much the Surrogate Model reveals about the underlying model. The authors additionally list the
Kullback-Leibler divergence or correlation as assessment options for completeness. Continuity can
be measured using perturbations. Here, small adjustments are made to the input data, which
should then be reflected by minor changes in the output of the explanation. Similarly, Alvarez-
Melis et al.[5] propose Local Lipschitz estimates which measures the stability of neighboring points
around a point of interest by adding local perturbations. A high Lipschitz constant indicates that
small changes in input can lead to large variations in the explanation, which is an indication of
instability. Other properties among the Co-12, namely Consistency, Compactness, Composition,
Confidence can be assessed qualitatively, as they are based on design choices of the explanation
method.
[85] and [22] group the evaluation of explanation methods in three different categories. On one side,
there are human-centered evaluations, which are either based on a real-world application, focusing
on end-users or human-grounded, which involve experiments with lay people. On the other side,
there are functionality-grounded evaluations, which evaluate an explanation method based on a
formal definition. According to the authors, the depth of a decision tree would be one such met-
ric. Doshi-Velez et al.[22] more generally list sparsity as one metric which functionality-grounded
explanations can be evaluated with. The paper furthermore introduces the idea of constructing a
matrix (as seen in Figure 2.2) consisting of the domain as one dimension and the methods as the
other. The authors hypothesize that due to the high dimensionality of the different domains where
machine learning models might be employed there could be a lower dimensional latent domain
space where different explanation methods are needed. The authors list global/local models, time
constraints and severity of incompleteness and user expertise as potential dimensions in this latent
space and additionally argue that the cognitive work associated with understanding and applying
each explanation method can be split into what the authors refer to as ”chunks”. These cognitive
chunks can be differentiated with respect to the object being explained (e.g. feature values, indi-
vidual instances), the number of cognitive chunks a method consists of and the compositionality
of the cognitive chunks (if one cognitive chunk depends on another). The authors argue that this
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matrix can be used to find suitable explanation methods if the characteristics of a new domain are
similar to that of a domain where explanation methods have already been evaluated.

methods

domain ∼ f

( K

domain ,
methods

K

)

Figure 2.2: Domain-Method Matrix as proposed by Doshi-Velez et al.

Argawal et al.[1] list several metrics which can specifically be applied to feature attribution methods
which measure the agreement between post-hoc explanations and ground truth explanations by
comparing feature importance, rank and direction (coefficient of the effect).
Munoz et al.[55] use the spread among the importance of features as a metric for complexity. Few
features with high importance are less complex to understand than many features with relatively
balanced importance. They further introduce the α-Feature-Importance, which is the proportion
of the features that is required to capture at least α × 100% of the total feature importance of
the model and the Fluctuation Ratio, which measures the stability of Partial Dependence Plots of
numeric data as well as metrics to evaluate Surrogate Models, such as the Performance Degradation,
which measures how much of the original model’s performance is lost.

2.3.3 Joint Evaluation of Explanation Methods

Krishna et al. [35] as well as Neely et al. [59] address the disagreement problem that arises when
multiple explanation methods (e.g. LIME, SHAP, Integrated Gradients, DeepLIFT) produce con-
flicting outputs for the same prediction. Their empirical study, conducted across various datasets
and models, shows that different explainers can yield widely varying feature importance rankings.
Furthermore, a user study with data scientists revealed that practitioners frequently encounter
these disagreements, often lacking a principled method for reconciling them. Min et al. [51] ad-
dress this by proposing an ensemble interpretation framework that integrates multiple explanation
methods capable of producing feature importance rankings (e.g., LIME, SHAP, PDP) to generate
model explanations that are both more stable and comprehensive. They evaluated the consistency
of the ensemble by using ranking correlation indices to determine if it consistently identified the
same key features as human experts, and then leveraged the ensemble as a tool for feature selection.
In comparing the ensemble-based feature selection to a method based on correlation analysis, they
found that the ensemble approach achieved higher accuracy.
Brdnik et al. [13] evaluate eight different explanation techniques within an educational analytics
system that predicts student grades. Their user study with college students indicates that local,
feature-based explanations (such as bar charts displaying feature importance) tend to improve
user understanding and satisfaction compared to other forms. However, they also find that certain
explanation types, particularly those based on confidence measures, may not be as effective.
Labarta et al. [37] conducted a user study with six state-of-the-art XAI techniques (LRP, Grad-
CAM, LIME, SHAP, Integrated Gradients, Confidence Scores) to see how well users could judge,
trust, and question AI decisions with each. They found that each individual method excelled at
different user goals – e.g. Confidence Scores best helped users judge decision correctness, certain
visual attributions (GradCAM, LRP) best helped build trust, and SHAP best enabled users to
question a decision. No single explainer scored highest on all metrics. The authors conclude that
“using individual explanation methods is not sufficient” for effective user understanding and they
see the need for an interactive framework to focus on the user’s needs. Jeyakumar et al. [32] also
find that the preferred explanation method depends on the task at hand.
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Chapter 3

Background

In the following chapter, six explanation methods will be introduced. The chapter will cover three
established explanation methods, namely SHAP, Partial Dependence Plots, Surrogate Models and
three custom explanation methods which are based on preexisting techniques. All methods are
either entirely global or a hybrid approach (SHAP). Among the six methods presented, four are
model-agnostic, while the remaining two novel approaches are model-specific.

3.1 SHAP

SHAP (Shapley Additive Explanations)[42] values quantify the contribution of each feature to the
prediction for individual instances locally and can also be aggregated globally across all instances.
SHAP values are defined as:

ϕi =
∑

S⊆N\{i}

w(S)[f(S ∪ {i})− f(S)] (3.1)

where:

• ϕi is the SHAP value for feature i,

• f(S) is the prediction for subset S,

• f(S ∪ {i}) is the prediction for subset S including feature i.

• w(S) are weights that determine the significance of each feature subset.

This formula calculates the SHAP value ϕi by summing over all subsets S of features that exclude
i. It uses the weight w(S), which accounts for all permutations of S and N \ S, and the difference
between the predictions with and without feature i to determine its impact on the model’s output.
An example calculation for a Shapley value is given in Appendix A.

In particular, the weights w(S) are defined as:

w(S) =
|S|!(|N | − |S| − 1)!

|N |!
(3.2)

where:

• S is a subset of all features excluding i,

• N is the set of all features,

The weight w(S) determines the significance of adding the feature i to the subset S within the
context of all possible feature subsets. As |S| approaches |N |, the weight increases. Likewise, if
|S| approaches ∅, the weight also increases. The function assigns more weight to the prediction
difference, if there are few features in S, as the resulting prediction difference is more closely corre-
sponding to the pure effect of i as well as sets where S is nearly the complete set of N , as significant
changes after the inclusion of a feature inside an almost complete set of features indicate a strong
effect of this feature on the prediction.
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SHAP values are ”the Shapley values of a conditional expectation function of the original model”
[42]. Unlike traditional Shapley values, which can be applied to a wide range of allocation and
distribution problems, SHAP values are specifically designed to explain how different features
contribute to a model’s predictions.
SHAP values are grounded in three fundamental properties that make them particularly desirable
for machine learning explanation methods:

• Local Accuracy: The sum of all SHAP values plus the base value equals the model’s
prediction for each individual instance.

• Missingness: If a feature is absent in the input, its contribution to the prediction is exactly
zero.

• Consistency: If the contribution of a feature to the model’s output increases or remains
unchanged, regardless of other features, its SHAP value will not decrease.

3.2 Embedded SHAP

For large datasets, having a large list of feature importances is not interpretable according to the
sparsity constraint outlined in Chapter 2. One possibility that can be used in order to comply to
this constraint is to utilize embeddings as a method to reduce the dimensionality of the feature
space while retaining the most significant and interpretable aspects of the data.
Figure 3.1 shows three common methods for dimensionality reduction consisting of Principal Com-
ponent Analysis (PCA) [60], Variational Autoencoders (VAE) [34], and Uniform Manifold Approx-
imation and Projection (UMAP) [47].

Figure 3.1: Two-dimensional embeddings along with the associated predictions obtained by fitting
a tree-based gradient boosting model (LightGBM) to a dataset consisting of 4185 features. (A)
Principal Component Analysis (PCA): The data is projected onto a plane with the highest variance,
represented by the first two principal components. (B) Variational Autoencoder (VAE): The
data is embedded into a two-dimensional latent space. (C) Uniform Manifold Approximation and
Projection (UMAP): The data is visualized in two dimensions using Supervised UMAP, a minimal
distance of 0.2, 50 neighbors and a negative sample rate of 20.

An essential consideration in dimensionality reduction, especially when explaining a machine learn-
ing model, is how effectively the method maintains the distances between data points in the
reduced-dimensional space. The three outlined methods handle this challenge in distinct ways:

• PCA does not explicitly aim to preserve pairwise distances between data points. Instead,
it seeks to maximize the variance along the principal components, which can often result in
a rough approximation of the distance relationships in the original space, particularly for
linear relationships.

• The VAE’s primary goal is to encode the data into a latent space in a way that allows for
accurate reconstruction. While the encoder-decoder framework does not explicitly preserve
distances, the latent space often captures the underlying data structure.

• Uniform Manifold Approximation and Projection (UMAP) aims to preserve both the local
and global structure of the data, by pulling similar points together and pushing dissimilar
points apart through optimization processes.
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Aligned UMAP extends UMAP by using Procrustes analysis [29] to align embeddings from related
datasets. In machine learning model training, SHAP values across iterations can be viewed as
such related datasets. Each training iteration adjusts feature impacts on the target, leading to
corresponding adjustments in SHAP values for each observation. Similarly, in forest-based expla-
nation methods, each new tree can be considered a related dataset, as it refines and builds upon
the results of previous trees.

Procrustes analysis seeks to find an orthogonal matrix Ω that best aligns two sets of point represen-
tations, given by matrices A and B. The primary objective here is to minimize the Frobenius norm
of the difference between ΩA and B, where Ω is constrained to be orthogonal, thus ensuring that
it represents a pure rotation (or rotation combined with reflection) which preserves the geometric
properties of the points in matrix A, such as distances and angles, while aligning them as closely
as possible to the points in matrix B:

min
Ω

∥ΩA−B∥F (3.3)

subject to ΩTΩ = I

where:

• ∥ · ∥F denotes the Frobenius norm

• A and B are matrices representing SHAP embeddings,

• Ω is an orthogonal matrix,

• I is the identity matrix, ensuring ΩTΩ = I confirms the orthogonal property of Ω.

It can be shown that the optimal rotation matrix Ω can be derived by:

Ω = UV T .

where U and V are orthogonal matrices obtained from the singular value decomposition (SVD)
of the matrix M = BAT . U contains the left singular vectors and V contains the right singular
vectors of M . An example calculation for the rotation matrix can be found in Appendix B.

Figure 3.2: The gray points correspond to the UMAP embeddings generated after 10 iterations.
At iteration 1000, the points have shifted. There is a clear correspondence between the clusters at
both iterations.

Figure 3.2 demonstrates that points are well-aligned between iterations. In addition to preserving
local and global relationships between points, UMAP has the valuable property of forming clusters.
These clusters can be further analyzed by identifying the features that were most influential in
the predictions at specific stages of the model training process for each cluster. A natural choice
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for clustering clear, distinct clusters is density-based clustering, particularly Hierarchical Density-
Based Clustering (HDBSCAN) [46], which is effective for both sparse and dense clusters. Figure 3.3
illustrates that HDBSCAN successfully separated the different clusters. The methodology of cal-
culating SHAP values, embedding the iterations individually, aligning them, and analyzing the
resulting clusters will hereafter be referred to as Embedded SHAP.

Figure 3.3: Cluster Analysis Using HDBSCAN: B-Spline Smoothed Concave Hulls Indicated in
Gray

3.3 Partial Dependence Plots

Partial Dependence Plots [25] show the marginal effect of a variable on the prediction of the
model by holding all other variables constant and only varying the values of the variables under
consideration. The partial dependence plot is calculated using the following formula:

fxS
(xS) =

1

n

n∑
i=1

f(xS , x
(i)
C ) (3.4)

where fxS
(xS) represents the partial dependence function, f is the original model, xS are the

features of interest, x
(i)
C are the values of other features for the i-th instance, and n is the total

number of instances.

A major point of criticism is that Partial Dependence Plots ignore interactions between variables
and can therefore lead to incorrect interpretations. If, for example, the variable ‘income’ is con-
sidered in isolation with regard to life satisfaction, PDP could lead to the conclusion that a higher
income always leads to higher life satisfaction, although life satisfaction possibly consists of a com-
bination of income and working hours and a higher income, while working hours remain the same,
would mean that a higher hourly rate was earned.

Accumulated Local Effects (ALE) [7] were developed to avoid such erroneous interpretations. ALE
differs from PDP in that it considers the effects of a variable on the prediction of the model in
the vicinity of other variable values. The value range of a variable is divided into several intervals
and the average effects of a small change within these intervals are calculated, which is intended to
avoid unrealistic feature combinations. Despite these advantages, Partial Dependence Plots were
chosen for the following analysis due to their simplicity.

3.4 Surrogate Models

In addition, there are explanation approaches that summarize the core elements of a complex
model, so-called surrogate models. These models serve as substitutes for the original model and
attempt to approximate its functionality in a simplified, easily understandable way.
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f̂(x) ≈ f(x) (3.5)

Where:

• f̂(x) is the surrogate model’s approximation.

• f(x) is the true, complex model output being approximated.

• x is the vector of input variables.

Which simplified model is used depends primarily on the structure of the model to be described.
Regression and classification models are often represented by linear models or decision trees. LIME
[66] can be classified as a surrogate model which only approximates the original model in the
proximity of a specific point of interest.
In addition to local models, there are also rule-based models that work on a global level such
as RuleFit [26]. Here, rules are created that show the most important decision paths within the
underlying model. In contrast to linear regression, the interactions of the individual characteristics
are also taken into account. Unlike the original model, which tries to predict the target feature as
well as possible, a surrogate model instead tries to predict the prediction from the original model.

x∗ = argmin
x

L(f̂(x), f(x)) (3.6)

Where:

• x∗ represents the input values that minimize the loss function L.

• L(f̂(x), f(x)) is the loss function that measures the discrepancy or error between the surrogate

model’s predictions f̂(x) and the true objective function f(x).

• f̂(x) is the surrogate model that approximates the true objective function f(x).

• f(x) is the true objective function.

• argminx is the argument that minimizes the loss

3.5 Frequent Pattern Mining (Lift)

Ensemble methods such as Random Forests and Gradient Boosting inherently use features in the
sequence in which splits occur, which allows a direct analysis of the decision process. Previous work
has investigated how random forests could leverage bivariable splits to allow direct interpretation
[31] or Random Intersection Trees to construct feature interactions [36]
Another approach to directly leverage the untangled nature of decision trees is to treat the paths
from the root to each leaf as a set and identify recurring patterns in the decision-making process,
which can be achieved through frequent itemset or sequential pattern mining on the set of decisions.
Sequential pattern mining is particularly useful when pairs of adjacent nodes are believed to have
differing conditional probabilities. For instance, if feature A frequently precedes feature B, but
feature B does not equally frequently precede feature A, sequential pattern mining would be the
preferred method. If the pairs of adjacent nodes possess identical conditional probabilities, making
the order of feature occurrences irrelevant, frequent itemset mining is preferred.[3]
A commonly used method for frequent itemset mining is the Apriori Algorithm [2]. The Apriori
Algorithm is a breadth-first search algorithm that first scans the dataset for single items that meet
a specified threshold. Items that do not meet this threshold are discarded. The remaining items
are then combined into pairs, and pairs that do not meet the threshold are again discarded. This
process continues until itemsets of the desired maximum length are formed. The algorithm relies
on the principle that a superset cannot be frequent if any of its subsets are infrequent. Thus, if A
is a subset of A ∩B ∩ C, then A ∩B ∩ C cannot meet a frequency threshold if A does not.

In this context, the itemsets are derived from all the splits made by the model across all trees.
Consecutive features are treated as items, using a sliding window that includes several features at
a time.
To identify frequently co-occurring itemsets, Lift can be used as a metric to measure the strength
of associations. It evaluates how much more often two items A and B occur together than would
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be expected if they were independent. The Lift for the features A and B in the model is defined
as:

Liftmodel(A,B) =
Pmodel(A ∩B)

Pmodel(A) · Pmodel(B)
(3.7)

where:

• Pmodel(A ∩B): The joint probability of A and B occurring together in consecutive splits.

• Pmodel(A): The probability of feature A occurring in a split.

• Pmodel(B): The probability of feature B occurring in a split.

A Lift value greater than one indicates that the co-occurrence of features A and B in the model is
more frequent than would be expected if they were independent.

However, this calculation does not account for dependencies between features, where the pres-
ence or absence of one feature is influenced by another. For example, in a dataset capturing
people’s backgrounds, if an individual has lived in a third country, it inherently means they have
also lived in a first and second country. Likewise, the year someone ceased experiencing financial
difficulties implies there was a specific year when those difficulties began. To address such depen-
dencies, an alternative perspective on Lift can incorporate the features from the training instances
as a secondary population. In this approach, the second Lift value represents the joint probability
of a specific feature combination occurring in the data the model was trained on, relative to the
probabilities of the individual features being present independently.

Lifttraining(A,B) =
Ptrain(A ∩B)

Ptrain(A) · Ptrain(B)
(3.8)

where:

• Ptrain(A ∩ B): The joint probability of features A and B being set together in the training
data.

• Ptrain(A): The probability of feature A being set in the training data.

• Ptrain(B): The probability of feature B being set in the training data.

The ratio Equation 3.9 measures the strength of dependencies (or lack thereof) under two distri-
butions

Ratiolift(A,B) =
Liftsplits(A,B)

Lifttraining(A,B)
(3.9)

A ratio greater than 1 indicates a stronger dependency between the features in the model than
between the same features in the dataset.

3.6 Feature Context Embedding

Another method for uncovering relationships between features is word embedding [50], a widely
used technique in natural language processing that evaluates the closeness of words based on their
contextual usage. Similarly, in feature analysis, a model can infer a given feature—such as health,
language, age, wealth, or origin—by analyzing its contextual neighbors. These neighbors are de-
rived from the paths within a decision tree or a forest-based explanation method. The context of
each node (and consequently each feature) is defined by incorporating the preceding split (parent)
and the subsequent splits (children).

Mikolov et al. introduced two primary approaches for embedding words based on their context.
The Continuous Bag of Words (CBOW) approach predicts the probability of a word based on the
words surrounding it, whereas the Skip-gram model uses the central word to predict the individ-
ual words around it. In both methods, embeddings are constructed through an embedding layer
within a neural network. This embedding layer maps each word to a continuous vector space of
fixed dimensionality, which are adjusted so that words used in similar contexts are mapped to
nearby points in the vector space. Within each context window, proximity to the word does not
influence the embedding of the word.
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Text Skip-Grams CBOW

[health language age] wealth origin language →health
language → age

(health, age) → language

health [language age wealth] origin age → language
age → wealth

(language, wealth) → age

health language [age wealth origin] wealth → age
wealth → origin

(age, origin) → wealth

Table 3.1: Skip-Gram and CBOW in Splits with Context Windows Specified as Brackets

The key parameters of this method are the context window size and the dimensionality of the vector
embeddings. The example in Table 3.1 illustrates a context window size of one. In the CBOW
model, only the immediately preceding and following words are considered when predicting the
central word, whereas the Skip-Gram model uses the central word to predict the surrounding
words. There are other models that generate static word embeddings. Most notably GloVe[62]
and BERT[21].
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Chapter 4

Methodology

The six explanation methods introduced in chapter 3 will be evaluated using two distinct ap-
proaches. First, the three novel techniques will be validated through synthetic data analysis (RQ1)
to confirm they accurately depict inherent relationships between predictors and the target variable.
In the second phase, a user study is created which investigates participants’ subjective and objec-
tive understanding (RQ2), explores how the perceived usefulness of individual methods influences
the perceived added value of their combinations (RQ3), and determines whether understanding
the methods leads participants to draw correct inferences from the explanations provided (RQ4).

4.1 Synthetic Data Evaluation Methodology

The novel explanation approaches will be evaluated using synthetic data. Using synthetic data is
a common approach to test for correctness [58], test if the explanation covers key aspects [52] and
to test if the explanation leads to a simulatable result [56]. To evaluate the hypotheses regarding
the expected outcomes of these explanations, tests will be conducted using a LightGBM model
with 100 estimators and default parameters.

4.1.1 Embedded SHAP

To evaluate the Embedded SHAP values, two key hypotheses are proposed:

• RQ1H1: Variability in Feature Importance Projections. The first hypothesis is that
complex dependencies between a feature and the target variable lead to greater fluctuations in
the assigned importance of that feature, and consequently, in the corresponding embeddings.
This is because no simple approximation can adequately capture the complexity of such
dependencies. As a result, the SHAP values are likely to adjust more frequently, resulting
in visible changes within the lower-dimensional embedding space. Simpler dependencies,
however, should result in embeddings that remain mostly static.

• RQ1H2: Cluster Formation. The second hypothesis is that instances significantly differ-
ent from the rest of the population will form a separate cluster. If this subgroup is small, its
separation should only be clearly observed in later iterations. This is particularly true for
forest-based machine learning models, as the initial splits aim to minimize the overall error,
rather than finding nuances for small subgroups.

RQ1H1: Variability in Feature Importance Projections

The explanation method should be sensitive to underlying functions’ complexity and update the
embeddings more frequently for instances associated with more challenging functions. To examine
the differential reactions of groups to functions of varying complexity, two underlying functions, A
and B, are defined:
The impact of A on the target variable is defined as:

ImpactA(x) =
1

π
· x+ 1 (4.1)

The impact of B on the target variable is defined as:

ImpactB(x) = sin(10x) (4.2)
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The scaling factor of 10 amplifies the oscillation, making the function ImpactB(x) more difficult
for a machine learning model to learn.
The target variable y is calculated by summing the impacts of A and B:

yi = ImpactA(Ai) + ImpactB(Bi) (4.3)

Each instance in the population is assigned to either underlying function A or underlying function
B.

(Ai, Bi) =

{
(Uniform(0, 2π), 0) with probability 0.5,

(0, Uniform(0, 2π)) with probability 0.5.

The expected result is that instances belonging to group B will exhibit more frequent shifts in their
embedding space representation compared to those in group A, given that underlying function A
is a straightforward linear function. Within the range [0, 2π], ImpactA(x) spans from 1 at x = 0 to
3 at x = 2π, matching the value range of 2 seen in the function ImpactB(x), which varies from −1
to 1. For the simulation, 1000 samples were generated for both functions within the range x = 0
to 2

π − 1 and combined into a single dataframe. Both features were then used to predict the target
variable in Equation 4.3.

RQ1H2: Cluster Formation

To simulate the formation of clusters based on underlying feature interactions and the influence of
a small subgroup, three independent features, A, B, and C, are generated. These features are then
subjected to quadratic functions. Additionally, a small subgroup, comprising 5% of the population,
is assigned a fixed impact on the target variable through a dummy variable.
The independent features are defined as:

Ai, Bi, Ci ∈ [0, 10], i = 1, . . . , N

The target variable y is calculated by summing the squared impacts of each feature, with an
additional large impact of 100 applied only to the instances belonging to the subgroup identified
by the dummy variable:

yi = A2
i +B2

i + C2
i +Dummy0.05 × 100 (4.4)

Where Dummy0.05 is a binary variable that equals 1 for the 5% subgroup and 0 otherwise.

Within the value range [0, 10], the impact of Dummy0.05 is as large as each of the features A,
B, and C can get at most. However, unlike Dummy0.05, features A, B, and C impact the entire
population. Therefore, the cluster formation should only become visible in a later iteration.

4.1.2 Frequent Pattern Mining (Lift)

The frequent patterns that emerge should reveal interaction effects between the features in the
feature space. Consequently, two hypotheses are proposed to address the general magnitude and
order of the interaction values:

• RQ1H3: Co-occurrence Drives Lift. Features with strong interaction effects are ex-
pected to frequently appear together along the paths of a decision tree, and their co-occurrence
should be more common than their individual appearances. This will result in a higher Lift
value.

• RQ1H4: Interaction Strength Correlates with Lift. The greater the strength of the
interaction, the higher the expected Lift value. If an interaction is strong, the features
involved should seldom occur without the corresponding interaction feature being present.

The synthetic dataset, developed to validate these hypotheses, consists of three primary features
and four interaction features, each sampled from a uniform distribution over the interval [0, 10]. The
primary features are designed to have a direct impact on the target variable, while the interaction
features contribute to y through interaction effects.
The primary features are denoted as PrimA, PrimB, and PrimC, and are defined as follows:

PrimAi, PrimBi, PrimCi ∼ Uniform(0, 10), i = 1, . . . , N
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The interaction features, denoted as InterA, InterB, InterC, and InterD, are similarly defined but
with the majority of their values randomly set to zero. Specifically, 95% of the values for each
interaction feature are set to zero to simulate sparse interaction effects:

Interi ∈ {InterAi, InterBi, InterCi, InterDi}, Interi =

{
Uniform(0, 10), with probability 0.05

0, with probability 0.95

Two interaction effects were calculated: one between InterA and InterB, and another between
InterC and InterD:

InterABi = InterAi × InterBi

InterCDi = InterCi × InterDi

The target variable y is calculated as the sum of the squared values of the primary features and
the scaled squared interaction effects:

yi = PrimAi + PrimBi + PrimCi + 2× InterAB2
i + 4× InterCD2

i (4.5)

Given Equation 4.5, InterCD should result in a larger Lift value than InterAB. Both features
should have a larger Lift value than any other feature combination.

4.1.3 Feature Context Embeddings

For testing the context embeddings, the following two hypotheses are proposed:

• RQ1H5: Contextual Clustering. Feature context embeddings should be arranged in a
2D space such that features appearing in similar contexts are clustered.

• RQ1H6: Global Similarity Optimization. The overall arrangement should maximize
inter-cluster similarity.

A dataset consistent with this arrangement consists of two distinct feature groups, each influencing
the target variable y independently. Additionally, a shared feature contributes to y regardless of
which group is active.
Each group contains five features that independently contribute to the target variable y when the
group is active.

Groupi =

{
1, with probability 0.5

2, with probability 0.5

Here, 1 and 2 represent the two distinct feature groups, with the active group being chosen inde-
pendently for each instance.
The features in each group were generated uniformly over the interval [0, 10] and are defined as:

Group 1 Featurei ∼ Uniform(0, 10), i = 1, . . . , 5

Group 2 Featurei ∼ Uniform(0, 10), i = 1, . . . , 5

The shared feature is defined as:

Shared Feature ∼ Uniform(0, 10)

The target variable y is determined by summing the values of the active features within the selected
group and adding a shared feature that influences y across both groups.

yi =

5∑
j=1

Group 1 Featureij +

5∑
j=1

Group 2 Featureij + Shared Featurei (4.6)

Two window configurations are tested. One window configuration consists of the parent of the
node, the node itself as well as one of its children. Two windows are generated for each child -
one for each child. (Parent-Node-Child 1, Parent-Node-Child 2). The other configuration only
considers the children and does not consider the parent (Child 1-Node-Child 2). This corresponds
to a window size of 1.
The resulting embedding should display two distinct clusters, each representing one of the groups
in Groupi. The Shared Feature is expected to be positioned between these clusters, as it is not
associated with either group.
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4.2 Real-World Data Evaluation Methodology

Additionally, all explanation methods will be evaluated in a user study involving laypeople recruited
from MTurk. The study aims to assess the comprehensibility of the methods using both subjective
and objective measures, determine whether understanding the model leads to correct conclusions,
and investigate how combining explanation methods influences model understanding.

4.2.1 Dataset

The dataset originates from the Survey of Health, Ageing and Retirement in Europe (SHARE)
[77], a longitudinal study conducted across the European Union and Israel since 2004. The dataset
comprises more than 4000 features from 160,000 participants. The survey covers many categories
such as health, economic conditions, social and family networks, labor market participation, and
demographic information.
The categories included in the studies remained largely constant throughout the surveys. Cate-
gories that were covered in all waves can be seen in Table C.1. Other categories, such as Computer
Use and Saving Regrets, were included in some waves but not consistently across all of them. In
order to be eligible for the survey, participants had to

• be at least 50 years old at the time of the survey.

• reside in one of the countries involved in the survey.

• have a partner in the same household that is eligible, regardless of the persons age.

• be capable of completing the interview, either independently or with assistance.

Target Feature Definition

Life satisfaction has been chosen as the feature of choice which was included in the survey across all
waves with the exception of wave 1 and 3. Given its universal importance, it serves as a meaning-
ful target variable that is relevant across different demographic and socio-economic backgrounds.
The effect of various features on life satisfaction has been studied extensively[39][78][17]. Person-
ality traits such as Neuroticism and Openness[43], Socioeconomic Status[84] and other community
related features[18] have all shown to impact life satisfaction.

Data Preprocessing

Missing values were categorized as either ”Missing Not at Random” (MNAR) or ”Missing at
Random” (MAR) based on whether the individual in question had responded to any of the survey
questions in a particular category. If a respondent did not answer any questions within a category,
it was assumed that they had not participated in the survey wave where that category was covered,
and their missing values were classified as MAR. In contrast, if a respondent participated but left
certain questions unanswered, these omissions were classified as MNAR. This classification assumes
that specific questions were inapplicable, such as a question about children for a respondent who
has indicated they have none.
The datasets were subsequently merged and imputed in both a forward and backward direction
for each individual participant. For instance, if a person has provided the number of children in
one survey but not the other, the values were transferred across waves.
The data displayed a skew towards higher life satisfaction values. To achieve a more balanced
distribution and ensure each individual is represented only once in the final dataset, the wave
which included the minimum life satisfaction value recorded for each person across all survey
participations was kept, while other waves were excluded.
Moreover, all features from the activities survey were excluded from the analysis. The survey con-
tained several questions that, while highly correlated with the target variable of life satisfaction,
likely do not exert a causal influence on it. Instead, these items may act as proxies for life satisfac-
tion itself, complicating the interpretation of any predictive modeling efforts aimed at identifying
independent predictors. Examples of such features include:

• AC021 LifeMean: Respondents feel their lives have meaning.

• AC025 FutuGood: Respondents express optimism about their future.

• AC030 Happy: Respondents felt happy most of the time during the previous week.
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• AC032 EnjLife: Respondents enjoyed life over the past week.

Furthermore, numeric outlier values that fell outside 1.5 times the interquartile range were dropped
and replaced by MAR, and categorical features that had more than 99% 1 missing data or had
more than 600 unique categorical values were also removed.

4.2.2 Model Training

Several options were evaluated as viable regression models, all of which could handle missing data.
All considered methods are based on gradient boosting techniques (LightGBM[33], XGBoost[16],
and CatBoost[64]). Gradient boosting algorithms are frequently observed to outperform other
models, such as linear models or neural networks, particularly when employed for tabular regression
[45]. Although on large datasets, neural networks can exhibit superior performance compared to
traditional tree-based learning algorithms[12].
Table D.1 shows that CatBoost had the highest performance on the test set with the fewest features
and the smallest gap between training and test scores, while also using the most trees. Although
LightGBM is the fastest running model, it had a tendency to overfit. XGBoost, on the other hand,
uses the least number of trees and leaves. With the default regression parameters, LightGBM was
ultimately selected, as it delivered performance nearly equal to CatBoost but with significantly
faster execution. To further optimize the hyperparameters, a tree-structured Parzen estimator[10]
was used. The final hyperparameters can be seen in Table D.2.

Features that appeared only once in all trees were omitted for simplicity. The complete list of
all features of the model can be found in Appendix G. The obtained result from the fine-tuned
LightGBM model is comparable to other studies. Shen et al.[78] achieved a R2 value of 0.436 using
support vector regression by selecting features from the RAND Health and Retirement Study[81]
dataset that had a Pearson correlation coefficient with the target greater than 0.2. Further feature
refinement was performed using LASSO regression, resulting in a final set of 18 features. Notably,
their model primarily included features that were explicitly excluded from the models depicted
in Table D.1, which focused primarily on subjective factors such as emotional well-being, social
support, and personality traits. In comparison, the study ”Understanding Key Predictors of Life
Satisfaction in a Nationally Representative Sample of Koreans”[17] used data from the Gallup
World Poll[27]. They used multiple linear regression and obtained an R-squared value of 0.307.
They used 27 characteristics, including demographic and psychological variables such as satisfac-
tion with standard of living, household income, positive affect, social support, and education level.
Malvaso et al. reported an R2 of 0.514. The most influential factors were found to be satisfaction
with spouse, social life, and six other satisfaction measures, as well as personality traits such as
neuroticism or openness.
The chosen LightGBMmodel treated all levels of life satisfaction equally, without assigning different
weights to them. Consequently, less frequently occurring values, particularly those at the lower
end of the scale, were not predicted as accurately. As shown in Figure 4.1, there is no significant
discrepancy between the training and testing sets in terms of the direction and magnitude of the
error.
The hyperparameter range was chosen to reduce overfitting and handle features with high cardi-
nality. In particular, the number of leaves was set to a relatively low range (considering the large
dataset size), as shown in Table D.2 (30–40; default is 31). Similarly, the minimum number of child
samples required per leaf was adjusted to a higher range compared to the default (80–150; default
is 20). Consequently, the model prioritizes generalization over capturing influential factors that
affect the life satisfaction of only a small fraction of individuals in the dataset. The training process
was performed using early stopping. If adding another tree did not improve the performance of
the validation set, training was stopped.

4.2.3 Model Explanation

This section applies the six previously introduced explanation methods to the LightGBM model.
Additionally, two metrics specific to tree-based methods — Gain and Split — will be examined.
Gain measures the total reduction in loss achieved by adding a specific node, with the overall Gain
for a feature calculated as the sum of error reductions across all nodes where the feature is used.
Split represent the count of times a feature is selected for decision-making splits.

11% or less corresponds to less than 2096 instances with a value for a given categorical feature as there were
209.606 instances in the dataset
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Figure 4.1: Kernel Density Estimation (KDE) plots of the true vs. predicted values for the training
set (left) and validation set (right). The dashed line represents the ideal fit where predicted values
match true values.

Table E.1 lists the features grouped by the categories assigned in the survey. Mental and physical
health stand out as the most important factors affecting life satisfaction, accounting for 44% of
the model’s cumulative gain, even though they are not frequently used in splits. They appeared
in only 7% and 8% of splits respectively. The category of retrospective accommodation appeared
in the most splits (26%), followed by demographics and networks, and language.
The demographics and networks category includes characteristics such as the country of birth of
the individual’s parents. Retrospective accommodation includes the regions where individuals have
lived for more than one year since birth, covered by characteristics ra015c 1 through ra015c 30.
Consumption focuses on financial management, specifically whether a person can cover daily ex-
penses. Expectations include various features such as the expected lifespan, financial outlook,
possibilities of inheritance, and factors like personal trust and political views. General life covers
financial troubles, happiness, stress, and health issues throughout life. Interviewer Observations
note how willing and able the respondent was to answer the questions.
Table E.2 lists the top ten features ranked by gain, which together contribute 62% of the total
gain. Self-rated physical health alone accounts for nearly a quarter of the model’s cumulative gain.
Features ph003 and co007 dominate their respective groups (physical health and consumption),
accounting for almost all of their impact. In comparison, the impact of mental health is more
spread across several characteristics. The top three characteristics in the mental health category
(mh002 , mh037 , and mh003 ) together account for only 51% of the total mental health influence.
Table E.3 shows the features ranked by split occurrences. Features with a high split count also
tend to have higher cardinality than most other features. Features belonging to the category of
retrospective accommodation have the second highest cardinality in the data set. The features
had between 257 and 273 unique values. Country of birth of father and mother also have high
cardinality as the values of these features also refer to smaller regions within each country.
Six of the top ten features relate to origin, accounting for 25.6% of all splits. Notably, the sequence
of accommodation nodes often follows a pattern, with the first and second accommodations fre-
quently succeeding each other in the splits. It is, in fact, the most common pattern observed in
the model. The feature ranking also matches the sequence of places a person has lived. The first
place a person lived was more important than the second place that person lived, followed by the
second and third places that person lived. One possible explanation is that early childhood ac-
commodations have a more significant impact than those later in life. Alternatively, it may reflect
the certainty that everyone has lived in at least one place, while fewer people may have lived in
a second or third place. Notably, the feature ra015c 1 was missing in 57% of the data (both at
random and not at random), compared to ra015c 2 with 0.59% missing and ra015c 3 with 69%
missing.
Social Network Satisfaction, trust in other people, and a household’s ability to make a living each
had fewer than 10 unique values but appeared frequently in splits.

SHAP

The global SHAP values ranking is largely identical to the features ranked by gain. The retrospec-
tive region of residence has a lower SHAP ranking as it appears only once. Instead, trust in other
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people and the self assessed likelihood of still living in ten years is ranked higher.

Feature Description Abs. SHAP Avg. SHAP

0 ph003 Self assessed health status 8102.342089 0.316041

1 co007 Is household able to make a living 5731.110799 0.223548

2 language Language of questionnaire 4722.081054 0.184190

3 mh002 Sad or depressed last month 3460.723439 0.134989

4 sn012 Social Network satisfaction 2451.080341 0.095607

5 ex026 Trust in other people 2098.157471 0.081841

6 ra015c 1 Region of residence (not current) - coded 1989.911767 0.077619

7 mh037 Feels lonely 1967.004700 0.076725

8 ex009 Self assessed likelihood of still living in ten
years

1911.557966 0.074562

9 mh003 Hopes for the future 1739.364384 0.067846

Table 4.1: Absolute Summed SHAP values and Average per Person

Embedded SHAP

Individual SHAP values were clustered using UMAP with a three-dimensional output and clustered
using HDBSCAN and various different values for the min samples hyperparameter. Figure 4.2
shows the clusters with min samples set to 60. The clusters did not differ significantly with respect
to the features that were highly important in each cluster. Self-assessed physical and mental
health, household consumption, or network satisfaction were the most important SHAP values in
each group. None of the other features were the most important feature in any of the clusters.
The clusters form different combinations of the most significant features. Cluster 1 in Figure 4.2
includes people with good health, sufficient consumption but a lack of a strong social network,
and depression. Cluster 2, which had the lowest average life satisfaction, included people with
poor physical health. This is in line with the surrogate tree from Figure 4.5 which also assigned
the lowest predicted value of life satisfaction when physical health was poor (Table E.3 Split 6).
Instances in and around cluster 3 were given the highest predicted values. Like in the case of the
cluster with the lowest predicted value, the most important feature was again the self-assigned
health status.

The SHAP values were clustered at different breakpoints. Figure 4.3 shows that the general
location of the clusters hardly moves between each breakpoint, which indicates that the initial
trees approximate the similarity between the instances in terms of SHAP values well. However,
trees later built into the model still have a substantial impact on the predictions. The predictions
after ten trees were built were still close to the average prediction of 6.9.

Partial Dependence Plots

Figure 4.4 shows the partial dependence of the features ph003 and co007 , representing physical
health and financial situation, respectively. The values were not averaged as in Equation 3.4 but
instead show the distribution of the predicted values of f(xS , xC). The results indicate diminishing
returns on life satisfaction for both attributes. While initial improvements in health and financial
status have a substantial positive impact, the effect diminishes as these characteristics reach higher
levels. This assumes that the differences between individual ordinal categories are approximately
equally spaced.

Furthermore, language, which ranks third in terms of gain, exhibits a notable variation in its effect
on life satisfaction, the gap between the language associated with the highest predicted average
life satisfaction (Hebrew) and the lowest (Estonian) is 0.42.

The country in which the survey was carried out is strongly correlated with the partial dependence
of language. The Nordic countries and Switzerland have the highest average predictions. Likewise,
Estonia and Hungary are predicted to have the lowest average life satisfaction.
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Figure 4.2: UMAP Embedded SHAP values in three-dimensional Space. Lines show the Convex
Hull around the Clusters generated using HDBScan. Lighter points correspond to a higher pre-
dicted life satisfaction

(a) Tree 10 (b) Tree 100 (c) Tree 300

Figure 4.3: Aligned UMAP Embeddings after 10, 100 and 200 Trees have been built. The colors
change as the model is adjusting the predictions.

Surrogate Model

The Surrogate Tree seen in Figure 4.5 is a LightGBM model with ten leaves. The features that
appear in the simplified tree are also among the most important features of the original model
when ranking by gain. The simplified model achieves an R2 value of 0.58 with respect to the
predictions of the larger original model. Physical health is used for both the first split and one
of its children. Poor physical health leads to the lowest value of predicted life satisfaction (Split
1-6-7) paired with mental health. The highest predicted life satisfaction score was achieved by
people who had good physical health, had no difficulties to make a living, did not speak certain
languages, and were fully satisfied with their social network (Split 1-2-4-5).

Frequent Pattern Mining (Lift)

Table 4.3 highlights the pairs of adjacent nodes with the highest Lift values across all nodes. The
itemsets were generated using all three consecutive nodes across all trees, with a minimum support
threshold of 0.1%. Given the limited number of feature pairs and the fact that no more than
two features were evaluated in a single feature set, this low threshold was considered appropriate.
The resulting combinations often involve features within the same category. For instance, features
related to periods of financial hardship frequently co-occur, as illustrated in rules 1 and 2. In
particular, recent financial hardships had the most substantial joint impact on life satisfaction,
while prolonged periods of hardship also had a strong negative joint effect. In contrast, periods of
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Figure 4.4: Partial Dependence Plots for Physical Health, Financial Situation and Language
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Figure 4.5: Surrogate Decision Tree. Predicted Values are given in Brackets

financial hardship that occurred long ago had minimal joint influence on current life satisfaction.
The features gl013 and gl011 co-occurred 94 times more often than would be expected if they
were statistically independent and appeared together in 24 itemsets. Furthermore, features from
the mental health category commonly co-occurred, as shown in rules 6, 7, and 10. Retrospective
living conditions demonstrated some positive associations with other retrospective accommodation
features, as indicated by rules 8 and 9.

When comparing these Lift values with the results obtained from the simulated dataset (see sub-
section 5.1.2), there appear to be some similarities. Features measured jointly tended to have
higher Lift values (gl013 was defined for 15% of the data, gl012 for 20%, with both being si-
multaneously defined in 15% of the data). This suggests that high interaction scores may arise not
only from actual interactions within the population but also from features that are jointly missing
or jointly set. section E shows Ratiolift(A,B) as defined in Equation 3.9, which accounts for cases
where features are jointly set.

Feature Context Embedding

Both settings (Child 1- Node - Child 2, Parent - Node - Child) introduced in section 3.6 were con-
sidered for the embeddings. The Child 1- Node - Child 2 configuration showed better convergence
and more stable loss and was chosen over the Parent - Node - Child configuration.
Figure 4.6 shows the two dimensional embeddings of the features that were used in the model. The
model was constructed using CBOW and a window size of 1, only considering the left and right

25



Split Feature Values

1 Self assessed health status (ph003 ) = Excellent, Good, Very good (6.9)

2 Is household able to make a living (co007 ) = With some difficulty and 3 more
(7.5)

3 Feels lonely (mh037 ) = Often, Some of the time (6.7)

4 Language = French, Spanish and 16 more (7.8)

5 Social Network satisfaction (sn012 ) ≤ 8.500 (8.1)

6 Self assessed health status (ph003 ) = Poor (6.1)

7 Sad or depressed last month (mh002 ) = Yes (5.3)

8 Is household able to make a living (co007 ) = With great/some difficulty (6.5)

9 Country of birth coded: father (dn505c) = Austria and 24 more (6.8)

Table 4.2: Decision Rules for each Split

children and the parent respectively. The embeddings align with the rules generated by frequent
itemset mining. Pairs of features that have high lift values in Table 4.3 also tend to be close in the
embedding space.

Figure 4.6: Feature Context Similarity. Features positioned closely together are used within similar
contexts of the decision-making process of the model

Features related to retrospective accommodation cluster towards the upper left of the embedding
space. Not only do they frequently co-occur as seen in Table 4.3, they are also used in similar
contexts.

Summary

The key takeaways of the explanations are:

1. The model performs best around the average of the real target values, as gradient boosting-
based methods base their initial prediction on the average but fails to properly capture low
satisfaction levels. (Figure 4.1)

2. Physical and mental health, household consumption as well as features related to origin such
as language and retrospective region of residence dominate the impact on life satisfaction. (Ta-
ble E.2, Table 4.1)
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Feature 1 Feature 2 Lift Support

1 When financial hardship period
stopped (gl013 )

Period of financial hardship
(gl011 )

94 24

2 When financial hardship period
started (gl012 )

When financial hardship period
stopped (gl013 )

29 30

3 Suicidal feelings or wish to be dead
(mh004 )

Afford to pay an unexpected ex-
pense without borrowing money
(co206 )

9 26

4 Current job situation (ep005 ) Country (country) 8 25

5 Irritability (mh010 ) Partner outside household
(dn040 )

8 34

6 Less or same interest in things
(mh008 )

Hopes for the future (mh003 ) 7 29

7 Sad or depressed last month
(mh002 )

Hopes for the future (mh003 ) 7 80

8 Region of residence (not current) -
coded (ra015c 5)

Region of residence (not current) -
coded (ra015c 4)

6 80

9 Region of residence (not current) -
coded (ra015c 4)

Region of residence (not current) -
coded (ra015c 6)

6 25

10 Suicidal feelings or wish to be dead
(mh004 )

Feels left out (mh035 ) 6 25

Table 4.3: Top 10 Feature Combinations Ranked by Lift

3. Features related to financial hardship frequently occur together. Features related to mental
health or the region of residence also frequently occur in sequential order. (Table E.1)

4. Features such as mental health or depression are used in contexts that are unique to these
features. (Figure 4.6)

5. Health, household consumption, as well as other ordinal-scaled features, show a diminishing
effect for higher satisfaction levels, assuming they are approximately equally spaced. (Figure 4.4)

6. Living in a nordic country or speaking a nordic language has a positive impact on predicted life
satisfaction. Living in the baltics or speaking a baltic language has a negative impact on the
predicted value. (Figure 4.4)

7. Poor physical health leads to the lowest predicted values. Good physical health leads to the
highest predicted values. (Figure 4.5, Figure 4.2)

8. Instances that exhibit similarity in their SHAP values during early iterations tend to remain
similar in later iterations. Therefore, the similarity among instances based on the features
influencing life satisfaction can be reasonably approximated using only the early iterations of
the model (Figure 4.3).

4.2.4 Study Procedure

To evaluate the applicability of three novel explanation methods along with Partial Dependence
Plots, a Surrogate Model, and the SHAP values, as well as the helpfulness of explanation combina-
tions in understanding the model and factors influencing understanding, a survey was constructed.
Initially, the survey was planned to include all explanation methods. However, early trials revealed
that the study took a significant amount of time, which could have hindered participant recruit-
ment. To address this issue, participants were split into groups and participants in each group
evaluated two explanation methods. Different groups were exposed to distinct pairs of explanation
methods.
Of the 15 possible pairs that can be formed from the six explanation methods, only a subset was
selected for use. These include combinations involving SHAP, a Surrogate Model, and Partial
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Dependence Plots (SHAP - Surrogate Model, SHAP - Partial Dependence Plots, Surrogate Model
- Partial Dependence Plots), as well as the combinations Context Embeddings - Lift and SHAP -
Embedded SHAP. There are three reasons for making this choice:

1. Including a larger number of combinations would require a larger overall sample size to ensure
meaningful testing within the analysis. Limiting the combinations helps maintain feasibility.

2. Embedded SHAP requires an additional introduction to SHAP when paired with other explana-
tion methods other than SHAP itself, therefore, other combinations were excluded to minimize
cognitive overhead.

3. Because Embedded SHAP, Lift, and Context Embeddings are newly developed explanation
methods, their use was limited to a single subset to mitigate the potential impact of negative
reception of either method.

The study primarily employed a close-ended survey format, where participants selected responses
from multiple-choice lists or rated items on a Likert scale, along with two open-ended questions.

Survey Structure

The survey was divided into three parts. The first section contained general questions about the
participants’ background and interest in the topic. The second section focused on explanation-
specific questions, which evaluated the participants’ understanding and perceived helpfulness of
each explanation. The third and final section addressed the evaluation of combined methods. It
explored the combined helpfulness of the methods, their relative contributions to the participants’
understanding of the model, and included text boxes for respondents to provide feedback on aspects
of the model they felt were insufficiently covered and to indicate which explanation they found
more useful (Appendix F; item 8). An additional attention-check question was included to assess
participants’ focus, and it was used solely to determine which submissions were accepted. All
questions and available answers are shown in Appendix F.

1. General Questions

Prior to responding to questions targeting the specific explanation, participants were asked to
indicate their general familiarity with mathematical concepts on a Likert scale. In addition, two
questions were included to collect demographic information about the participants: their age
range and educational background. The age range was categorized into five-year intervals, and
the educational background included commonly recognized degrees such as high school, bache-
lor’s, master’s, and doctoral degrees, as well as their equivalents. Participants were also asked
to rate their interest in machine learning explanations and features influencing life satisfaction.

2. Explanation-Specific Questions

Each explanation method was first described, focusing on an abstract, high-level overview of
the explanation method. Participants were then asked to rate their subjective understanding
of the explanation method on a Likert scale. They were subsequently asked to select one of
the four available answers related to the conceptual approach of the explanation method to
measure their objective understanding. Participants then had to answer two questions related
to the application of the explanation method on the LightGBM machine learning model from
subsection 4.2.2 and had to rank the helpfulness of the explanation method on a Likert scale.

3. Combined Method Evaluation

In the final section of the survey, participants were asked to evaluate the additional benefit
provided by the combination of methods and to indicate which of the two methods contributed
more to their understanding of the model. They had to indicate which aspects of the model
were not sufficiently explained by the two explanations and had to explain why they found one
explanation more useful than the other. A graphical representation of each section and their
respective questions is shown in Figure 4.7.

Participation Constraints

The pool of participants was recruited on MTurk[20], with the goal of recruiting 15 workers per
combination of explanation methods. This number was determined based on a simulation study
designed using data modeled to align with the hypotheses. Participants had to meet three criteria:
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they were required to be MTurk Masters, workers recognized for consistently high performance
across a wide range of tasks over an extended period[74]; they needed an approval rate of 90% or
higher, which is associated with improved data quality[61]; and they were allowed to participate
in only one of the surveys. The final criterion was implemented after some workers had already
participated in multiple surveys. Thus, the dataset includes three submissions from workers who
had previously participated. This low number was deemed negligible, and these submissions were
retained.
An additional criterion considered was restricting participation to workers with a specific educa-
tional background, due to the high complexity of some explanation methods. However, this was
ultimately excluded because it would have reduced the variance in the education variable, thus
limiting its predictive power. Workers were compensated $3 per submission, with an additional
$0.75 per worker charged by MTurk for selecting Masters status participants. The survey was
carried out in batches, each containing nine participants, and batches were published until at least
15 accepted submissions were obtained for each pair of explanations.
In total, 129 submissions were collected, of which 94 were approved. Submission acceptance was
based on four criteria: the two text-based questions, the attention check question, and the Likert
scale responses. Submissions were rejected if workers failed the attention check, provided responses
in the open-text fields that did not align with the questions asked, submitted responses that
appeared to be AI-generated, or selected the same response for all Likert scale items. Table 4.4
lists the first five rejected submissions along with the question that led to their rejection and the
feedback given to the participants. Participants were given 30 minutes to complete the survey, and
among the approved submissions, workers spent 18.64 minutes on average on the task.

Explanation method preference Requester feedback

It was an important term used for represent-
ing words for text analysis in the form of real
values...

The answers given in the open text do not
match the questions

Shallow neural network models with an input
layer, hidden layer, word embeddings, and out-
put layer...

Answers do not match questions

The explanation method is a teaching tech-
nique where the instructor breaks down com-
plex concepts into manageable parts...

The answers given in the open text do not
match the questions

Some of the best techniques for learning in-
clude retrieval practice, spaced practice, and
collaborative learning...

The answers given in the open text do not
match the questions

CBOW uses a shallow neural network with a
single hidden layer. The input layer consists of
the aggregated embeddings...

The answers given in the open text do not
match the questions

Table 4.4: Reasons for rejection of submissions, including truncated responses to the question
”Which of the two explanation methods did you find more useful and why” alongside the corre-
sponding rejection reasons. The responses were overly verbose and ultimately did not address the
question properly.

Multiple choice questions were graded using the formula in Equation 4.7. Scores below zero were
adjusted to zero.

Score =
Correct Selections

Total Correct Answers
− Incorrect Selections

Total Possible Incorrect Answers
(4.7)

Limitations in the Study

This subsection addresses two limitations that arose during the execution of the study and outlines
the measures taken to address them.

1. Missing Questions

In the combination of the Surrogate Model and Partial Dependence Plots (PDP) explanation
methods, three questions were inadvertently omitted. These questions pertained to participants’
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interest in machine learning explanation methods, factors influencing life satisfaction, and con-
fidence in their mathematical abilities. This omission was identified after the data collection
phase, and submissions with missing data in these columns were excluded from RQ2.

In the combination of SHAP and Partial Dependence Plots (PDP), the second question regarding
the applied explanation method and the question about subjective helpfulness were omitted. To
address this, submissions with missing data in these columns were excluded from RQ3 and RQ4,
and additional batches were published to ensure at least 15 valid samples for this combination.
As a result, the SHAP–Partial Dependence Plots (PDP) combination had 31 observations, while
the remaining combinations had either 15 or 16 observations.

It is unlikely that the presence or absence of these questions influenced participants’ decisions to
take part in the study. All survey batches had identical titles and descriptions, and participants
were unaware of any differences in content between batches. Consequently, the survey results
of the affected submissions were included in analyses for research questions unaffected by the
missing data.

2. Duplicate Participation Across Batches

In three cases, submissions from participants who had already completed a survey from a differ-
ent combination of explanation methods were accepted. Although this overlap was not originally
intended, the inclusion of these submissions is justified due to the distinct nature of the ques-
tionnaires for each combination. Furthermore, since all batches were presented with identical
titles and descriptions, it can reasonably be assumed that participation in one batch is inde-
pendent of participation in another. Re-collecting the data was deemed unnecessary due to the
minimal likelihood of bias affecting the results and the limited scale of the issue.

4.2.5 Research Questions and Hypotheses

The survey seeks to evaluate how effectively the explanation methods were understood, identify
factors that affected their comprehension, determine whether the explanation methods improved
objective or subjective understanding of the model, explore how a preference for one model over an-
other impacted the perceived overall helpfulness of the explanation methods, and examine whether
specific combinations of explanation methods were favored over others.
Although Likert scale measurements represent ordinal data, they were treated as having cardinal
properties. Therefore, linear regressions were used instead of ordinal logistic regressions to reduce
the number of predictors and for its ease of interpretation, both in terms of the coefficients of the
predictors and the coefficient of determination. Each Likert scale question was included as a single
predictor, rather than modeling each available response separately.

Research Question 2 (RQ2)

Research Question 2 is aimed to determine whether there were significant differences in the sub-
jective understanding of different explanation methods.

Hypothesis RQ2H1 The subjective understanding of each explanation method depends signifi-
cantly on a participant’s background and the specific method presented to them. Higher education
is expected to lead to greater subjective understanding. Additionally, participants who spend more
time on the survey are anticipated to demonstrate a better subjective understanding. Interest in
the topic—whether related to life satisfaction or machine learning models—is expected to enhance
subjective understanding by increasing engagement with the content. Confidence in one’s mathe-
matical abilities is also expected to positively impact subjective understanding.

A linear regression model was used to model this relationship . The notation C(...) repre-
sents dummy variables for categorical data, where one category was automatically dropped to
avoid perfect multicollinearity.

subjective understanding ∼ work time in minutes + C(method)

+ C(age range) + C(education)

+ interest ml explanations

+ interest life satisfaction + math confidence (4.8)
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Hypothesis RQ2H2 There exist significant differences in the objective understanding of each
explanation method when considering a participant’s background. The magnitude and direction of
each predictor are anticipated to conform to the influence of features outlined in RQ2H1. Although
the objective understanding across explanation methods is expected to follow the same direction,
the magnitude is expected to differ.

Objective understanding was measured using a single correct answer, therefore, a logistic regression
was used to test this hypothesis.

objective understanding ∼ work time in minutes + C(method)

+ C(age range) + C(education)

+ interest ml explanations

+ interest life satisfaction + math confidence (4.9)

Hypothesis RQ2H3 There exist significant differences in the subjective understanding of paired
explanation methods.

This hypothesis was tested using paired t-tests for all five pairs of methods. Comparisons be-
tween methods not used together in a subset were not considered.

statistic, p value = ttest rel(data1,data2)

where (method1,method2) ∈ {(SHAP, PDP), (SHAP, Surrogate), . . . } (4.10)

Research Question 3 (RQ3)

Research Question 3 is aimed to investigate how subjective helpfulness of individual explanation
methods influenced overall subjective helpfulness when methods were combined, and whether in-
dividual helpfulness scores interacted.

Hypothesis RQ3H1 The subjective helpfulness of each explanation method positively affects
the perception of the helpfulness of the explanation combination. Additionally, as the combined
usefulness of the explanation methods increases, the incremental benefit to the helpfulness of the
combination decreases. .

combined helpfulness ∼ helpfulness sum + helpfulness sum2 (4.11)

Hypothesis RQ3H2 The more equally both explanation methods contribute to understanding
the model, the higher the subjective helpfulness of the combined explanation.

The factor abs method contribution centered represents the absolute distance from the mid-
point, where both methods contribute equally to the overall helpfulness.

abs method contribution centered = |method contribution− 3| (4.12)

In addition, the sum of the helpfulness of each explanation method was included.

combined helpfulness ∼ helpfulness sum + abs method contribution centered (4.13)

Research Question 4 (RQ4)

Research Question 4 is intended to explore the extent to which an individual’s understanding of
an explanation method influenced their ability to draw accurate conclusions about the underlying
model.
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Hypothesis RQ4H1 Subjective and objective understanding of explanation methods has a pos-
itive impact on the ability to correctly interpret the explanation method in relation to the model.

A linear regression was used to test this hypothesis, as the applied score was calculated as
the sum of the two scores (see Equation 4.7) from the questions where participants applied the
two explanation method to the given model (section Applying the explanation in Figure 4.7).

applied score ∼ subjective understanding + objective understanding

+ C(method) (4.14)

Figure 4.7 illustrates all the questions included in each survey. The explanation-specific section
was included twice in each survey, once for each model in the group. Overall, the survey comprises
five introductory questions, ten explanation-specific questions (five for each explanation), and four
summary questions, totaling 19 questions. Two features used in the hypotheses are not listed here:
the dummy variable for each explanation method and the time spent completing the survey before
submission.

Figure 4.7: Survey Structure
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Chapter 5

Findings

This chapter shows the findings from the synthetic data for the three novel approaches as introduced
in section 4.1 as well as the user study using all six explanation methods as shown in section 4.2.

5.1 Synthetic Data Evaluation (RQ1)

5.1.1 Embedded SHAP

RQ1H1: Variability in Feature Importance Projections

The function introduced in Equation 4.3 should lead to frequent changes in the embedding space
for instances belonging to group B, the embeddings of instances belonging to group A should
remain mostly static.

Figure 5.1: Instances belonging to group A correspond to instances of impact function A. Instances
belonging to group B correspond to instances of impact function B

After the 10th iteration, the points assigned to the underlying function B have shifted significantly
whereas the points assigned to the underlying function A have only shifted slightly. In the final
iteration, the instances affected by the underlying function A have aligned in several line segments
as seen in Figure 5.1. Some line segments can also be seen in group B.

The positional change in the embeddings is assessed by computing the Euclidean distance be-
tween consecutive iterations for each instance, which evaluates the extent of movement in the
embeddings from one iteration to the next:

Average Euclidean Distances =
1

I − 1

I−1∑
i=1

√√√√ n∑
j=1

(Di+1,j −Di,j)2 (5.1)

Where:

• I is the total number of iterations.

• n is the number of features for each instance.
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• Di,j represents the j-th feature of the data at iteration i.

Applying Equation 5.1 to the synthetic datasets shows that instances with the impact function
defined in Equation 4.1 changed their position by 0.46, whereas instances impacted by Equation 4.2
changed their position by 1.06. This represents a notable difference of approximately 130%.
Another metric that highlights the differences in complexity is the number of tree nodes traversed by
each instance. With 100 trees and default settings, instances influenced by Equation 4.1 traversed
approximately 735 nodes in total, whereas those affected by Equation 4.2 traversed around 931
nodes, which is a percentage difference of approximately 27%. This confirms RQ1H1 for the
given function and dataset. The more complex function resulted in greater movement within the
embedding space.

RQ1H2: Cluster Formation

The function introduced in Equation 4.4 should lead to a cluster formation of all instances part of
the group Dummy0.05. The cluster should only form in later iterations, as it affects only a small
fraction of the population.

Figure 5.2: Group 1: Instances with Dummy0.05 set to zero. Group 2: Instances with Dummy0.05
set to one. The two images show instances from the same embedding space. For visual clarity,
each of the subsets are displayed separately.

As seen in Figure 5.2, the 5% subgroup, influenced by the dummy variable, forms a cluster due
to the additional impact. Initially, in the first iteration, the dummy variable was not present in
the constructed tree. However, after 10 iterations, all instances with non-zero coefficients for the
dummy variable have clustered towards the left side of the image, which confirms RQ1H2. Instances
belonging to a subgroup will form a separate cluster once their separating factor is considered and
sufficiently large in comparison to the remaining features.

5.1.2 Frequent Pattern Mining (Lift)

The two hypotheses that will be examined are:

• RQ1H3: Co-occurrence Drives Lift. Features with strong interaction effects should have
larger Lift values.

• RQ1H4: Interaction Strength Correlates with Lift. The greater the strength of the
interaction, the higher the expected Lift value.

Based on the function introduced in Equation 4.5, the features InterC and InterD should have
the largest Lift value, as the interaction InterCD has the largest impact on the target variable y.
The interaction InterAB should have the second highest lift value. The lift values of the features
PrimA, PrimB and PrimC should be close to one, as they have no interaction effect with any
other feature.

Features InterC and InterD indeed result in the largest Lift value in the model, appearing in
121 splits. The primary features exhibit practically no positive association with each other, which
is expected, as they are uncorrelated with other features and have no joint effects on the target.
The second interaction effect also showed the second highest Lift value. Accordingly, the two
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Antecedents Consequents Lift Support

1 interD interC 6.498389 121

2 interB interA 5.141388 195

3 interA interC 4.010025 104

4 interA interD 3.924647 75

5 interD interB 3.782593 102

6 interC interB 3.761331 139

7 primC primA 1.044772 1267

8 primB primC 1.024657 1167

9 primA primB 1.003067 1060

Table 5.1: Frequent 2-itemsets for interaction and primary features with a lift value greater than
one.

hypotheses RQ1H3 and RQ1H4 have been confirmed for the given dataset. Features with a strong
interaction effect often formed sequences in the tree splits, leading to high Lift values. In this
dataset, the strength of the interaction determined the magnitude of the Lift value.

5.1.3 Feature Context Embeddings

The two hypotheses that will be examined are:

• RQ1H5: Contextual Clustering. Feature context embeddings should be arranged in a
2D space such that features appearing in similar contexts are clustered.

• RQ1H6: Global Similarity Optimization. The overall arrangement should maximize
inter-cluster similarity.

Based on the function defined in Equation 4.6, features belonging to Group1 and features belonging
to Group2 should be clustered separately. The feature Shared Feature should not be clustered
with either of the groups, as it affects the target y independently.

Figure 5.3: Scatter plots illustrating the contextual embeddings of features from each configuration.

As seen in Figure 5.3, the two groups are clearly clustered separately from one another which vali-
dates RQ1H5. The configuration including the parent clusters the groups more tightly. Moreover,
the shared feature is located in the middle between the two groups, which confirms RQ1H6. The
arrangement maximizes inter-cluster similarity.

5.2 Real-World Evaluation (RQ2 - RQ4)

5.2.1 Descriptive Analysis

The custom explanation methods consistently demonstrated notable performance differences both
in understanding and in helpfulness metrics (see Figure 5.4). These methods occupy both the top
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Figure 5.4: Explanation methods with higher understanding scores were generally rated as more
useful. Note that the y-axis starts at 1, which corresponds to the lowest point on the Likert
scale. Helpfulness Score: 1 = Did not help in understanding the model, 5 = Completely clarified
the model. Understanding Score: 1 = Did not understand the explanation, 5 = Completely
understood the explanation.

and bottom positions in the hierarchy of understanding and helpfulness. Specifically, Embedded
SHAP was found to be the most understood (Ø 4.00) and helpful (Ø 3.69) method, while Context
Embeddings (CBOW) scored the lowest in both understanding (Ø 3.19) and helpfulness (Ø 2.94).
For each individual explanation method, individuals with higher education levels demonstrated a
higher average subjective understanding. Participants with a high school diploma had the lowest
average understanding scores, followed by those with a bachelor’s degree, and then by participants
with a master’s degree or higher. This aligns with the findings from [13] where Master students
reported higher self-reported understanding. This also holds true for the subjective helpfulness
scores that participants assigned to each individual explanation method. The higher the education
level, the higher the subjective helpfulness of the explanation method. The only exceptions are
SHAP and Context Embeddings, where participants with a bachelor’s degree had slightly higher
averages (Embedded SHAP: Bachelor = Ø 4.14, Master = Ø 4.00; Context Embeddings: Bachelor
= Ø 3.42, Master = Ø 3.25).
Enhanced mathematical confidence correlates with higher subjective understanding for several
explanation methods. SHAP understanding scores increase from an average of 2 at the lowest
confidence level to 4.25 at the highest, and Partial Dependence Plots also exhibit improved un-
derstanding scores as confidence rises. The Surrogate Model, evaluated only among intermediate
groups (since no participants reported a confidence of 1 or 5), shows an increase from an average of
2.5 to 3.33 at the highest measured level, as does Embedded SHAP, which rises from 3.0 at a confi-
dence level of 3 to 4.23 at a level of 4, with no data available for other levels. Understanding scores
for the Context Embeddings and Lift remain relatively consistent, with subjective understanding
scores fluctuating between 3 and 4 regardless of math confidence.
A clear correlation exists between the perceived understandability of a model and its perceived
helpfulness. However, across all methods, models scored consistently higher in understanding
than in helpfulness. This suggests that while participants could grasp the underlying explanatory
mechanisms, they found the methods less directly applicable in explaining model behavior. An
additional explanation for the discrepancy between understanding and helpfulness is that some
explanation methods contain more information than others. In the case of Partial Dependence
Plots, only three plots were shown, despite the model containing numerous features. The most
pronounced disparity between understanding and helpfulness was observed in the Partial Depen-
dence Plots. Despite achieving a relatively high average understanding score of 3.68, these plots
were rated significantly lower in terms of helpfulness at an average of 3.17.
The two methods that demonstrated the greatest individual helpfulness also exhibited the highest
level of enhanced understanding of the model. (SHAP and Embedded SHAP). Additionally, the
combination of Lift and Context Embeddings, which both relate to the context in which a feature
is utilized, is perceived as more beneficial. A potential explanation for similar explanations that
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Figure 5.5: Comparison of average subjective helpfulness ratings for different combinations of
explanation methods. The chart shows how participants perceived the combined effectiveness of
two methods in enhancing their understanding of the model compared to the potential contribution
of a single method. 1 means the combination did not enhance model understanding at all, 5 means
the combination led to a complete or near-complete understanding of the model

receive high scores in terms of enhanced understanding of the model is that individuals prefer
further clarification of a specific aspect of the model over having two distinct explanations that
cover different perspectives on the model.

Figure 5.6: Distribution of relative contribution ratings grouped by method combination. Each
violin shows the kernel density estimate of the ratings. 1 means the first method contributes
significantly more than the second, 5 means the second method contributes significantly more than
the first

Figure 5.6 shows that the contribution of each method follows a distribution similar to a normal
curve. In particular, all explanation combinations, except for the pair Context Embeddings -
Lift, appear to have a normal distribution. Although Embedded SHAP had a higher average
understanding score as seen in Figure 5.4, it contributed less to the overall understanding of the
model, as the distribution is shifted closer to SHAP.

Figure 5.7 indicates that most participants held a bachelor’s degree or equivalent, with only one
participant holding a doctorate. As a result, the categories ”Master’s degree or equivalent” and
”Doctorate degree or equivalent” were merged into a single category, ”Master’s degree or higher.”
The median age of the participants was in the 36 to 40 range. Since only one participant fell into
the 21 to 25 age group, the age brackets 21 to 25 and 26 to 30 were combined into a single bracket,
21 to 30.
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Figure 5.7: Education level and age range.

Figure 5.8: Interest in machine learning and life satisfaction.

Figure 5.8 indicates that the participants were generally more interested in life satisfaction than in
machine learning explanations. On average, participants rated their interest in machine learning
explanations at 3.42, while their interest in life satisfaction was higher at 4.06. Additionally, there
is a moderate positive correlation (r = 0.45) between the participants’ interest in machine learning
explanations and their interest in life satisfaction.

5.2.2 Empirical Analysis

To test the hypotheses presented in subsection 4.2.5, logistic and linear regression models were
employed.
Linear regression models were evaluated to ensure that they satisfy five key assumptions of linear
regression models [72], which are outlined in Table 5.2:

• Linearity: To test whether the linear relationship assumption held, RESET (Regression
Specification Error Test) [65] tests were performed to assess whether any higher-order pre-
dictors were significant. The test was performed using quadratic terms, while cubic and
higher-order terms were not considered. If no predictor was significant at the 5% significance
level, linearity was assumed.

• Normality: Normality was tested using a Shapiro-Wilk test [76], which compares the or-
dered residuals with a normal distribution.

• Multicollinearity: Multicollinearity was assessed using the Variance Inflation Factor (VIF)
[54], which was calculated by regressing each predictor on all the other predictors and mea-
suring how much the variance of its coefficient was inflated due to multicollinearity.
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• Independence: Independence of the residuals was assumed for regressions with a single
observation per participant, as there was no reason to assume that one participant’s responses
could depend on another participant’s responses. Although three workers participated twice,
their impact on overall independence was considered insignificant. When there was more
than one observation per worker, because each worker received two explanation methods, the
independence of the pairs was tested using a Pearson correlation test.

• Homoscedasticity: Homoscedasticity was tested using the Breusch-Pagan test [14]. This
test regresses the squared residuals of the model on the predictors (or functions of them).
If the predictors explained a significant amount of variance in the squared residuals, this
suggested heteroskedasticity.

Identifier Assumption Test

Linearity Predictors relate linearly to the target. Ramsey’s RESET Test

Normality Residuals are normally distributed. Shapiro-Wilk Test

Multicollinearity Predictors lack strong intercorrelation. Variance Inflation Factor

Independence Residuals are independent. Pearson Correlation Test

Homoscedasticity Residual variance is constant across predictors. Breusch-Pagan Test

Table 5.2: Tests for Linear Regression

Logistic regression relies on the following assumptions [72]:

• Binary Target: The target variable has to be binary. This assumption was not explicitly
tested because the analysis was restricted to binary outcomes.

• Independence: Residuals are expected to be independent. As in linear regression, Pearson
Correlation tests were conducted when there were two observations per participant, as in the
case of having two explanation methods per participant.

• Multicollinearity: Multicollinearity was assessed using the Variance Inflation Factor to
ensure that the predictors were not highly correlated.

• Linearity: The predictors are required to have a linear relationship with the log-odds of the
outcome. This was tested by examining interactions with log-transformed predictors.

• Sample Size: The assumption of adequate sample size was considered satisfied. The smallest
group (participants aged 21 to 30) had 7 observations, which was considered sufficient.

Identifier Assumption Test

Independence Residuals are independent. Pearson Correlation Test

Multicollinearity Predictors lack strong intercorrelation. Variance Inflation Factor

Linearity Predictors relate linearly to log-odds. Log-transformed interactions

Table 5.3: Tests for Logistic Regression

RQ2H1

Table 5.4 shows that the combinations of Lift / Context Embeddings and the Surrogate Model
differ significantly from the reference group, Embedded SHAP. Lift and Context Embeddings
were combined into a single dummy variable because they only appeared in a single combination,
resulting in perfect collinearity. All explanation methods had negative coefficients, consistent
with the observation that Embedded SHAP was subjectively better understood than any other
explanation method. Given that the target variable is a Likert scale ranging from 1 to 5, the
coefficients indicate that the understanding of the Surrogate Model is approximately 0.76 points
lower than that of Embedded SHAP.
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Variable Coeff. Std. Error z-value P-value

Intercept 1.6962 0.6019 2.8180 0.0056

C(method)[T.Lift/Context Embeddings] -0.8002 0.2389 -3.3491 0.0011

C(method)[T.PDP] -0.2969 0.2398 -1.2382 0.2179

C(method)[T.SHAP] -0.1099 0.2240 -0.4905 0.6246

C(method)[T.Surrogate] -0.7561 0.2806 -2.6947 0.0080

C(age range)[T.31 to 35] 0.3141 0.4224 0.7437 0.4584

C(age range)[T.36 to 40] 0.6292 0.4186 1.5031 0.1353

C(age range)[T.41 to 50] 0.6278 0.4089 1.5356 0.1271

C(age range)[T.Over 50] 0.2684 0.4149 0.6469 0.5189

C(education)[T.High school diploma or equivalent] -0.0769 0.1637 -0.4699 0.6393

C(education)[T.Master’s degree or higher] 0.6564 0.1719 3.8185 0.0002

work time in minutes 0.0225 0.0116 1.9466 0.0538

interest ml explanations 0.1480 0.0743 1.9927 0.0485

interest life satisfaction 0.0265 0.0821 0.3225 0.7476

math confidence 0.1610 0.0879 1.8311 0.0695

Table 5.4: Results from the Linear Regression Model. Significant predictors (p < 0.05) are high-
lighted in bold. The target is subjective understanding of the explanation method. The model
explains 35.3% of the variance in the dependent variable (R2 = 0.353).

In contrast, none of the dummy variables for age were significant, with the age bracket of 21 to
30 serving as the reference group. While there is some indication that subjective understanding is
higher in higher age brackets, the effect is not significant.

Education, however, has a significant influence on subjective understanding. A master’s or higher
degree leads to a significant increase in perceived understanding.

There appears to be a small but positive effect of work time on subjective understanding, an
additional 10 minutes of work time increases subjective understanding by 0.23 points. Interest in
the topic, both in terms of interest in machine learning explanations and interest in life satisfaction,
had a positive effect on the target. However, only interest in machine learning explanations had a
statistically significant effect.

Confidence in one’s mathematical abilities falls just outside the range of statistical significance,
suggesting some evidence that higher confidence may lead to higher subjective understanding of
the machine learning explanation methods.

Assumption Test Condition Value

Linearity in Model Form Ramsey’s RESET Test P-value > 0.05 0.2021 (Pass)

Homoscedasticity of Residuals Breusch-Pagan Test P-value > 0.05 0.0861 (Pass)

Normality of Residuals Shapiro-Wilk Test P-value > 0.05 0.2631 (Pass)

No Predictor Multicollinearity Variance Inflation Factor Max VIF < 10 8.7074 (Pass)

Independence of Residuals Pearson Correlation P-value > 0.05 0.1126 (Pass)

Table 5.5: Diagnostic checks for RQ2H1

The diagnostic checks summarized in Table 5.5 confirm that the assumptions of linear regression
are met. All tests satisfy the predefined thresholds. There is no indication of non-linearity, the
residuals are independent and approximately normally distributed, though there is mild evidence
of heteroscedasticity (p = 0.0861). Furthermore, no significant multicollinearity is detected among
the predictors. There appears to be a slight positive correlation between observations for the same
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participants, but it is not statistically significant.

RQ2H2

Variable Coeff. Std. Error z-value P-value

Intercept -0.8625 1.8533 -0.4654 0.6417

C(method)[T.Lift/Context Embeddings] 1.0268 0.7082 1.4499 0.1471

C(method)[T.PDP] 1.5501 0.7231 2.1439 0.0320

C(method)[T.SHAP] 2.3439 0.7191 3.2597 0.0011

C(method)[T.Surrogate] 1.1415 0.8314 1.3730 0.1698

C(age range)[T.31 to 35] 1.1485 1.2808 0.8967 0.3699

C(age range)[T.36 to 40] 1.6914 1.2894 1.3118 0.1896

C(age range)[T.41 to 50] 0.5093 1.2261 0.4153 0.6779

C(age range)[T.Over 50] 1.2324 1.2573 0.9802 0.3270

C(education)[T.High school diploma or equivalent] -0.4324 0.5472 -0.7902 0.4294

C(education)[T.Master’s degree or higher] -1.5547 0.5423 -2.8670 0.0041

work time in minutes -0.0232 0.0367 -0.6328 0.5269

interest ml explanations -0.1277 0.2562 -0.4984 0.6182

interest life satisfaction 0.1278 0.2727 0.4686 0.6393

math confidence 0.0656 0.2853 0.2300 0.8181

Table 5.6: Results from the Logistic Regression Model. Significant predictors (p < 0.05) are
highlighted in bold. The target is objective understanding of the explanation method. The model’s
pseudo R2 is 0.1726.

The results presented in Table 5.6 show that among the explanatory methods, Partial Dependence
Plots (PDP) and SHAP show significant differences from the reference group, Embedded SHAP.
Both PDP (p = 0.0320) and SHAP (p = 0.0011) have positive coefficients, in contrast to the results
in Table 5.4.
The combinations of Lift / Context Embeddings and Surrogate Model have positive coefficients, but
are not significantly different from the reference group. None of the age groups (31 to 35, 36 to 40,
41 to 50, and over 50) differ significantly from participants aged 21 to 30 in predicting objective
understanding. Education appears to be a significant factor, with a Master’s degree or higher
associated with a decrease in subjective rating (p = 0.0041, coefficient = −1.5547). This finding
contradicts RQ2H1, where a Master’s degree or higher was associated with an increase in subjective
understanding compared to a Bachelor’s degree or equivalent. In contrast, participants with a
high school diploma or equivalent do not show significant differences in objective understanding
compared to those with a bachelor’s degree.
Other variables, including work time (p = 0.5269), interest in machine learning explanations
(p = 0.6182), interest in life satisfaction (p = 0.6393), and confidence in mathematical abilities
(p = 0.8181), do not significantly affect the result. However, both work time and interest in
machine learning explanations had a significant effect on subjective understanding in RQ2H1.
.
The logistic regression assumptions were tested (Table 5.7) and all were met as multicollinearity
showed no significant concerns with a maximum VIF of 8.7074, while linearity in log-odds passed
with a minimum p-value of 0.4785, and residual independence was confirmed with a correlation of
-0.1543 and a p-value of 0.2391.

RQ2H3

Table 5.8 indicates that among the five combinations of explanation methods, only SHAP and the
Surrogate Model showed a significant difference in subjective understanding. Within this pair, the
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Assumption Test Condition Value

No Predictor Multicollinear-
ity

Variance Inflation Factor Max VIF < 10 8.7074 (Pass)

Linearity in Log Odds Log-transformed interactions P-value > 0.05 0.4785 (Pass)

Residuals are independent Pearson Correlation P-value > 0.05 0.2391 (Pass)

Table 5.7: Diagnostic checks for RQ2H2.

Method 1 Method 2 Statistic p-value

SHAP PDP 0.764 0.457

SHAP Surrogate 2.553 0.023

PDP Surrogate 1.168 0.261

Context Embeddings Lift -0.436 0.669

SHAP Embedded SHAP 0.000 1.000

Table 5.8: Paired t-test results for statistical equality of subjective understanding across expla-
nation method combinations. The table shows the t-statistic and corresponding p-value for each
method pair. Significant predictors (p < 0.05) are highlighted in bold.

SHAP values were on average considerably better understood than the Surrogate Model (3.73 vs.
3.13). SHAP and Embedded SHAP, on the other hand, had identical average values (4) in their
group, resulting in a p-value of 1. Therefore, although Table 5.5 suggests a statistically significant
difference in subjective understanding, the difference is only explained by the combinations of
the explanation method SHAP - PDP and SHAP - Surrogate but is not present in the SHAP -
Embedded SHAP combination.

RQ3H1

Variable Coefficient Std. Error z-value P-value

Intercept 0.1128 0.6720 0.1680 0.8670

helpfulness sum 0.6289 0.2230 2.8240 0.0060

I(helpfulness sum ** 2) -0.0239 0.0180 -1.3390 0.1850

Table 5.9: Results from the Linear Regression Model. The dependent variable is the combined
helpfulness of the two explanation methods. Significant predictors (p < 0.05) are highlighted in
bold. The model explains 47.1% of the variance in the dependent variable (R2 = 0.471).

Table 5.9 shows that increases in the sum of perceived helpfulness scores (helpfulness sum) signif-
icantly correspond to an increase in combined helpfulness (p = 0.006). However, the squared term
for helpfulness sum, I(helpfulness sum2), is not statistically significant (p = 0.185), suggest-
ing no evidence of a nonlinear relationship, despite showing the anticipated negative coefficient.
The intercept is also not significant, indicating no baseline level of understanding unrelated to the
predictors.

According to Table 5.10, the Shapiro–Wilk test indicates that the residuals do not strictly follow a
normal distribution. As shown in the kernel density plot (Figure 5.9), the residuals remain slightly
skewed with two local maxima but appear broadly normal overall despite the test result. The
variance inflation factor (28.9248) exceeds the usual threshold of 10, which is unsurprising given
that both predictors stem from the helpfulness measures of individual explanation methods. The
remaining assumptions—linearity and no endogeneity—are satisfied.
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Assumption Test Condition Value

Linearity in Model Form Ramsey’s RESET Test P-value > 0.05 0.5608 (Pass)

Homoscedasticity of Residuals Breusch-Pagan Test P-value > 0.05 0.8444 (Pass)

Normality of Residuals Shapiro-Wilk Test P-value > 0.05 0.0001 (Fail)

No Predictor Multicollinearity Variance Inflation Factor Max VIF < 10 28.924 (Fail)

Table 5.10: Diagnostic checks for RQ3H1.

Figure 5.9: Distributon of the Residuals from RQ3H1.

RQ3H2

Variable Coefficient Std. Error z-value P-value

Intercept 1.0645 0.2988 3.5632 0.0006

helpfulness sum 0.3345 0.0413 8.0933 0.0000

abs method contribution centered -0.1499 0.1027 -1.4590 0.1487

Table 5.11: Results from the Linear Regression Model. The dependent variable is the combined
helpfulness of the two explanation methods. Significant predictors (p < 0.05) are highlighted in
bold. The model explains 47.3% of the variance in the dependent variable (R2 = 0.473).

Table 5.11 shows that while helpfulness sum remains a significant predictor (p ∼ 0), the devia-
tion from the midpoint where the two explanation methods contribute equally is not significant,
although it has the expected coefficient, indicating that there is some positive effect of the two
explanation methods contributing equally to overall understanding.

Assumption Test Condition Value

Linearity in Model Form Ramsey’s RESET Test P-value > 0.05 0.1752 (Pass)

Homoscedasticity of Residuals Breusch-Pagan Test P-value > 0.05 0.9549 (Pass)

Normality of Residuals Shapiro-Wilk Test P-value > 0.05 0.0002 (Fail)

No Predictor Multicollinearity Variance Inflation Factor Max VIF < 10 1.0006 (Pass)

Table 5.12: Diagnostic checks for RQ3H2.

Table 5.12 is consistent with the results of Table 5.10. The normality assumption for the residuals
still does not hold. The distribution appears to be approximately identical to the distribution seen
in Figure 5.9 and still appears to be generally normal.
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Variable Coefficient Std. Error z-value P-value

Intercept 1.9913 0.2647 7.5238 0.0000

C(method)[T.Lift/Context Embeddings] -0.7660 0.1893 -4.0473 0.0001

C(method)[T.PDP] -0.8070 0.1767 -4.5680 0.0000

C(method)[T.SHAP] -0.5810 0.1801 -3.2256 0.0015

C(method)[T.Surrogate] -0.8922 0.1874 -4.7609 0.0000

subjective understanding -0.1253 0.0531 -2.3611 0.0194

objective understanding 0.1100 0.1018 1.0805 0.2815

Table 5.13: OLS regression results. The dependent variable is the applied score from Equation 4.14.
Significant predictors (p < 0.05) are highlighted in bold. The model explains 15.6% of the variance
in the dependent variable (R2 = 0.156).

RQ4H1

Table 5.13 indicates that the ability to draw correct conclusions from individual explanation meth-
ods strongly depends on the specific explanation method used. All explanation methods differ
significantly from the reference group, Embedded SHAP, consistent with the findings in Equa-
tion 4.8 and Figure 5.4. Subjective understanding has a significant negative effect on the correct
application of explanation methods. Although objective understanding appears to have a positive
influence on making correct conclusions, this effect is not statistically significant at conventional
thresholds (p = 0.2815).

5.2.3 Qualitative Analysis

The following section summarizes the two open text questions at the end of the survey, which were
not included in the three research questions (see Figure 4.7).

SHAP - Embedded SHAP

Among the participants who received both SHAP and Embedded SHAP, half of them (8 out
of 16) felt that the explanations were adequate. Three participants expressed a desire for more
examples, while the remaining participants either wished for a more in-depth explanation or found
the explanations too technical. In terms of preference, SHAP values were favored by 9 participants,
while 6 participants preferred Embedded SHAP. The primary reason for preferring SHAP was
the ease of understanding its general concept. One participant had no preference. Those who
favored Embedded SHAP appreciated the ability to visually interpret the proximity between points
rather than relying on bar charts. Those findings are in line with the relative contribution to the
understanding of the model as seen in Figure 5.6 where participants attributed a higher contribution
to SHAP.

Lift - Context Embeddings

For the participants who received Lift values and Context Embeddings, five individuals found
the explanations to be adequate. However, two participants expressed confusion about how the
embeddings were constructed based on decision trees. The remaining participants either found
the explanations insufficient, overly complex, or lacking in certain aspects, such as higher-order
interactions. Lift and Context Embeddings were therefore the least understood combination out of
all six combinations. This matches the findings in Figure 5.4. In terms of preference, 7 participants
favored Lift, while 6 preferred Context Embeddings. Three participants expressed no preference.
Those who preferred Lift valued its simplicity in providing a single interpretable number, whereas
those who favored Context Embeddings appreciated its ability to visually illustrate the proximity
between features.

SHAP - Partial Dependence Plots

Among the participants who were introduced to both SHAP values and Partial Dependence Plots,
those with a clear preference favored SHAP twice as often as PDP, with 6 participants preferring
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SHAP compared to 3 for PDP. However, 6 participants expressed uncertainty or did not explicitly
indicate a preference. Regarding the adequacy of explanations, 8 participants felt that the models
were sufficiently explained. One participant found the explanation somewhat adequate but required
a simpler presentation. Five participants believed that important aspects of the models were
missing or unclear. Common concerns included a lack of examples, difficulty understanding feature
interactions, insufficient clarity in graph-based explanations, and challenges in predicting model
outputs. Additionally, one participant stated that they lacked enough information to properly
assess the explanations.

Partial Dependence Plots - Surrogate Model

For participants who received explanations of Partial Dependence Plots and the Surrogate Model, 7
individuals preferred PDP due to its visual clarity and intuitive interpretation, while 4 preferred the
Surrogate Model for its logical structure. Two participants found both methods equally useful, and
three had unclear preferences. In terms of explanation adequacy, 8 participants felt that the models
were well explained, whereas 1 participant found the explanation somewhat adequate but expressed
confusion regarding the Surrogate Model. Five participants believed that aspects of the models
remained unclear, due to difficulties in understanding numerical values in trees, feature correlations,
and linking different graphs and features. Additionally, 2 participants provided unclear responses,
making general statements about model behavior without indicating clarity.

SHAP - Surrogate Model

Among the participants who received explanations of SHAP values and the Surrogate Model, 7
participants preferred the Surrogate Model for its logical structure and clarity, while 5 preferred
SHAP due to its ability to simplify individual feature importance. Three participants did not
express a clear preference. Regarding explanation adequacy, 9 participants felt that the model’s
behavior was well explained, while 3 participants found the explanations somewhat adequate but
struggled with understanding feature interactions. Two participants indicated that aspects of the
model were not sufficiently explained, stating that more step-by-step guidance or better insights
into complex nodes might improve the explanation. One participant provided an unclear response
that did not indicate whether they fully understood the explanations.

5.3 Summary

5.3.1 General Applicability of the Novel Explanation Methods

The findings from Research Question 1 show that the novel explanation approaches could success-
fully uncover relationships in the synthetic data with respect to the target.
In particular, the evaluation of the Embedded SHAP approach demonstrated that the method
is sensitive to function complexity, instances influenced by more complex functions exhibited sig-
nificantly greater movement within the embedding space compared to those affected by simpler
functions. Additionally, clusters of small subgroups formed as anticipated.
The observed Lift values aligned with the predicted outcomes: features involved in stronger inter-
actions yielded higher Lift values and primary features without interaction effects maintained Lift
values near one.
Finally, the analysis of the Context Embeddings showed that the embeddings are organized based
on context similarity. The clear separation of features into distinct clusters demonstrated that the
method accurately captured the underlying relationships among feature groups.

5.3.2 Impact of Education and Stakeholder Background on Understand-
ing

The findings from Research Question 2 demonstrate a significant relationship between participants’
educational backgrounds and their subjective and objective understanding of explanation methods.
Higher education consistently corresponds to increased subjective understanding and perceived
helpfulness of explanation methods (subsection 5.2.1). However, objective understanding does not
follow this trend: participants with a master’s degree exhibited lower objective understanding
scores despite higher subjective assessments. This discrepancy may result from an illusion of ex-
planatory depth, where individuals with higher education overestimate their abilities, as supported
by the statistically significant shorter survey completion times for this group (p = 0.0284) [68].
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Additionally, increased mathematical confidence is generally correlated with improved subjective
understanding.

5.3.3 Stakeholder-Specific Relevance

With respect to the relevance of the novel approaches, Embedded SHAP is not considered relevant
for most stakeholders. The movement between iterations in Embedded SHAP was mentioned only
once as a reason for preference. Additionally, it primarily reveals model construction details, which
are mainly relevant to developers rather than users or affected parties (Langer et al. [40]).

Lift and Context Embeddings, with their focus on inter-feature relationships, appear primarily
relevant for regulators concerned with model transparency and developers prioritizing model per-
formance. Neither of the two explanation methods provides a detailed explanation for the model
overall. Using both explanation methods along with other explanations in a multidimensional
framework such as the one proposed by Mohseni et al. [52] and Langer et al. [40] could enhance
overall helpfulness scores. Both papers point out the importance of tailoring explanations to differ-
ent stakeholder groups, such as AI novices and experts. While profession itself was not explicitly
measured in this survey, education and self-assessed mathematical confidence likely correlate with
professional expertise, although no single explanation method was exclusively understood by a
particular educational group.

5.3.4 Subjectively Best and Worst Understood Methods

Participants consistently demonstrated strong subjective understanding of SHAP values and their
embeddings, and rated them highly for helpfulness regardless of educational background. SHAP
values were notably better understood and perceived as more helpful than the Surrogate Model and
Partial Dependence Plots (PDP). The differences observed in subjective understanding between
SHAP and the Surrogate Model were statistically significant (Table 5.6, Table 5.8).

In contrast, Lift and Context Embeddings were poorly understood and considered less helpful and
received the lowest subjective scores overall. The technical complexity of Lift, presented with its
mathematical formula, likely intimidated participants and negatively impacted their subjective
perception of both Lift and Context Embeddings, which were presented together. Aligning expla-
nation complexity with the target audience’s expertise, as suggested by Lage et al. [38], who argue
for simplicity in explanations for laypeople, might help in this regard.

5.3.5 Consistency and Abstraction Level Across Explanation Methods

The results from Research Question 2 show strong differences in subjective and objective under-
standing across methods. This difference can likely be attributed to varying abstraction depths,
which refers to the level of detail and complexity provided when describing and presenting an
explanation method to participants. Previous research on cognitive load theory suggests that the
abstraction level significantly impacts learning outcomes [80]. Embedded SHAP, for instance, re-
ceived high subjective understanding scores but notably lower objective understanding scores com-
pared to traditional SHAP. Furthermore, the questions assessing objective understanding might
also differ with respect to their difficulty. Evaluating other intrinsic properties of explanation meth-
ods, such as consistency and continuity through controlled perturbations, might provide a better
picture of the overall quality of the explanation methods [5]. However, assessing these properties
might be challenging for explanations based solely on embeddings, as their interpretability is less
direct and measurable.

The findings from Research Question 4 showed that there is a weak relationship between under-
standing an explanation and the ability to make correct assessments based on it. Similar to the
questions regarding objective understanding, these questions may vary in difficulty.

5.3.6 Relevance and Combination of Explanation Methods

In Research Question 3, the overall helpfulness of the explanation methods was effectively predicted
by their individual ratings, although the observed diminishing effect did not reach statistical sig-
nificance (Table 5.9).

Notably, combinations such as SHAP with Embedded SHAP resulted in the highest perceived
combined helpfulness. Overall, participants indicated that explanation combinations ranged from
”slightly” to ”significantly” enhancing their understanding of the model.

46



Furthermore, combining PDP with the Surrogate Model significantly increased overall model un-
derstanding, despite neither method individually receiving high subjective understanding scores,
which suggests a complementary effect.
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Chapter 6

Conclusion

6.1 Summary of the Thesis

This work examined the factors that determine the understanding and successful application of
machine learning explanation methods. It aimed to investigate whether combinations of explana-
tion methods offer added value for users and to compare these combinations. Moreover, the study
examined whether novel explanation methods can also enhance the understanding of models by
shedding light on facets that are not covered by established explanation methods.
In chapter 2, stakeholder groups and their desiderata concerning model understanding were pre-
sented. Additionally, the individual explanation methods were classified, and various classification
approaches were introduced. The chapter presented several frameworks designed to help apply
explanation methods effectively, along with metrics intended to evaluate these methods based on
different criteria, such as Likert scales and synthetic data evaluation.
In chapter 3, six different explanation methods were introduced. These include three established
methods (SHAP, Partial Dependence Plots, and Surrogate Models) and three novel approaches
(Lift, Feature Context Embeddings, and Embedded SHAP) that capture facets not addressed by
the established methods.
These explanation methods were examined using the methodology described in chapter 4, by using
both an analysis of synthetic data and a user study. The evaluation using synthetic data was
limited to the novel approaches, whereas the user study examined all six explanation methods by
generating pairs to measure the added value of the combinations. The findings were presented in
chapter 5.

6.2 Key Contributions and Findings

The findings from section 5.1 show that all three novel approaches could successfully uncover
properties of the underlying function on which the data creation depended. The movement in the
embedding space using Embedded SHAP showed that instances with a complex underlying target
function were harder for the model to predict, and thus their similarities with other instances
fluctuated more. Moreover, instances that were similar with respect to the impact of the features
on the target clustered together. Feature dependencies were correctly uncovered by using Lift
values, with features that had no joint effect on the target receiving a Lift value of one accordingly.
Embedding the features of a synthetic dataset revealed that features used in similar contexts were
clustered together. A third feature, which belonged to neither of the two groups, was positioned
between them, as expected, since it was not used particularly often in contexts similar to those of
the two groups.
The user study revealed that the explanation methods differ significantly regarding both subjective
(Table 5.4, Table 5.8) and objective understanding (Table 5.6). Increased subjective helpfulness of
individual methods positively influences their combined helpfulness, although this effect appears to
diminish with greater individual helpfulness, as indicated by the results in Table 5.9. Additionally,
there is weak evidence suggesting that overall helpfulness increases when both explanation meth-
ods contribute equally (Table 5.11). Finally, there exists only a weak relationship (R2 = 0.156)
between understanding an explanation and correctly interpreting its implications, as demonstrated
by Table 5.13.
The novel approaches, especially Embedded SHAP, helped users to gain a better subjective un-
derstanding of the model. All three novel explanation methods were able to reveal aspects of the
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underlying model that were not exposed by the other established explanation methods.

6.3 Limitations of the Work

The use of multiple-choice questions to assess the objective understanding of both the explanation
method and the model did not yield the expected results. One potential improvement could be to
replace the objective assessment with alternative approaches, such as those described by Nauta et
al. (see subsection 2.3.2). Additionally, evaluating the explanation methods via an online survey
may not sufficiently incentivize participants to fully engage with and correctly apply the methods.
Although participants had the option to indicate what was unclear about the explanations, there
was little motivation for them to invest significant time in their responses. Conducting in-person
questionnaires might reveal more insights into the shortcomings of the explanations and potential
misunderstandings. Furthermore, issues such as missing questions in some survey responses and
duplicate participation in three cases, as noted in section 4.2.4, were also problematic. However,
the impact was seen as small and was addressed in the case of the missing question.

6.4 Future Research Directions

In future studies, it could be valuable to examine a pure between-subjects design, which might
reveal statistically significant differences in understanding. To better account for different abstrac-
tion depths, incorporating the number of characters in the explanation may also help. However,
relying solely on character count may be insufficient, given that technical complexity can vary
widely between texts. Comparing explanations that address different aspects of a model remains
challenging. One potential solution is to have participants reconstruct a decision tree and then
assess whether a particular explanation method yields predictions more closely aligned with ac-
tual outcomes. This approach would enable the evaluation of methods that emphasize various
aspects of the model, such as interaction between features. Participants could build a new decision
tree after each explanation is presented, allowing for the quantification of how each additional
method enhances prediction accuracy. A similar approach has also been suggested by Doshi-Velez
et al. [22], where users approximate model decisions. Alternatively, as described in section 2.3, an
application-based evaluation could focus on task performance rather than solely on model under-
standing.
With respect to novel explanation methods, slightly modified approaches could be explored. For
instance, deriving Embedded SHAP values using variational autoencoders might yield softer cluster
boundaries. Although Procrustes analysis was applied with UMAP in this study, it could also be
used in conjunction with other dimensionality reduction techniques.
Regarding the Lift-based explanation method, it may be beneficial to extend the analysis beyond
adjacent pairs of decision nodes. Including the entire path from the root node to the target node and
weighting distances based on path length could offer further insights. Moreover, when accounting
for co-definedness in the dataset (as described in Equation 3.9), a more nuanced measure such as
mutual information [75] could be employed instead of a binary variable indicating whether a value
is defined, as outlined in Equation 3.8.
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Appendix A

Shapley Value Calculation

Assume the prediction function f is defined as follows:

f(A,B,C) = A+ 2B + 3C

where A,B, and C are binary features (either 0 or 1).
To calculate the Shapley value for A, we consider all subsets S of the set {B,C} that do not include
A. These subsets are: ∅, {B}, {C}, {B,C}.

Calculation Steps

1. Subset ∅ (No features)

• f(∅) = 0

• f({A}) = 1

• Contribution when A is added = 1− 0 = 1

• Weight w(∅): 0!·(3−0−1)!
3! = 2

6 = 1
3

2. Subset {B}

• f({B}) = 2

• f({A,B}) = 3

• Contribution when A is added = 3− 2 = 1

• Weight w({B}): 1!·(3−1−1)!
3! = 1

6

3. Subset {C}

• f({C}) = 3

• f({A,C}) = 4

• Contribution when A is added = 4− 3 = 1

• Weight w({C}): 1!·(3−1−1)!
3! = 1

6

4. Subset {B,C}

• f({B,C}) = 5

• f({A,B,C}) = 6

• Contribution when A is added = 6− 5 = 1

• Weight w({B,C}): 2!·(3−2−1)!
3! = 2

6 = 1
3

Summing up the contributions weighted by their respective weights:

ϕA =
1

3
× 1 +

1

6
× 1 +

1

6
× 1 +

1

3
× 1 = 1

The Shapley value of 1 for feature A indicates that A contributes 1 unit to the model output, based
on averaging A’s impact across all combinations of other features.
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Appendix B

Rotation Matrix Calculation

Given two matrices A and B, where:

A =

1 0

0 1

 , B =

 0 2

−1 0


The goal is to find an orthogonal matrix Ω that minimizes the Frobenius norm of the difference
between ΩA and B, subject to Ω being orthogonal.

Since A is the identity matrix:

AT = A =

1 0

0 1


Multiplying B by AT :

M = BA =

 0 2

−1 0


The SVD of M results in:

U =

1 0

0 1

 , Σ =

2 0

0 1

 , V T =

 0 1

−1 0


Given the matrices from the SVD:

U =

1 0

0 1

 , V T =

 0 1

−1 0


The calculation of Ω becomes:

Ω =

1 0

0 1

 0 1

−1 0

 =

 0 1

−1 0


This matrix Ω represents a 90-degree rotation (counterclockwise).
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Appendix C

Dataset Categories

Feature Examples

Demographics and Networks Gender, year of birth, country of birth, information about par-
ents

Children Number, age, gender, education, current living situation of chil-
dren

Physical Health Chronic illnesses, symptoms, physical functioning, overall health

Behavioral Risks Smoking, alcohol consumption, physical activity, diet

Cognitive Function Memory, mental speed, executive function through standardized
tests

Mental Health Depression, anxiety, life satisfaction, stress levels

Health Care Visits to doctors, hospital stays, medication usage

Employment and Pensions Employment history, current employment status, job character-
istics

Grip Strength Physical strength measured through handgrip tests

Social Support Availability and quality of support from family, friends, social
networks

Financial Transfers Transfers between the respondent and others, such as children
and parents

Housing Type of housing, ownership status, housing quality

Household Income Income sources and amounts, wages, pensions, other benefits

Consumption Expenditure on various goods and services

Assets Financial and non-financial assets owned

Activities Daily activities, leisure activities, social participation

Expectations Future expectations regarding health, financial situation, and
other aspects

Table C.1: Regular Questionnaire Modules in all Waves with the exception of Wave 3
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Appendix D

Model Training

Metric LightGBM LightGBM Fine-Tuned XGBoost CatBoost

RMSE - Test 1.34 1.34 1.37 1.33

R2 - Test 0.48 0.47 0.45 0.48

R2 - Train 0.60 0.55 0.55 0.54

Training Time (s) 42.20 15.62 99.51 121.72

Num Trees 318 666 47 590

Num Features 1698 471 1129 1127

Total Leaves 9858 25308 3414 37760

Table D.1: Model Performance Metrics for Training and Testing Sets

Hyperparameter Min Value Max Value Final Value

lambda l1 0.1 10.0 1.22

lambda l2 0.1 10.0 1.58

num leaves 30 40 38

bagging fraction 0.3 0.7 0.58

bagging freq 1 7 2

min child samples 80 150 128

learning rate 0.001 0.1 0.0147

Table D.2: Hyperparameter Tuning Ranges and Final Values
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Appendix E

Model Explanations

The tables Table E.1, Table E.2, and Table E.3 show the percentage of total gain, cumulative gain,
the percentage of splits in which a feature appeared, and the rank a feature or category had in
terms of splits.

Gain and Split

27% of the total gain was achieved by features related to physical health. Physical and mental
health together accounted for 44% of the total gain. Physical health appeared in 7% of the splits,
making it the 6th most important category in terms of splits. The category that appeared in the
most splits was retrospective accommodation.

Category Prefix % Gain / Cumulative % Split / Rank

Physical Health ph 0.27 / 0.27 0.07 / 6

Mental Health mh 0.17 / 0.44 0.08 / 4

Retrospective Accommodation ra 0.12 / 0.56 0.26 / 1

Consumption co 0.11 / 0.67 0.04 / 8

Language la 0.08 / 0.75 0.08 / 3

Demographics and Networks dn 0.07 / 0.82 0.09 / 2

Expectations ex 0.05 / 0.87 0.08 / 5

Social Networks sn 0.03 / 0.89 0.04 / 9

Employment and Pensions ep 0.02 / 0.91 0.04 / 7

General Life gl 0.01 / 0.92 0.02 / 12

Retrospective Employment re 0.01 / 0.94 0.03 / 10

Interviewer Observations iv 0.01 / 0.94 0.01 / 18

Children ch 0.01 / 0.95 0.02 / 11

Table E.1: 95% of Total Gain Grouped By Category and Ranked By Gain
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Feature Description % Gain / Cumulative % Split / Rank

ph003 Self assessed health status 0.2288 / 0.2288 0.0159 / 11

co007 Is household able to make a living 0.0906 / 0.3193 0.0183 / 9

language Language of questionnaire 0.0761 / 0.3954 0.0767 / 3

ra015c 1 Region of residence (not current) -
coded

0.0637 / 0.4591 0.1228 / 1

mh002 Sad or depressed last month 0.0382 / 0.4973 0.0080 / 17

ra015c 2 Region of residence (not current) -
coded

0.0366 / 0.5339 0.0784 / 2

mh037 Feels lonely 0.0278 / 0.5617 0.0065 / 21

sn012 Social Network satisfaction 0.0215 / 0.5833 0.0192 / 7

mh003 Hopes for the future 0.0206 / 0.6038 0.0047 / 37

dn505c Country of birth coded: father 0.0195 / 0.6234 0.0243 / 5

Table E.2: Top 10 Most Important Features Ranked by Gain

The first region of residence ra015 c1 appeared in most splits (12.28%). It ranked 4th in terms of
gain.

Feature Description % Gain / Rank % Split / Cumulative

ra015c 1 Region of residence (not current) -
coded

0.0637 / 4 0.1228 / 0.1228

ra015c 2 Region of residence (not current) -
coded

0.0366 / 6 0.0784 / 0.2012

language Language of questionnaire 0.0761 / 3 0.0767 / 0.2779

ra015c 3 Region of residence (not current) -
coded

0.0137 / 13 0.0335 / 0.3114

dn505c Country of birth coded: father 0.0195 / 10 0.0243 / 0.3357

ph060 Self assessed health on a scale from
0 to 10

0.0164 / 11 0.0228 / 0.3585

sn012 Social Network satisfaction 0.0215 / 8 0.0192 / 0.3777

ex026 Trust in other people 0.0134 / 15 0.0188 / 0.3965

co007 Is household able to make a living 0.0906 / 2 0.0183 / 0.4149

dn504c Country of birth coded: mother 0.0109 / 18 0.0166 / 0.4315

Table E.3: Top 10 Most Important Features Ranked by Split Importance

66



Lift Ratio of Model Features

Table E.4 presents the ten highest-ranking feature combinations based on the Lift ratio derived
from Equation 3.9. Feature combinations that also ranked among the top 10 based on their lift
value from the model are highlighted in bold.

Feature 1 Feature 2 R. Lift D. Lift L. Ratio

1 When poor health period
stopped (gl010 )

Region of residence (not
current) - coded (ra015c 2)

0.91 0.0003 3257

2 Region of residence (not
current) - coded (ra015c 2)

Satisfied with job achieve-
ments (wq032 )

1.19 0.0005 2206

3 Born a citizen of country of
interview (dn503 )

Self assessed health on a
scale from 0 to 10 (ph060 )

2.36 0.028 84

4 Further education:
country-specific cate-
gory 20 (dn012d20)

Self assessed health on a
scale from 0 to 10 (ph060 )

2.42 0.031 77

5 Period of financial
hardship (gl011 )

When financial hard-
ship period stopped
(gl013 )

94.00 1.45 65

6 Further education:
country-specific cate-
gory 15 (dn012d15)

Self assessed health on a
scale from 0 to 10 (ph060 )

1.19 0.027 44

7 Country (country) Current job situation
(ep005 )

8.08 1.00 8

8 Afford to pay an un-
expected expense with-
out borrowing money
(co206 )

Suicidal feelings or wish
to be dead (mh004 )

8.68 1.08 8

9 Partner outside house-
hold (dn040 )

Irritability (mh010 ) 7.69 1.00 8

10 Month depression for the
last time (mh031 )

Region of residence (not
current) - coded (ra015c 1)

0.88 0.12 7

Table E.4: Lift Ratio = L. Ratio, R. Lift = Rules Lift, D.Lift = Dataframe Lift.
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Appendix F

Survey Questions and Answers

All participants received the questions from item 1 (topic interest, confidence in mathematical
abilities and background information) as well as item 8 (combined effect, open questions). Fur-
thermore, participants received two out of the available six different explanation methods (item 2
to item 7).

1. Topic interest, confidence in mathematical abilities and background information

• What is your age range? (Age brackets spanning five years)

• What is the highest level of education you have completed? (No formal education, high
school diploma, bachelor’s degree, master’s degree, doctorate)

• How interested are you in explanation methods for machine learning models? (1 means no
interest, 5 means high interest)

• How interested are you in understanding the factors that influence life satisfaction? (1
means no interest, 5 means high interest)

• How confident are you in your abilities to comprehend various types of graphs and math-
ematical concepts? (1 means no confidence, 5 means high confidence)

2. SHAP Values

• Do you think you understood the concept of SHAP values? (1 means did not understand
the concept, 5 means did fully understand concept)

• What do SHAP values indicate?

– SHAP values show how accurate the model predictions are compared to actual out-
comes.
Explanation: False. SHAP values do not measure the accuracy of model predictions;
instead, they explain the contribution of each feature to the model’s prediction.

– SHAP values indicate the importance of each feature in the model’s prediction.
Explanation: True. SHAP values are designed to indicate the contribution of each
feature to a specific prediction.

– SHAP values assess the quality and cleanliness of the data used in the model.
Explanation: False. SHAP values do not provide information about data quality or
cleanliness.

– SHAP values measure the error of the model’s prediction.
Explanation: False. SHAP values do not measure prediction error, they only explain
how features contribute to individual predictions.

• Based on the feature importance plot seen above the following can be said about the feature
”self assessed health status”:

– Each instance is more strongly influenced by health than any other feature.
Explanation: False. The plot shows the absolute sum of SHAP values for each
feature, which provides average feature importance over the entire dataset. While
health may have a strong average impact, this does not mean that each individual
instance is more influenced by health than other features.

– Self assessed health status had the largest average impact on a person’s life satisfaction
Explanation: True. Self-assessed health status has the highest value, this feature
has the largest average impact on life satisfaction.
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– Self assessed health status had a strong positive impact on life satisfaction (roughly
8000 life satisfaction points).
Explanation: False. SHAP values reflect both positive and negative contributions.
The absolute value indicates the strength of the impact, regardless of its direction.

– Self-assessed health status cannot directly be compared to the other features, as SHAP
values cannot be compared.
Explanation: False. SHAP values can be compared across features in terms of their
absolute values, as shown in the feature importance plot.

• According to the ten most important features in absolute terms ”Social Network Satisfac-
tion” is the fifth most important feature yet it does not appear in the force plot shown
above. Mark all reasons why this could be the case:

– ”Social Network Satisfaction” is not that important for this person
Explanation: True. While Social Network Satisfaction may be important on average
across the dataset, for this particular individual, it might not have a significant impact
on the model’s prediction, so it does not appear in the force plot.

– This person has an average value for ”Social Network Satisfaction”, which does not
have a strong effect
Explanation: True. If the person’s Social Network Satisfaction is close to the
average, its SHAP value might be near zero, which means it has little to no effect
on the prediction and thus is not highlighted in the force plot.

– ”Social Network Satisfaction” is influenced by other features, so the effect does not
appear in the plot
Explanation: False. SHAP values are additive and meant to explain individual
feature contributions in a way that accounts for interaction effects. If Social Net-
work Satisfaction was influential, it would still appear in the force plot, regardless of
interactions with other features.

– ”Social Network Satisfaction” is cancelled out by other features, which reduces its
effect on life satisfaction
Explanation: False. SHAP values explain individual feature contributions even
when interactions exist between features.

• How much did SHAP help you gain a better understanding of the model? (1 means did
not help, 5 means completely clarified the model)

3. Embedded SHAP Values

• To what extent have you understood the concept of the plotted SHAP values? (1 means
did not understand concept, 5 means did fully understand concept)

• If there are two clusters (Cluster A and Cluster B) formed by using embedded SHAP and
the instances in Cluster A move around whereas the instances in Cluster B remain static
this indicates that:

– The impact of the feature values in Cluster A impact the instances differently than
the feature values in Cluster B. The model corrected the relative similarity between
instances within Cluster A
Explanation: True. The movement of instances in Cluster A suggests that the model
is adapting its understanding of how feature values influence predictions differently for
these instances compared to those in Cluster B, which remain static. This is backed
by the findings in section 4.1.1.

– The impact of the feature values in Cluster A is larger than the impact of the feature
values in Cluster B. The model learned more about instances in Cluster A than about
instances in Cluster B
Explanation: False. While instances in Cluster A may be moving more, it does not
necessarily mean their feature values have a larger impact. The movement could be
due to the model refining its predictions based on the variability in the feature values,
rather than indicating overall larger impacts compared to Cluster B.

– The features in Cluster A are more important than the features in Cluster B. The
model therefore moved instances in Cluster A more than in Cluster B.
Explanation: False. The movement of instances in Cluster A does not directly imply
that features are more important, it may simply reflect the model’s ongoing adjustment
to different feature complexities in Cluster A compared to the static nature of Cluster
B.
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– The model focuses on Cluster A as there are more instances in Cluster A.
Explanation: False. The presence of more instances in Cluster A does not inherently
mean the model will focus on them more, the static nature of Cluster B might indicate a
different structural relationship or feature importance that leads to fewer adjustments,
regardless of instance count.

• The instances did not move a lot from their initial positions, this indicates that:

– The model did not learn a lot.
Explanation: False. Limited movement of instances does not necessarily indicate a
lack of learning, it may imply that the model has effectively captured the relationships
among instances.

– The first trees summarize the model well with respect to the similarity between in-
stances.
Explanation: True. If instances remain largely in their initial positions, it suggests
that the initial trees are providing an adequate representation of the relationships
among the instances.

– The relative similarity stayed the same between instances throughout the iterations.
Explanation: True. Minimal movement may imply that the model’s understanding
of instance similarities has not changed significantly, therefore the relative positions of
instances remain stable through iterations.

– The model cannot determine how similar the instances are to one another.
Explanation: False. The lack of movement does not mean the model cannot de-
termine similarity, rather, it suggests that the model has accurately identified and
maintained the relationships between instances without needing to adjust their posi-
tions significantly.

• There are only a couple features that are the most important features (health, language,
financial situation) across clusters. This indicates that:

– The model did not learn a lot.
Explanation: False. The presence of only a few important features does not imply
that the model lacks learning, it may indicate that these features are consistently
influential in predicting outcomes across clusters.

– These features have many values, so the model has to make many splits to distinguish
the feature values effectively.
Explanation: False. While features with many values can lead to more splits, this
statement does not explain the importance of only a few features across clusters, rather,
it suggests complexity in handling those features.

– The model ignores other features that might influence life satisfaction.
Explanation: False. The focus on a few features does not necessarily mean that the
model ignores others, it could be that those features are simply the most relevant in
explaining life satisfaction for the given clusters.

– Health, language, and financial situation are important for all groups of instances.
Explanation: True. The consistent ranking of these features across clusters suggests
that they have a significant and universal impact on life satisfaction. They are crucial
for all groups of instances.

• How much did the plotted context similarity values help you to get a better understanding
of the model? (1 means did not help, 5 means completely clarified the model)

4. Surrogate Model

• To what extent have you understood the concept of a surrogate model? (1 means did not
understand, 5 means completely understood)

• Which explanation summarizes the functionality of a surrogate model?

– A surrogate model removes features from a more complex model to create a simplified
version.
Explanation: False. While a surrogate model may involve simplification, it does not
necessarily remove features, rather, it approximates the original model’s predictions
without focusing on feature elimination.

– A surrogate model uses the predictions from a more complex model to create a sim-
plified version.
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Explanation: True. A surrogate model approximates the predictions of a complex
model to provide interpretability and insights without the full complexity.

– A surrogate model predicts the real values of a target feature, using only a subset of
the original feature set.
Explanation: False. This statement implies that a surrogate model limits itself to a
subset of features to predict a specific target feature, which is not the primary purpose
of a surrogate model. Instead, it mimics the overall behavior of the original model.

– A surrogate model estimates how many features are needed to correctly predict the
real values of a target feature.
Explanation: False. A surrogate model is not designed to assess the number of
features required for accurate predictions. It focuses on providing a simplified repre-
sentation of the predictions made by a more complex model.

• The difference between the two paths indicates that:

– Feeling depressed is more important to people with bad physical health than to people
with good physical health.
Explanation: True. The feature of feeling depressed plays a more significant role in
influencing the outcomes for individuals with poor physical health compared to those
with good physical health.

– People are more likely to be depressed when their physical health is bad, which is why
it’s not as relevant for people with good physical health.
Explanation: True. Poor physical health may lead to increased depression, making
it less relevant for those who are in good health, as their overall experience may differ
significantly.

– Feeling depressed has the same effect on life satisfaction as feeling lonely or feeling a
lack of companionship.
Explanation: False. While both feelings may influence life satisfaction, the paths
indicate that feeling depressed is more directly associated with poor physical health,
while loneliness is addressed for those with good health.

– People with bad physical health are not affected by a lack of companionship.
Explanation: False. Companionship may still be relevant to people with bad phys-
ical health, however, other features may be more important than companionship in
determining their life satisfaction.

• Physical Health can take the values Excellent, Very good, Good, Fair and Poor. Do you
think that it is more important for a person to distinguish between poor and fair physical
health (Node A in the image) or between excellent, very good or good physical health
(Node B in the image)?

– This question cannot be answered because the order in which nodes appear does not
determine the importance of the feature.
Explanation: False. While node order does not always indicate importance, in this
case, the limited number of splits suggests that the feature’s relevance and the splits
can provide insight into its importance.

– Distinguishing between poor and fair physical health is more important, as it appears
higher up in the tree.
Explanation: True. Given that the feature only appears in two splits (excluding
the root), a higher position in the tree generally indicates a more significant impact
on the model’s predictions for distinguishing between these categories.

– This question cannot be answered as the feature occurs multiple times, which indicates
that there is an error in the model.
Explanation: False. The occurrence of the feature in only two splits does not
indicate an error. A feature may appear multiple times.

– Distinguishing between excellent, very good and good physical health is more impor-
tant, as it appears further down the tree.
Explanation: False. If the feature occurs in only two splits, being further down the
tree does not imply higher importance, rather, it may suggest that these distinctions
are less critical for the model’s predictive capability.

• The surrogate decision tree helped me to get a better understanding of the model. (1
means do not agree, 5 means do fully agree)

5. Partial Dependence Plots (PDPs)
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• To what extent have you understood the concept of a partial dependence plot? (1 means
did not understand, 5 means completely understood)

• What does a flat line in a partial dependence plot indicate about the relationship between
the feature and the target variable?

– The feature strongly influences the target variable.
Explanation: False. A flat line suggests that changes in the feature do not signifi-
cantly affect the target variable.

– The target variable is highly variable.
Explanation: False. A flat line does not imply high variability in the target variable,
rather, it shows a consistent response across different values of the feature.

– The feature is correlated with other features.
Explanation: False. A flat line does not directly indicate correlation with other
features, it simply reflects that the feature does not influence the target variable in
the current model context.

– The feature influence on the target variable does not change across its values.
Explanation: True. A flat line indicates that regardless of the feature’s value, the
target variable remains constant.

• What can you infer based on the two partial dependence plots shown above?

– Self assessed health and household consumption both roughly have the same impact
magnitude on life satisfaction as the range spans from 6.4 to 7.2.
Explanation: True. This indicates that the effects of both features on life satis-
faction are comparable, as their scores fall within a similar range (6.4 to 7.2). This
suggests that improvements in either self-assessed health or household consumption
contribute equally to life satisfaction.

– There are fewer large feature values, so the average effect on the target decreases for
each feature value decreases.
Explanation: False. Partial Dependence Plots replace all existing feature values
for a given feature. Therefore, the real values of a feature do not affect the values
displayed in the plot.

– Health has a positive but diminishing effect on the target as health improves from
poor to excellent.
Explanation: True. The plots illustrate that while improvements in health status
lead to higher life satisfaction, the increase in satisfaction diminishes as one moves
from poor to excellent health.

– Both features are irrelevant to the model as the increase from ”poor” to ”excellent”
and from ”with great difficulty” to ”easily” is linear.
Explanation: False. The linearity of an increase does not imply irrelevance, it
suggests a consistent effect on life satisfaction, although the effect is diminishing here
and not linear.

• There are two questions regarding health in the survey, one which asks participants to rank
their health into the categories Poor, Fair, Good, Very Good, and Excellent and another
question which asks participants to rank their health on a scale from 0 to 10. What effect
might this have on the outcome of the Partial Dependence Plot?

– Including both features could show that either or both of the two has a large significant
effect on the target, even though their impact is much smaller.
Explanation: False. While including both features may lead to a situation where
their combined influence appears significant, this does not accurately reflect their
individual contributions, which could be diminished when both are included.

– Including both features has no effect on the Partial Dependence Plots, because the
features are likely independent of one another.
Explanation: False. The inclusion of both features can interact in ways that affect
the interpretation of the Partial Dependence Plots.

– Including both features could show that either or both of the two has no significant
effect on the target, even though their impact is significant if only one of them had
been used as a feature.
Explanation: True. The presence of both features may lead to confounding effects.

– Including both features will show that both of the features have a significant effect,
because only the feature values of one feature will be changed.
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Explanation: False. Including both features does not guarantee that their effects
will be significant, as the interaction between them can obscure their individual con-
tributions.

• How much did the partial dependence plots help you to get a better understanding of the
model? (1 means did not help, 5 means completely clarified the model)

6. Lift

• To what extent have you understood the concept of Lift? (1 means did not understand, 5
means completely understood)

• What does it signify if a pair of features, such as physical health and mental health, has a
lift value of 2?

– The two features appear twice less frequently together than if they were statistically
independent.
Explanation: False. A lift value of 2 indicates a positive association between the
features, meaning they appear together more often than expected, not less.

– The lift value of 2 implies that the occurrence of one feature has no influence on the
occurrence of the other.
Explanation: False. A lift value greater than 1 suggests that the occurrence of one
feature positively influences the occurrence of the other.

– The two features appear twice as often together as they would were they statistically
independent from one another.
Explanation: True. A lift value of 2 means that the features are twice as likely to
occur together compared to what would be expected if they were independent.

– Physical health occurs twice as often as mental health.
Explanation: False. The lift value does not provide information about the individual
frequencies of each feature, it only indicates the degree of association between them.

• Select all true statements:

– Questions related to being able to pay for an unexpected expense and suicidal feelings
are likely to appear in sequential order in the model
Explanation: True. The lift value of 9 indicates a significant joint effect, suggest-
ing that these features are positively associated with one another in the context of
predicting life satisfaction.

– Features related to periods of financial hardship often occur together in the model.
Explanation: True. The lift value of 94 between ”When period of financial hardship
stopped” and ”Period of financial hardship” shows a strong association.

– The question regarding a person’s country appears 8 times.
Explanation: False. The value 8 does not refer to the number of times an individual
feature occurs.

– The questions regarding current job situation and country appeared together 8 times.
Explanation: False. The value 8 does not refer to the number of times features
occur jointly.

• The question regarding the current job situation of a person and the country the person
is residing in are always likely to occur together. This statement is:

– False, because the question about the current job situation may only be relevant for
specific countries.
Explanation: True. This statement correctly identifies that the relevance of job
situations may vary by country.

– True, because the question about the current job situation is independent of the coun-
try that a person is residing in.
Explanation: False. This statement is incorrect because the occurrence of job situ-
ation and country may be related.

– False, because they only appeared together 8 times, which is insignificant if the model
is large.
Explanation: False. A lift value of 8 does not reveal any information about how
often the two features appeared together.

– True, because according to the lift value, no other feature appears as often with country
as the feature ”Current job situation.”
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Explanation: False. While the lift value indicates some association, it does not
guarantee that the two features are always likely to occur together regardless of their
feature values.

• How much did the lift values help you to get a better understanding of the model? (1
means did not help, 5 means completely clarified the model)

7. Context Embeddings and CBOW

• To what extent have you understood the concept of context embeddings and CBOW? (1
means did not understand, 5 means completely understood)

• If two features are located at the same point in a two-dimensional space, they:

– frequently occur together in the contexts.
Explanation: False. Similar vector representations indicate that the features are
used in similar contexts, not that they co-occur.

– are indistinguishable with respect to the context they are used in.
Explanation: True. If two features lie on the same spot in the embedding space,
it suggests that they are used in indistinguishable ways within the same contexts
according to the model’s learned representations.

– have the same effect on the target feature.
Explanation: False. Even if two features share a similar position in the embedding
space, they may still differ in their effect on the target.

– have no effect on the target feature.
Explanation: False. Being similar in the embedded space doesn’t imply they have no
effect on the target feature, they could still significantly impact the model’s predictions.

• The plot above shows the context embeddings for all the features in the model. The
feature ”Hopes for the future (mh003 )” can be seen towards the left of the plot. It is
rather isolated from the other features. This means that:

– mental health does not frequently co-occur with the same sets of features as other
features do.
Explanation: True. The feature’s relationship with other features is distinct, which
is why it is positioned separately in the embedding space.

– there is no other feature that can act as a direct replacement for mental health.
Explanation: True. The isolation in the embedding space indicates that no other
feature can serve as a direct substitute or express similar information in the model.

– it is used in more contexts than other features.
Explanation: False. Isolation in the embedding space doesn’t imply that the feature
is used in more contexts. It only shows that its context is different from the others.

– it has a strong effect on predicted life satisfaction.
Explanation: False. The embedding plot shows relationships between features based
on their contextual similarity, not their strength of impact on the target variable.
The strength of the effect would need to be assessed using other feature importance
methods.

• Features regarding mental health (MH) are predominantly found towards the left of the
plot, whereas features related to the country a person was born in and lived earlier in life
are found towards the top of the plot. This indicates that:

– Features regarding mental health are similar to features regarding a person’s origin
with respect to the context they are used in.
Explanation: False. The spatial separation of the features on the plot shows they
are used in different contexts.

– Features regarding mental health and features regarding a person’s origin are used in
different contexts.
Explanation: True. The fact that these feature groups are located in different parts
of the plot indicates that they do not co-occur in the same contexts.

– Features regarding mental health have a higher similarity score than features regarding
a person’s origin.
Explanation: False. The plot shows the context embedding, not the direct similarity
score comparison.
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– The two features are used in different models.
Explanation: False. The separation indicates different contexts within the same
model.

• How much did the plotted context similarity values help you to get a better understanding
of the model? (1 means did not help, 5 means completely clarified the model)

8. Combined Effect

• How much did the combination of both methods enhance your understanding compared to
what you think a single method would have provided? (1 means the combination did not
enhance understanding at all, 5 means the combination led to a complete or near-complete
understanding)

• How do the two explanation methods contribute to your understanding of the model? (1
means the first method contributes significantly more than the second, 5 means the second
method contributes significantly more than the first)

• Which of the two explanation methods did you find more useful and why?

• Are there any aspects of the model’s behavior that you feel are still not adequately ex-
plained by the combined approach?
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Appendix G

Model Features

Feature Gain / Cumulative Split / Rank Description

1 ph003 0.2288 / 0.2288 0.0159 / 11 Self assessed health status

2 co007 0.0906 / 0.3193 0.0183 / 9 Is household able to make a living

3 language 0.0761 / 0.3954 0.0767 / 3 Language of questionnaire

4 ra015c 1 0.0637 / 0.4591 0.1228 / 1 Region of residence (not current) -
coded

5 mh002 0.0382 / 0.4973 0.0080 / 17 Sad or depressed last month

6 ra015c 2 0.0366 / 0.5339 0.0784 / 2 Region of residence (not current) -
coded

7 mh037 0.0278 / 0.5617 0.0065 / 21 Feels lonely

8 sn012 0.0215 / 0.5833 0.0192 / 7 Social Network satisfaction

9 mh003 0.0206 / 0.6038 0.0047 / 37 Hopes for the future

10 dn505c 0.0195 / 0.6234 0.0243 / 5 Country of birth coded: father

11 ph060 0.0164 / 0.6397 0.0228 / 6 Self assessed health on a scale from 0 to
10

12 mh004 0.0142 / 0.6539 0.0058 / 27 Suicidal feelings or wish to be dead

13 ra015c 3 0.0137 / 0.6676 0.0335 / 4 Region of residence (not current) -
coded

14 ex709 0.0136 / 0.6812 0.0149 / 13 Life expectancy

15 ex026 0.0134 / 0.6945 0.0188 / 8 Trust in other people

16 ex009 0.0132 / 0.7077 0.0152 / 12 Self assessed likelihood of still living in
ten years

17 dn012d15 0.0129 / 0.7206 0.0062 / 24 Further education: country-specific
category 15

18 dn504c 0.0109 / 0.7315 0.0166 / 10 Country of birth coded: mother

19 mh035 0.0105 / 0.7420 0.0037 / 45 Feels left out

20 mh036 0.0096 / 0.7516 0.0034 / 48 Feels isolated from others

21 mh034 0.0091 / 0.7607 0.0027 / 61 Feels lack of companionship

22 mh016 0.0080 / 0.7687 0.0053 / 31 Enjoyment

23 iv004 0.0073 / 0.7760 0.0066 / 20 Willingness to answer

24 gl004 0.0066 / 0.7825 0.0061 / 25 When happiness period stopped

Continued on next page
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Feature Gain / Cumulative Split / Rank Description

25 mh008 0.0063 / 0.7888 0.0030 / 57 Less or same interest in things

26 co020e 0.0061 / 0.7949 0.0018 / 98 Minimum amount needed per month

27 co206 0.0057 / 0.8006 0.0021 / 79 Afford to pay an unexpected expense
without borrowing money

28 ra015c 4 0.0055 / 0.8061 0.0146 / 14 Region of residence (not current) -
coded

29 re022c 1 0.0051 / 0.8112 0.0089 / 15 Currency of wage - coded

30 mh010 0.0050 / 0.8162 0.0035 / 47 Irritability

31 mh024 0.0047 / 0.8209 0.0040 / 41 Nervous

32 dn040 0.0042 / 0.8250 0.0033 / 52 Partner outside household

33 co202 0.0040 / 0.8291 0.0023 / 70 Afford to go on holiday at least once a
year (a week long)

34 dn044 0.0038 / 0.8329 0.0029 / 58 Marital status changed

35 country 0.0036 / 0.8365 0.0071 / 19 Country

36 dn012d20 0.0034 / 0.8399 0.0040 / 41 Further education: country-specific
category 20

37 dn503 0.0031 / 0.8430 0.0026 / 63 Born a citizen of country of interview

38 ep026 0.0031 / 0.8461 0.0060 / 26 Satisfied with (main) job

39 ep005 0.0031 / 0.8492 0.0039 / 43 Current job situation

40 mh013 0.0028 / 0.8520 0.0004 / 299 Fatigue

41 gl012 0.0027 / 0.8547 0.0047 / 37 When financial hardship period started

42 mh020 0.0027 / 0.8574 0.0037 / 44 Ever treated for depression by doctor or
psychiatrist

43 mh006 0.0024 / 0.8598 0.0034 / 49 Blame for what

44 ex802 0.0023 / 0.8621 0.0025 / 68 Financial situation today compared to
expectations at age 45

45 ph089dno 0.0022 / 0.8643 0.0004 / 283 Bothered by frailty: none

46 hc125 0.0022 / 0.8666 0.0043 / 39 Satisfaction with own coverage in basic
health insurance/national health sys-
tem

47 ex029 0.0022 / 0.8688 0.0055 / 28 Frequency of praying

48 ph061 0.0022 / 0.8710 0.0032 / 54 Health problem that limits paid work

49 dn005c 0.0022 / 0.8732 0.0084 / 16 Foreign country of birth coding

50 mh027 0.0022 / 0.8753 0.0026 / 67 Felt faint

51 br033 0.0021 / 0.8775 0.0021 / 79 Not eating meat, fish or chicken more
often because ...

52 language x... 0.0021 / 0.8795 0.0080 / 17 Language: End of life interview

53 mh023 0.0021 / 0.8816 0.0037 / 45 Fear of the worst happening

54 ph006d18 0.0020 / 0.8836 0.0019 / 92 Other affective/emotional disorders:
ever diagnosed/currently having

55 wq009 0.0017 / 0.8853 0.0027 / 61 Work gave recognition

56 ex001 0.0016 / 0.8868 0.0048 / 36 Introduction and example

Continued on next page
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Feature Gain / Cumulative Split / Rank Description

57 cc722 1 0.0016 / 0.8884 0.0032 / 54 How would you rate the relationship
with your mother

58 ep054 0.0016 / 0.8900 0.0063 / 22 Kind of industry working in last job

59 ch017 1 0.0015 / 0.8915 0.0063 / 23 Child 1 highest school degree

60 cf002 0.0015 / 0.8929 0.0019 / 94 Self-rated writing skills

61 re042c 0.0015 / 0.8944 0.0054 / 30 Currency of wage at end of main job -
coded

62 ra015c 5 0.0014 / 0.8959 0.0041 / 40 Region of residence (not current) -
coded

63 ph005 0.0013 / 0.8972 0.0015 / 112 Limited in activities because of health

64 mh007 0.0013 / 0.8985 0.0013 / 129 Trouble sleeping

65 ep337 0.0013 / 0.8998 0.0026 / 65 Currently looking for job

66 re022c 2 0.0013 / 0.9011 0.0052 / 32 Currency of wage - coded

67 mobirthp 0.0013 / 0.9024 0.0055 / 28 Month of birth spouse/partner

68 ph072 3 0.0013 / 0.9037 0.0011 / 149 Been diagnosed with cancer since last
interview

69 ph050 0.0013 / 0.9050 0.0006 / 235 Help activities

70 gs010d1 0.0012 / 0.9062 0.0013 / 129 Why not completed gs test: r felt it
would not be safe

71 ch017 2 0.0012 / 0.9074 0.0049 / 35 Child 2 highest school degree

72 wq727 0.0011 / 0.9086 0.0022 / 73 Satisfaction with job

73 ph049d8 0.0011 / 0.9097 0.0018 / 96 Difficulties: preparing a hot meal

74 sn017 0.0011 / 0.9108 0.0025 / 68 Empty network satisfaction

75 ph049d2 0.0011 / 0.9119 0.0016 / 105 Difficulties: walking across a room

76 ph011d10 0.0011 / 0.9130 0.0014 / 121 Drugs for: anxiety or depression

77 cf103 0.0011 / 0.9141 0.0028 / 60 Memory

78 int month 0.0011 / 0.9151 0.0051 / 33 Interview month

79 dn010 0.0011 / 0.9162 0.0050 / 34 Highest school degree obtained

80 mh021 0.0010 / 0.9172 0.0012 / 133 Ever admitted to mental hospital or
psychiatric ward

81 gl013 0.0010 / 0.9183 0.0013 / 125 When financial hardship period
stopped

82 ep067 0.0010 / 0.9193 0.0021 / 76 How became unemployed

83 ph072 4 0.0010 / 0.9203 0.0007 / 217 Suffered a hip fracture since last inter-
view

84 re014 1 0.0009 / 0.9212 0.0030 / 56 Job industry

85 mh022 0.0009 / 0.9222 0.0021 / 79 Ever told affective or emotional disor-
ders

86 dn014 0.0009 / 0.9231 0.0020 / 86 Marital status

87 sn005 1 0.0009 / 0.9240 0.0032 / 54 Network relationship: sn person 1

88 ep110d1 0.0009 / 0.9249 0.0011 / 144 Received public benefits: old age pen-
sion

Continued on next page
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Feature Gain / Cumulative Split / Rank Description

89 cf001 0.0009 / 0.9258 0.0013 / 125 Self-rated reading skills

90 yrbirthp 0.0009 / 0.9267 0.0020 / 82 Year of birth spouse/partner

91 sp003 1 0.0008 / 0.9275 0.0034 / 50 Who gave help: person 1

92 sn005 2 0.0008 / 0.9283 0.0028 / 59 Network relationship: sn person 2

93 ex011 0.0008 / 0.9291 0.0026 / 63 Self assessed likelihood of still living in
ten years

94 hh025 0.0008 / 0.9299 0.0020 / 86 If I were in trouble, there are people in
this area who would help me

95 co211 0.0007 / 0.9306 0.0010 / 163 To help keeping living costs down:
postponed visits to the dentist

96 gl011 0.0007 / 0.9314 0.0005 / 256 Period of financial hardship

97 hh017e 0.0007 / 0.9321 0.0016 / 105 Total income received by all hh mem-
bers an average month last year

98 dn020 0.0007 / 0.9328 0.0022 / 75 Year of birth of former partner

99 br002 0.0007 / 0.9335 0.0015 / 112 Smoke at the present time

100 dn021 0.0007 / 0.9342 0.0033 / 51 Highest educational degree of former
partner

101 ph049d9 0.0007 / 0.9349 0.0011 / 149 Difficulties: shopping for groceries

102 as003e 0.0007 / 0.9356 0.0015 / 115 Amount bank account

103 cc722 2 0.0007 / 0.9363 0.0016 / 109 How would you rate the relationship
with your father

104 br029 0.0007 / 0.9369 0.0020 / 82 How often serving of fruits or vegetables

105 as051e 0.0007 / 0.9376 0.0019 / 89 Amount selling cars

106 re037c 1 0.0007 / 0.9383 0.0026 / 65 Currency of pension benefit - coded

107 dn012d17 0.0007 / 0.9389 0.0005 / 256 Further education: country-specific
category 17

108 ep678v1 0.0006 / 0.9396 0.0012 / 138 Bracket value 1

109 sn005 3 0.0006 / 0.9402 0.0022 / 73 Network relationship: sn person 3

110 int year 0.0006 / 0.9408 0.0017 / 100 Interview year

111 as054d6 0.0006 / 0.9414 0.0015 / 118 Owe money: student loans

112 mh005 0.0006 / 0.9421 0.0018 / 98 Feels guilty

113 co003e 0.0006 / 0.9427 0.0018 / 98 Amount spent on food outside the home

114 hs003 0.0006 / 0.9433 0.0009 / 177 Childhood health status

115 ex028 0.0006 / 0.9438 0.0022 / 73 Left or right in politics

116 hh022 0.0006 / 0.9444 0.0017 / 102 Feeling part of this area

117 ph064 0.0006 / 0.9450 0.0019 / 92 Health worse last wave

118 ra015c 6 0.0006 / 0.9455 0.0016 / 105 Region of residence (not current) -
coded

119 sn009 1 0.0005 / 0.9461 0.0015 / 118 Network closeness: sn person 1

120 br026 0.0005 / 0.9466 0.0021 / 76 How often serving of dairy products

121 ph072 1 0.0005 / 0.9471 0.0007 / 211 Had a heart attack since last interview

Continued on next page
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Feature Gain / Cumulative Split / Rank Description

122 hs060 1 0.0005 / 0.9476 0.0020 / 86 When did illness period 1 stop

123 ch006 1 0.0005 / 0.9481 0.0019 / 89 Child 1 year of birth

124 ch016 1 0.0005 / 0.9486 0.0020 / 82 Child 1 employment status

125 ep326 0.0005 / 0.9491 0.0005 / 256 Received severance payment since last
interview

126 rh792 0.0005 / 0.9496 0.0012 / 138 Postponed taking medication because
of cost

127 as061 0.0005 / 0.9501 0.0016 / 105 Reason for not having a bank account

128 ex010 0.0005 / 0.9506 0.0015 / 118 Chance standard of living will be better

129 sn002a 3 0.0005 / 0.9510 0.0009 / 184 Any more persons with whom you often
discuss: sn person 3

130 wq032 0.0005 / 0.9515 0.0015 / 112 No description

131 mobirth 0.0005 / 0.9519 0.0022 / 71 Month of birth

132 dn003 0.0004 / 0.9524 0.0015 / 115 Year of birth

133 hc114 0.0004 / 0.9528 0.0009 / 169 Could not see a doctor because of cost

134 rc028 1 0.0004 / 0.9533 0.0015 / 115 Year of death other child

135 wq013 0.0004 / 0.9537 0.0009 / 169 Work employees treated fair

136 cf014 0.0004 / 0.9541 0.0020 / 86 Numeracy: 6000 is two-thirds what is
total price

137 xt008 0.0004 / 0.9546 0.0019 / 92 Month of decease

138 br003 0.0004 / 0.9550 0.0013 / 129 How many years smoked

139 ch017 3 0.0004 / 0.9554 0.0019 / 94 Child 3 highest school degree

140 age2011 0.0004 / 0.9559 0.0008 / 194 Age in 2011

141 ep328 0.0004 / 0.9563 0.0020 / 82 Retirement month

142 sr004dno 0.0004 / 0.9567 0.0009 / 177 Negative Shock: None of these

143 re014 2 0.0004 / 0.9571 0.0016 / 109 Job industry

144 ep032 0.0004 / 0.9575 0.0012 / 138 Receive recognition for work in (main)
job

145 ph049d5 0.0004 / 0.9579 0.0009 / 169 Difficulties: getting in or out of bed

146 iv007 0.0004 / 0.9583 0.0013 / 129 Respondent asked for clarification

147 ep052 0.0004 / 0.9587 0.0017 / 100 Name or title of last job

148 ph049d1 0.0004 / 0.9591 0.0007 / 211 Difficulties: dressing, including shoes
and socks

149 ex104 0.0004 / 0.9595 0.0009 / 169 Partner ever done paid work

150 iv008 0.0004 / 0.9599 0.0011 / 144 Respondent understood questions

151 ep097 0.0004 / 0.9603 0.0011 / 154 Pension claims

152 co002e 0.0004 / 0.9607 0.0014 / 123 Amount spent on food at home

153 mh011 0.0004 / 0.9610 0.0011 / 149 Appetite

154 ex025 0.0004 / 0.9614 0.0011 / 149 Chance to work after age of 63

155 gl010 0.0004 / 0.9618 0.0016 / 105 When poor health period stopped

Continued on next page

81



Feature Gain / Cumulative Split / Rank Description

156 re022c 3 0.0004 / 0.9622 0.0016 / 105 Currency of wage - coded

157 cc730 0.0004 / 0.9625 0.0011 / 149 Group of friends felt comfortable spend-
ing time with

158 ex007 0.0004 / 0.9629 0.0011 / 154 Chance government reduces pension

159 mh025 0.0004 / 0.9632 0.0010 / 163 Hands trembling

160 co207 0.0004 / 0.9636 0.0008 / 203 To help keeping living costs down: con-
tinued wearing clothing that was worn
out

161 ep111 1 1 0.0004 / 0.9639 0.0014 / 121 Receive old age pension period 1 from
month

162 ep127 21 0.0003 / 0.9643 0.0013 / 125 Period from month (unemployed)

163 re014 3 0.0003 / 0.9646 0.0008 / 194 Job industry

164 gl006 0.0003 / 0.9650 0.0013 / 125 When stress period started

165 hc760 0.0003 / 0.9653 0.0009 / 184 Needed medication but could not afford
last 12 months

166 mh031 0.0003 / 0.9656 0.0012 / 138 Month depression for the last time

167 gs010d5 0.0003 / 0.9660 0.0005 / 256 Why not completed gs test: r did not
understand the instructions

168 ph049d14 0.0003 / 0.9663 0.0007 / 217 Difficulties: leaving the house indepen-
dently/accessing transportation

169 gs013 0.0003 / 0.9666 0.0012 / 138 The position of r for this test

170 ph745 0.0003 / 0.9669 0.0007 / 217 Have hearing aid

171 ch012 1 0.0003 / 0.9672 0.0011 / 144 Child 1 marital status

172 ex601 0.0003 / 0.9675 0.0011 / 144 Start of non proxy section

173 ho060 0.0003 / 0.9678 0.0009 / 169 Partner years in accomodation

174 cf005 0.0003 / 0.9681 0.0012 / 133 Date: year

175 ep213 1 0.0003 / 0.9684 0.0012 / 138 First year received income source c1

176 sp009 1 0.0003 / 0.9687 0.0014 / 121 To whom did you give help: person 1

177 wq030 0.0003 / 0.9690 0.0009 / 177 No description

178 ph089d4 0.0003 / 0.9693 0.0004 / 299 Bothered by frailty: fatigue

179 sp019d28 0.0003 / 0.9696 0.0008 / 194 R provided help with personal care to:
other relative

180 ft003 1 0.0003 / 0.9698 0.0012 / 138 To whom given gift, person 1

181 ep649 0.0003 / 0.9701 0.0006 / 225 Years worked in last job

182 as070e 0.0003 / 0.9704 0.0009 / 184 Interest or dividend income

183 pf003 0.0003 / 0.9707 0.0011 / 149 Value first measurement

184 ph009 1 0.0003 / 0.9710 0.0011 / 144 Age heart attack or other heart prob-
lems

185 cf012 0.0003 / 0.9712 0.0013 / 132 Numeracy: chance disease 10% of 1000

186 hc066 0.0003 / 0.9715 0.0011 / 154 Total nights stayed in other institutions

187 it003 0.0003 / 0.9718 0.0002 / 346 Computer skills
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188 ph043 0.0003 / 0.9720 0.0010 / 163 Eyesight distance

189 ph048d1 0.0003 / 0.9723 0.0006 / 235 Difficulties: walking 100 metres

190 ep018 0.0003 / 0.9726 0.0011 / 154 Kind of industry working in

191 ph051 0.0003 / 0.9728 0.0009 / 169 Help meets needs

192 ex111 0.0003 / 0.9731 0.0010 / 158 Planning horizon of saving and spend-
ing

193 ho067e 0.0003 / 0.9733 0.0009 / 177 Amount similar dwelling todays market

194 sp014 0.0003 / 0.9736 0.0009 / 184 Looked after grandchildren

195 mh030 0.0002 / 0.9738 0.0006 / 235 Year depression for the last time

196 dn041 0.0002 / 0.9741 0.0009 / 169 Years education

197 xt010 0.0002 / 0.9743 0.0009 / 184 Age at the moment of decease

198 sn007 3 0.0002 / 0.9746 0.0009 / 177 Network contact: sn person 3

199 ex009age 0.0002 / 0.9748 0.0008 / 194 Life expectancy target age

200 age2020 0.0002 / 0.9750 0.0010 / 163 Age in 2020

201 re702 0.0002 / 0.9753 0.0008 / 194 First time computer at work

202 ep078e 1 0.0002 / 0.9755 0.0009 / 177 Average payment income source c1 last
year

203 gs009 0.0002 / 0.9757 0.0008 / 194 2nd measurement: right hand

204 rp004c 1 0.0002 / 0.9760 0.0010 / 158 When relationship start

205 gs007 0.0002 / 0.9762 0.0008 / 203 2nd measurement: left hand

206 wq011 0.0002 / 0.9764 0.0007 / 217 Work had adequate support

207 cc721 1 0.0002 / 0.9766 0.0006 / 244 How much did your mother understand
your problems and worries

208 gl007 0.0002 / 0.9769 0.0009 / 177 When stress period stopped

209 cc721 2 0.0002 / 0.9771 0.0007 / 211 How much did your father understand
your problems and worries

210 ch007 1 0.0002 / 0.9773 0.0010 / 158 Child 1 where does child live

211 gs010d4 0.0002 / 0.9775 0.0005 / 256 Why not completed gs test: r tried but
was unable to complete test

212 cf019 0.0002 / 0.9777 0.0005 / 270 Instruction for CF

213 ep152isco 0.0002 / 0.9780 0.0005 / 256 ISCO code: respondent’s last job

214 sn006 3 0.0002 / 0.9782 0.0007 / 217 Network proximity: sn person 3

215 br010 0.0002 / 0.9784 0.0010 / 158 Days a week consumed alcohol last 6
months

216 ep110d2 0.0002 / 0.9786 0.0002 / 387 Received public benefits: early retire-
ment pension

217 mh019 0.0002 / 0.9788 0.0006 / 244 Age depression symptoms first time

218 age int 0.0002 / 0.9790 0.0006 / 225 Age of respondent at the time of inter-
view

219 ep110d7 0.0002 / 0.9792 0.0003 / 323 Received public benefits: public-
longterm care insurance
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220 ch020 1 0.0002 / 0.9794 0.0009 / 184 Child 1 year of birth youngest child

221 dn009 0.0002 / 0.9796 0.0005 / 256 Country-specific question

222 ho024ub 0.0002 / 0.9798 0.0009 / 184 Value of property ub

223 dn002 0.0002 / 0.9800 0.0010 / 163 Month of birth

224 wq003 0.0002 / 0.9802 0.0007 / 211 Work was uncomfortable

225 ph006dno 0.0002 / 0.9804 0.0008 / 194 None: ever diagnosed

226 cc010a 0.0002 / 0.9806 0.0008 / 203 Relative position to others when ten:
language

227 ch014 2 0.0002 / 0.9808 0.0009 / 184 Child 2 contact with child

228 sn006 1 0.0002 / 0.9810 0.0008 / 194 Network proximity: sn person 1

229 sp019d1 0.0002 / 0.9812 0.0006 / 225 R provided help with personal care to:
spouse/partner

230 cf010 0.0002 / 0.9814 0.0008 / 203 Verbal fluency score: number of ani-
mals

231 ph049d13 0.0002 / 0.9816 0.0003 / 333 Difficulties: managing money

232 xt002 0.0002 / 0.9818 0.0008 / 203 Relationship to the deceased

233 ph049dno 0.0002 / 0.9820 0.0003 / 333 Difficulties: none of these

234 ph049d6 0.0002 / 0.9821 0.0004 / 299 Difficulties: using the toilet, incl get-
ting up or down

235 rc024 1 0.0002 / 0.9823 0.0008 / 194 Year of birth other child

236 co209 0.0002 / 0.9825 0.0004 / 299 To help keeping living costs down: put
up with feeling cold

237 sn005 7 0.0002 / 0.9827 0.0009 / 169 Network relationship: sn person 7

238 ch021 0.0002 / 0.9829 0.0008 / 203 Number of grandchildren

239 ep033 0.0002 / 0.9831 0.0006 / 244 Salary or earnings are adequate in
(main) job

240 dn027 1 0.0002 / 0.9833 0.0008 / 194 Age of death of parent: mother

241 ep129 21 0.0002 / 0.9834 0.0004 / 299 Period to month (unemployed)

242 sn009 3 0.0002 / 0.9836 0.0006 / 244 Network closeness: sn person 3

243 ep678v3 0.0002 / 0.9838 0.0004 / 299 Bracket value 3

244 yrbirth 0.0002 / 0.9840 0.0006 / 235 Year of birth

245 gs006 0.0002 / 0.9842 0.0006 / 235 1st measurement: left hand

246 cc010 0.0002 / 0.9844 0.0008 / 194 Relative position to others when ten:
mathematically

247 re035 1 0.0002 / 0.9845 0.0006 / 225 Situation in after last job

248 ho044 0.0002 / 0.9847 0.0004 / 299 Changed place of residence

249 gs010d2 0.0002 / 0.9849 0.0004 / 283 Why not completed gs test: iwer felt it
would not be safe

250 rc032 1 0.0002 / 0.9851 0.0006 / 225 Maternity benefit amount

251 as649 0.0002 / 0.9852 0.0004 / 313 Number of cars

252 agep2020 0.0002 / 0.9854 0.0007 / 211 Age of partner in 2020
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253 mh012 0.0002 / 0.9856 0.0004 / 283 Eating more or less

254 partnerinh... 0.0002 / 0.9857 0.0004 / 299 Partner in household - after CA update

255 wq010 0.0002 / 0.9859 0.0006 / 244 Work had adequate salary

256 wq014 0.0002 / 0.9861 0.0007 / 211 Work health risk reduced

257 ex008 0.0002 / 0.9862 0.0004 / 283 Chance government raises retirement
age

258 cc733 0.0002 / 0.9864 0.0006 / 235 Family was pretty well off financially,
about average, or poor

259 gs008 0.0002 / 0.9865 0.0006 / 244 1st measurement: right hand

260 relrpers 0.0002 / 0.9867 0.0008 / 203 Relation to coverscreen respondent

261 mh026 0.0002 / 0.9868 0.0005 / 256 Fear of dying

262 br028 0.0002 / 0.9870 0.0007 / 211 How often serving of meat, fish or
chicken

263 ex003 0.0001 / 0.9871 0.0006 / 235 Chance inheritance more than 50000

264 ch007 SHL ... 0.0001 / 0.9873 0.0008 / 203 Child 1 (SHARELIFE: biological)
where does child live

265 pf004 0.0001 / 0.9874 0.0006 / 244 Value second measurement

266 cs002 0.0001 / 0.9876 0.0006 / 235 Safe to do cs

267 hc602 0.0001 / 0.9877 0.0007 / 217 Times talked to medical doctor/nurse
about your health last 12 months

268 rp004b 1 0.0001 / 0.9879 0.0006 / 225 Year started living with married part-
ner

269 ep016 0.0001 / 0.9880 0.0006 / 235 Name or title of job

270 ch016 2 0.0001 / 0.9881 0.0006 / 225 Child 2 employment status

271 dn027 2 0.0001 / 0.9883 0.0006 / 225 Age of death of parent: father

272 hc005 0.0001 / 0.9884 0.0006 / 244 Most recent consulted specialist

273 fs004 0.0001 / 0.9885 0.0001 / 407 Ever had any mutual funds

274 hc841dno 0.0001 / 0.9887 0.0005 / 270 Forgo care due to cost: none of these

275 cf116tot 0.0001 / 0.9888 0.0006 / 225 Ten words list learning delayed recall
total

276 xt038e 3 0.0001 / 0.9889 0.0005 / 270 Value of assets: cars

277 re002 0.0001 / 0.9890 0.0005 / 256 Year finished fulltime education

278 yrbirth xt 0.0001 / 0.9892 0.0005 / 256 Year of birth of the deceased

279 ph009 15 0.0001 / 0.9893 0.0004 / 299 Age other fractures

280 wq008 0.0001 / 0.9894 0.0004 / 283 Work allowed development of skills

281 hc002 0.0001 / 0.9896 0.0006 / 225 How often seen or talked to medical
doctor last 12 months

282 cc729 0.0001 / 0.9897 0.0004 / 299 Lonely for friends in childhood

283 as003ub 0.0001 / 0.9898 0.0006 / 244 Amount bank account ub

284 ex004 0.0001 / 0.9899 0.0004 / 299 Chance of leaving inheritance more
than 50000
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285 ho024e 0.0001 / 0.9900 0.0004 / 283 Value of property

286 xt009 0.0001 / 0.9902 0.0004 / 283 Year of decease

287 rh026dot 0.0001 / 0.9903 0.0005 / 270 Why no regular dental care: other rea-
sons

288 re011 1 0.0001 / 0.9904 0.0004 / 283 Year started job

289 br030 0.0001 / 0.9905 0.0005 / 270 How many cups a day drinks of tea, cof-
fee, water, milk, fruit, soft drinks

290 as054dno 0.0001 / 0.9906 0.0003 / 323 Owe money: none of these

291 hh011e 0.0001 / 0.9907 0.0003 / 323 Additional income received by all hh-
members last year

292 wave 0.0001 / 0.9908 0.0004 / 313 wave

293 iv010 0.0001 / 0.9910 0.0005 / 256 Type of building

294 rh025 0.0001 / 0.9911 0.0005 / 256 Frequency regular dentist

295 ra006 2 0.0001 / 0.9912 0.0005 / 256 Start living at residence

296 hc068 8 0.0001 / 0.9913 0.0004 / 283 Current health insurance coverage: pri-
vate hospitals

297 dn019 0.0001 / 0.9914 0.0005 / 256 Since when widowed

298 ph044 0.0001 / 0.9915 0.0005 / 270 Eyesight reading

299 ra006 1 0.0001 / 0.9916 0.0004 / 299 Start living at residence

300 hc014 0.0001 / 0.9917 0.0005 / 256 Total nights stayed in hospital

301 ep329 0.0001 / 0.9918 0.0004 / 283 Retirement year

302 dn127 1 0.0001 / 0.9919 0.0005 / 256 Year of death of parent: mother

303 br027 0.0001 / 0.9921 0.0005 / 270 How often serving of legumes or eggs

304 gl003 0.0001 / 0.9922 0.0004 / 313 When happiness period started

305 gender 0.0001 / 0.9923 0.0004 / 299 Male or female

306 ph009 18 0.0001 / 0.9924 0.0004 / 313 Age affective or emotional disorders

307 ph013 0.0001 / 0.9925 0.0005 / 270 How tall are you?

308 sn006 2 0.0001 / 0.9926 0.0005 / 270 Network proximity: sn person 2

309 ch007 2 0.0001 / 0.9927 0.0005 / 270 Child 2 where does child live

310 ep678v2 0.0001 / 0.9928 0.0001 / 407 Bracket value 2

311 re026 1 0.0001 / 0.9929 0.0004 / 313 Year stopped in this job

312 hh017ub 0.0001 / 0.9930 0.0005 / 270 Total income received by all hh-
members an average month last year ub

313 gl740d5 0.0001 / 0.9931 0.0001 / 407 Discriminated against father: engaged
in combat operations/fighting

314 br016 0.0001 / 0.9932 0.0003 / 323 Activities requiring a moderate level of
energy

315 dn127 2 0.0001 / 0.9933 0.0005 / 270 Year of death of parent: father

316 rp011 1 0.0001 / 0.9934 0.0004 / 283 Year of death partner

317 ch006 2 0.0001 / 0.9935 0.0004 / 299 Child 2 year of birth

318 ph012 0.0001 / 0.9936 0.0004 / 283 Weight of respondent
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319 st006 0.0001 / 0.9937 0.0004 / 283 Month of birth of respondent

320 hc068 10 0.0001 / 0.9938 0.0004 / 313 Current health insurance coverage:
nursing care at home

321 ph009 13 0.0001 / 0.9939 0.0004 / 313 Age cataracts

322 rel relati... 0.0001 / 0.9939 0.0004 / 313 Relation to household member (wave 8)

323 re022c 4 0.0001 / 0.9940 0.0004 / 299 Currency of wage - coded

324 rc024 2 0.0001 / 0.9941 0.0004 / 299 Year of birth other child

325 cf107tot 0.0001 / 0.9942 0.0004 / 299 Ten words list learning first trail

326 pf002 0.0001 / 0.9943 0.0003 / 333 Feels safe to do the test

327 ep078e 4 0.0001 / 0.9944 0.0002 / 346 Average payment income source c4 last
year

328 dn051 2 0.0001 / 0.9945 0.0004 / 283 Highest school certificate/degree: fa-
ther

329 sp019d22 0.0001 / 0.9945 0.0002 / 346 R provided help with personal care to:
grandchild

330 age2007 0.0001 / 0.9946 0.0002 / 346 Age in 2007

331 rh050dot 0.0001 / 0.9947 0.0003 / 323 Why no regular blood pressure checks:
other reasons

332 ph089d2 0.0001 / 0.9948 0.0002 / 346 Bothered by frailty: fear of falling down

333 age2004 0.0001 / 0.9949 0.0003 / 323 Age in 2004

334 ep050 0.0001 / 0.9949 0.0003 / 323 Year last job ended

335 cf015 0.0001 / 0.9950 0.0004 / 313 Numeracy: amount in the savings ac-
count

336 rp008 1 0.0001 / 0.9951 0.0003 / 323 Year married

337 ep051 0.0001 / 0.9952 0.0004 / 313 Employee or a self employed in last job

338 mc010 0.0001 / 0.9952 0.0003 / 323 Childhood health status

339 ra015 2 0.0001 / 0.9953 0.0003 / 323 Region of residence (not current)

340 dn051 1 0.0001 / 0.9954 0.0004 / 313 Highest school certificate/degree:
mother

341 mh015 0.0001 / 0.9955 0.0002 / 366 Concentration on reading

342 br025 0.0001 / 0.9955 0.0002 / 366 How many meals a day

343 ep213 4 0.0001 / 0.9956 0.0003 / 333 First year received income source c4

344 ft002 0.0001 / 0.9957 0.0002 / 346 Given financial gift 250 or more

345 ph048d10 0.0001 / 0.9958 0.0002 / 366 Difficulties: picking up a small coin
from a table

346 hc049v1 0.0001 / 0.9958 0.0002 / 346 Bracket value 1

347 sp019d12 0.0001 / 0.9959 0.0003 / 333 R provided help with personal care to:
child 3

348 dn012d18 0.0001 / 0.9960 0.0002 / 387 Further education: country-specific
category 18

349 dn023dno 0.0001 / 0.9960 0.0002 / 366 Further education former partner: none
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350 sp016 1 0.0001 / 0.9961 0.0002 / 346 How often did you look after child of
child 1

351 ep128 13 0.0001 / 0.9962 0.0002 / 366 Period from year (working)

352 ph087d1 0.0001 / 0.9963 0.0001 / 407 Pain location: back

353 gs004 0.0001 / 0.9963 0.0002 / 346 Dominant hand

354 age2015 0.0001 / 0.9964 0.0002 / 366 Age in 2015

355 cf016tot 0.0001 / 0.9965 0.0002 / 346 Ten words list learning delayed recall
total

356 co004e 0.0001 / 0.9965 0.0002 / 366 Amount spent on telephones in last
month

357 ph009 8 0.0001 / 0.9966 0.0003 / 333 Age arthritis or rheumatism

358 hc068 5 0.0001 / 0.9966 0.0002 / 366 Current health insurance coverage:
dental care

359 dn006 0.0001 / 0.9967 0.0003 / 333 Year came to live in country

360 ph048d8 0.0001 / 0.9968 0.0002 / 366 Difficulties: pulling or pushing large ob-
jects

361 as068 0.0001 / 0.9968 0.0003 / 333 Risk aversion

362 agep2017 0.0001 / 0.9969 0.0002 / 387 Age of partner in 2017

363 it004 0.0001 / 0.9970 0.0001 / 407 Use of internet in past 7 days

364 re013 3 0.0001 / 0.9970 0.0003 / 333 Job description

365 sp011 1 0.0001 / 0.9971 0.0003 / 333 How often given help to person 1

366 as055e 0.0001 / 0.9971 0.0002 / 366 Amount owing money in total

367 age2013 0.0001 / 0.9972 0.0002 / 366 Age in 2013

368 ra015 3 0.0001 / 0.9972 0.0002 / 366 Region of residence (not current)

369 ep030 0.0001 / 0.9973 0.0002 / 366 Opportunity to develop new skills in
(main) job

370 cc008 0.0001 / 0.9973 0.0002 / 366 Number of books when ten

371 cc725 2 0.0001 / 0.9974 0.0002 / 346 Father physical harm

372 ra015 1 0.0001 / 0.9974 0.0002 / 346 Region of residence (not current)

373 dn015 0.0001 / 0.9975 0.0002 / 366 Year of marriage, if living together

374 ph009 5 0.0001 / 0.9976 0.0002 / 346 Age diabetes

375 hh024 0.0001 / 0.9976 0.0002 / 346 Area is kept very clean

376 ra006 3 0.0001 / 0.9977 0.0002 / 366 Start living at residence

377 hs063d4 0.0001 / 0.9977 0.0002 / 387 Consequences of illness period: made
social life more difficult

378 hc034 0.0000 / 0.9978 0.0002 / 366 Hours received professional nursing care

379 ep098dno 0.0000 / 0.9978 0.0002 / 387 Type of pension entitled to: none of
these

380 ep010 0.0000 / 0.9979 0.0002 / 346 Start of current job (year)

381 ho067v1 0.0000 / 0.9979 0.0002 / 366 Bracket value 1

382 ho035 0.0000 / 0.9980 0.0002 / 366 Years in community
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383 rh789 0.0000 / 0.9980 0.0002 / 387 Number of periods postponed dentist
visit

384 ho024v2 0.0000 / 0.9980 0.0002 / 387 Bracket value 2

385 hc035 0.0000 / 0.9981 0.0002 / 366 Weeks received paid domestic help

386 co011e 0.0000 / 0.9981 0.0002 / 387 Value of home produced food

387 ph095 0.0000 / 0.9982 0.0002 / 366 How much loss of weight (in kg)

388 hc033 0.0000 / 0.9982 0.0002 / 387 Weeks received professional nursing
care

389 hh017v2 0.0000 / 0.9983 0.0002 / 387 Bracket value 2

390 ph062 0.0000 / 0.9983 0.0002 / 387 Compare health last wave

391 xt019e 1 0.0000 / 0.9984 0.0002 / 387 Costs: care from a general practitioner

392 ex006 0.0000 / 0.9984 0.0002 / 346 Chance of leaving inheritance more
than 150000

393 ph009 6 0.0000 / 0.9985 0.0002 / 366 Age chronic lung disease

394 hh017v1 0.0000 / 0.9985 0.0002 / 387 Bracket value 1

395 xt019e 6 0.0000 / 0.9985 0.0001 / 407 Costs: medication

396 age2017 0.0000 / 0.9986 0.0002 / 387 Age in 2017

397 partnerinh... 0.0000 / 0.9986 0.0001 / 407 Partner in household

398 rc024 3 0.0000 / 0.9987 0.0002 / 387 Year of birth other child

399 ho005e 0.0000 / 0.9987 0.0002 / 387 Amount last rent payment

400 ch020 3 0.0000 / 0.9987 0.0002 / 387 Child 3 year of birth youngest child

401 rh793 0.0000 / 0.9988 0.0001 / 407 Number of periods postponed taking
medication

402 hhsize upd... 0.0000 / 0.9988 0.0001 / 407 Household size - after CA update

403 ch007 3 0.0000 / 0.9988 0.0002 / 366 Child 3 where does child live

404 st007 0.0000 / 0.9989 0.0001 / 429 Year of birth of respondent

405 ep201e 0.0000 / 0.9989 0.0001 / 407 Taken home from work after tax,
(main) job

406 iv014 0.0000 / 0.9990 0.0002 / 387 Age of interviewer

407 rh041 0.0000 / 0.9990 0.0002 / 387 Year regular blood pressure checks
started

408 sp019d10 0.0000 / 0.9990 0.0001 / 407 R provided help with personal care to:
child 1

409 re704 0.0000 / 0.9990 0.0001 / 429 Computer training for job

410 dn018 0.0000 / 0.9991 0.0001 / 407 Since when divorced

411 ho024v3 0.0000 / 0.9991 0.0001 / 407 Bracket value 3

412 hc049e 0.0000 / 0.9991 0.0001 / 407 Paid out-of-pocket for prescribed drugs

413 gs010d6 0.0000 / 0.9992 0.0001 / 407 Why not completed gs test: r had
surgery, injury, swelling, etc.

414 rh790 3 0.0000 / 0.9992 0.0001 / 429 Years postponed dentist visit 1 to 5

415 sn023 1 0.0000 / 0.9992 0.0001 / 407 Reason did not mention sn person 1
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416 agep2015 0.0000 / 0.9992 0.0001 / 407 Age of partner in 2015

417 gl740dno 0.0000 / 0.9993 0.0001 / 429 Discriminated against father: none of
these

418 ch020 2 0.0000 / 0.9993 0.0001 / 407 Child 2 year of birth youngest child

419 ep106 1 0.0000 / 0.9993 0.0001 / 407 Expected age to collect pension c1

420 co005e 0.0000 / 0.9993 0.0001 / 407 Amount spent on all goods and services
in last month

421 rh794 2 0.0000 / 0.9994 0.0001 / 429 Years postponed taking medication 1 to
5

422 ep049 0.0000 / 0.9994 0.0001 / 407 Years working in last job

423 xt025 0.0000 / 0.9994 0.0001 / 407 Hours of help necessary during typical
day

424 xt007 0.0000 / 0.9994 0.0001 / 429 Year of birth proxy

425 ch019 2 0.0000 / 0.9995 0.0001 / 429 Child 2 number of children

426 rc029 1 0.0000 / 0.9995 0.0001 / 429 Left job because of child

427 cf105tot 0.0000 / 0.9995 0.0001 / 429 Ten words list learning first trail

428 sn027 1 0.0000 / 0.9995 0.0001 / 429 Year of birth sn person 1

429 ep078e 12 0.0000 / 0.9995 0.0000 / 456 Typical payment of pension in c12 last
year (ep324d2)

430 ch015 2 0.0000 / 0.9996 0.0001 / 429 Child 2 year moved out

431 ph046 0.0000 / 0.9996 0.0001 / 429 Hearing

432 dn029isco ... 0.0000 / 0.9996 0.0001 / 429 ISCO code of father when respondent
was 10

433 cs003 0.0000 / 0.9996 0.0001 / 429 Number of people living in household
when ten

434 chselch2 0.0000 / 0.9996 0.0001 / 429 Child number 2 selected child

435 as003v1 0.0000 / 0.9996 0.0001 / 429 Bracket value 1

436 as049 0.0000 / 0.9997 0.0001 / 429 Number of cars

437 re007 0.0000 / 0.9997 0.0001 / 429 Situation in gap after education

438 ph009 4 0.0000 / 0.9997 0.0001 / 429 Age stroke or cerebral vascular disease

439 sr004d1 0.0000 / 0.9997 0.0001 / 429 Negative Shock: Bad health affected
work

440 ep078e 5 0.0000 / 0.9997 0.0000 / 456 Average payment income source c5 last
year

441 sp009 2 0.0000 / 0.9997 0.0001 / 429 To whom did you give help: person 2

442 rc024 4 0.0000 / 0.9997 0.0001 / 429 Year of birth other child

443 rh782 1 0.0000 / 0.9998 0.0000 / 456 Years could not afford doctor 1 to 5

444 ph009 7 0.0000 / 0.9998 0.0000 / 456 Age asthma

445 rh790 2 0.0000 / 0.9998 0.0000 / 456 Years postponed dentist visit 1 to 5

446 xt038e 4 0.0000 / 0.9998 0.0000 / 456 Value of assets: financial assets, e.g.
cash, bonds or stocks

447 co002v1 0.0000 / 0.9998 0.0000 / 456 Bracket value 1

Continued on next page

90



Feature Gain / Cumulative Split / Rank Description

448 ph010d12 0.0000 / 0.9998 0.0000 / 456 Bothered by: fatigue

449 ch001 0.0000 / 0.9998 0.0000 / 456 Number of children

450 ph009 3 0.0000 / 0.9998 0.0000 / 456 Age high blood cholesterol

451 rc028 2 0.0000 / 0.9998 0.0000 / 456 Year of death other child

452 mc007 0.0000 / 0.9999 0.0000 / 456 Relative position to others when 10:
language

453 ra021 3 0.0000 / 0.9999 0.0000 / 456 Stopped living at residence

454 ph054 0.0000 / 0.9999 0.0000 / 456 Who answered the questions in ph

455 sp011 2 0.0000 / 0.9999 0.0000 / 456 How often given help to person 2

456 as003v2 0.0000 / 0.9999 0.0000 / 456 Bracket value 2

457 rh781 0.0000 / 0.9999 0.0000 / 456 Number of periods could not afford doc-
tor

458 ra733 3 0.0000 / 0.9999 0.0000 / 456 Start year living first time: Mother-in-
law

459 ho008e 0.0000 / 0.9999 0.0000 / 456 Amount charges and services

460 ph048d4 0.0000 / 0.9999 0.0000 / 456 Difficulties: climbing several flights of
stairs

461 ho012 0.0000 / 0.9999 0.0000 / 456 Year acquired property

462 xt024 0.0000 / 0.9999 0.0000 / 456 Time the deceased received help

463 ph048d6 0.0000 / 0.9999 0.0000 / 456 Difficulties: stooping, kneeling, crouch-
ing

464 ph004 0.0000 / 1.0000 0.0000 / 456 Long-term illness

465 xt019e 3 0.0000 / 1.0000 0.0000 / 456 Costs: hospital stays

466 ep103 1 0.0000 / 1.0000 0.0000 / 456 Years contributing to plan, pension c1

467 sp020 0.0000 / 1.0000 0.0000 / 456 Someone in this household helped you
regularly with personal care

468 ws013 0.0000 / 1.0000 0.0000 / 456 Time of second walking speed test

469 br019 0.0000 / 1.0000 0.0000 / 456 How many drinks in a day

470 ep082e 1 0.0000 / 1.0000 0.0000 / 456 Total amount of lump sum payment in-
come source c1

471 ch015 3 0.0000 / 1.0000 0.0000 / 456 Child 3 year moved out
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