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● Apprentissage traditionnel
● Apprentissage fédéré
● Risques de sécurité liés à l'apprentissage fédéré
● Apprentissage fédéré sécurisé

○ Confidentialité différentielle appliquée au modèle
○ Chiffrement homomorphe appliqué au modèle

● Démo / Apprentissage fédéré sécurisé
○ Confidentialité différentielle 
○ Chiffrement homomorphe

● Questions 
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Apprentissage traditionnel | Modèle
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Deep learning → Basé du fonctionnement de notre cortex visuel

● Neurones sensibles à certaines zones / caractéristiques élémentaires
● Neurones sensibles à la combinaison de ces zones

Neurone
y = 0,7

w1 = 1,5

w2=  2,3

w3 = -1,9
b = 0,5

x1

x2

x3
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Apprentissage traditionnel | Dataset
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Apprentissage traditionnel | Modèle prédictif de maintenance
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! Panne !

Début de la dégradation

Maintenance prédictive
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Apprentissage traditionnel | Dataset sur plusieurs sites
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Site externe
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Apprentissage fédéré
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Apprentissage fédéré
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Apprentissage fédéré
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Risques de sécurité liés à l'apprentissage fédéré
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Risques de sécurité liés à l'apprentissage fédéré
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Attaques par empoisonnement (Poisoning Attacks)

Ces attaques consistent à injecter des données malveillantes ou à manipuler les mises à jour du modèle afin d’en dégrader 
volontairement les performances.

Attaques par porte dérobée (Backdoor Attacks)

Elles reposent sur l’entraînement de modèles locaux intégrant un déclencheur caché. Le modèle global se comporte 
normalement sur la majorité des entrées, mais produit systématiquement une mauvaise classification lorsqu’une entrée 
contient ce déclencheur spécifique.

Attaques d’inférence (Inference Attacks)

Ces attaques visent à extraire des informations sensibles concernant les données d’entraînement à partir du comportement 
du modèle.

● Attaques d’inversion de modèle (Model Inversion Attacks) :
 Elles permettent de reconstruire partiellement ou totalement les données d’entrée à partir des sorties du modèle.

● Attaques d’inférence de propriétés (Property Inference Attacks) :
 Elles cherchent à déduire des propriétés globales du jeu d’entraînement (ex. distributions démographiques, présence 
d’une classe spécifique).

● …
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Apprentissage fédéré sécurisé
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Architecture d'apprentissage fédéré intégrant 

○ Differential Privacy (DP) 
○ Fully Homomorphic Encryption (FHE)
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Confidentialité différentielle appliquée au modèle
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Neuron
y’ = 0,7 +  0,14

w’1 = 1,5 + 0,3

w’2=  2,3 - 0,21

w’3 = -1,9 - 0,3
b’ = 0,5 - 0,37

Neurone
y = 0,7

w1 = 1,5

w2=  2,3

w3 = -1,9
b = 0,5

Bruit Gaussien

Avant DP Après DP
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Confidentialité différentielle appliquée au modèle
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Chiffrement homomorphe 
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Données encryptées

Enc(a), Enc(b)

Opérations homomorphiques
Schéma (CKKS)

Enc(a) ⊕ Enc(b)

Résultats encryptés

Cloud

                       

clé privée (réservée au client )→ pour décrypter
                       

clé publique (à partager) → pour encrypter

Données

a, b

Client (propriétaire des données)

Données encryptées 
 (clé publique)

Enc(a), Enc(b)

Résultats 
encryptés

Résultats décryptés

Dec(Enc(a)⊕Enc(b)) = a + b
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Homomorphic encryption 
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Encrypted data 

Enc(a), Enc(b)

Homomorphic operations
Schema (CKKS)

Enc(a) ⊕ Enc(b)

Encrypted data 

Cloud

                       

private key (reserved for the client) → for decryption
                       

public key (to be shared) → for encryption

Data

a, b

Client (data owner)

Encrypted data 
 (public key)

Enc(a), Enc(b)

Encrypted 
data 

Described data 

Dec(Enc(a)⊕Enc(b)) = a + b
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Chiffrement homomorphe appliqué au modèle | Poisoning 
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Demonstrateur |Front end 
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http://demo-aide.int.cetic.be

http://demo-aide.int.cetic.be/
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Démonstrateur | Back end
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- 3 nodes / CIFAR-10
- Secure federated learning 

- DP / Opacus
- FHE / CKKS

- Pods / Persistent volumes 
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Démonstrateur / Screenshot
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http://demo-aide.int.cetic.be

http://demo-aide.int.cetic.be/
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Démonstrateur / Screenshot
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http://demo-aide.int.cetic.be

http://demo-aide.int.cetic.be/
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Questions ?
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Merci pour votre attention
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+32 71 159 362

twitter.com/@CETIC 
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Expert researcher (IA, Cyber) @ CETIC

xavier.lessage@cetic.be

Xavier Lessage, Ir, PhD

Apprentissage fédéré au service 
d’une IA confidentielle

https://www.linkedin.com/in/xavier-lessage/
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Videos
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● FL + DP 
● FL + FHE 
● FL + FHE + Poisoning attack 
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Secure Federated learning with full homomorphic encryption
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Xavier Lessage, Leandro Collier, Saïd Mahmoudi, Axel Legay, Secure federated learning applied to medical imaging with fully homomorphic encryption, ICAIC’2024, IEEE Xplore.
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Risques de sécurité liés à l'apprentissage fédéré
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