
Jeremy Zerr
Blog: http://www.jeremyzerr.com

LinkedIn: http://www.linkedin.com/in/jrzerr
Twitter: http://www.twitter.com/jrzerr

Andrew Chumich

LinkedIn: https://www.linkedin.com/in/andrewchumich
Twitter: https://twitter.com/AndrewChumich

React Redux
Design Lessons Learned

A Software Presentation From

http://www.jeremyzerr.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr
https://www.linkedin.com/in/andrewchumich
https://twitter.com/AndrewChumich

Introduction

To gain more experience building with React + Redux,
we are building a time tracking web app based on the
TSheets API

We have built other TSheets API apps in AngularJS, so
this is a way for us to compare AngularJS to React +
Redux for a similar app

This project is on Github at react-redux-tsheets-app

https://github.com/jrzerr/react-redux-tsheets-app

Overview

Brief intro to React and Redux

Terminology

App Design Process

Requirements

Redux State

Redux Actions/Reducers

React Components

What is React?

Within the MVC design pattern, it is for building your View, but also to a lesser degree, your
Controller

Efficient DOM updating when data changes by using a Virtual DOM to compute differences
before changing the actual DOM

Components use one way data flow, data flow is explicit

Leads to using pure functions

Debugging is easier

Testing generally is easier on pure functions

Typically see component markup built in JSX

Sponsored by Facebook

What is Redux?

Redux is a framework for managing the state for a web application,
React components render that state

A single data store contains the state for your app

Your application emits an action, that defines something that just
happened that will affect the state

Reducers specify how to change the state when the action is received

Hot reloading of code changes

State changes can be tracked, and replayed

Why React + Redux?

The props for React components come from the Redux store that
tracks the state.

React components react to user input and emit actions, either directly
or indirectly.

Redux handles the action by running the appropriate reducers which
transform the current state into a new state.

React components react to the new state and update the DOM.

React components themselves are stateless (most of the time), all of
the state is kept in the Redux store, one common place, for simplicity.

Terminology
What kinds of things do we work with?

React

Component

Props

propTypes

render

JSX

Redux

Action

Action Creator

Dispatch

Reducer

Store

from src/redux/modules/jobcodes.js

Redux

React + Redux

mapStateToProps

mapDispatchToProps

connect

from View component src/views/TimecardView.js

Design Process
How do we go about designing a React + Redux app?

App Design Process

1. What do you want your app to do? Mockups, UI

2. Design your state tree. What needs to be tracked with
the state within the app?

3. How will the state change? Write actions and reducers.

4. Which UI components will call the actions? Call actions
from container components

1) Our App Requirements

A time tracking web application based off of the TSheets
API

Timecard page that allows clocking in and out of a
Timesheet, selecting Jobcodes, and defining Notes, then
saving via the API

Timesheet list page that shows your timesheets

Ability to Add/Edit individual Timesheets, similar to what
you can do on a Timecard, except without the Clock In/Out.

1) App UI and Pages

Three pages, a Timecard page, Timesheets List page, and a Timesheet Add/
Edit page

Timecard page:

For doing Clock In/Out, tracking your current activity

Timesheets List page:

Shows your timesheets, past and present

Timesheet Add/Edit page:

For adding new and editing existing Timesheets

Timecard Page

Timecard page has:

Clock in/out button that changes depending on context

Jobcodes presented as a parent/child list, clicking on
parent, shows all children

Notes as input field

When on the clock, your current time increments

2) Designing the Store

Track the Timesheet that is on the clock, that will be the one shown on Timecard page

We need to track all Timesheets over the last several days

We want our Timesheet which is on the clock, the one used on the Timecard page, to live within
the list of Timesheets to keep it simple to access all of the Timesheets.

So we chose just to save the id of the on the clock Timesheet in our state.

We also need the entire list of Jobcodes, you need a Jobcode before clocking in

There could be several places where a list of Jobcodes are used, both on the Timecard page, and
Timesheet add/edit page. When a user picks a Jobcode, we want that to be remembered if they
navigate away and come back. So we need to keep track of the currently selected Jobcode for
each page separately.

We will save the selected jobcode id in the state, but have only one list of Jobcodes to avoid
duplication.

Redux Store + Immutable.js

React is designed for efficient DOM updating using a Virtual DOM

Redux brings a common store used to track state

If we turn the Redux store into an immutable object, we never change data, we only
change references.

In that case, we can avoid the Virtual DOM computation and diff, with a quick data
reference check.

The React components can then avoid doing the Virtual DOM creation and diff, because
they know that if the reference is the same, no updates needed. See PureRenderMixin.

We decided to use only Immutable.js data structures for our Redux store, and
everywhere state is passed into React Components.

https://facebook.github.io/react/docs/pure-render-mixin.html

2) Our Redux Store

Map {
 OrderedMap timesheetList: {Number: {}, Number: {}, …},
 Map timecard: {
 _id: Number
 },
 Map jobcodes: {
 Map list: {Number: {},Number: {}, …},
 Map parent_ids: {
 timecard: Number,
 edit_timesheet: Number,
 add_timesheet: Number
 }
 }
}

Let’s start coding!
Wait… never from scratch

We used the React Redux Starter Kit

Webpack so we can do hot reloading with the dev server

Babel so we can use ES2015

We had to add in Immutable.js ourselves

Also already included Redux thunk for our async
requests

https://github.com/davezuko/react-redux-starter-kit

3) Actions from the UI

Action for updating fields on a timesheet within the timesheet list

Actions for Clock in and Clock out that change a Timesheet

Actions for loading Jobcodes from the API

Once Promise is complete, we fire another action to set the Jobcodes in
the state

Action for syncing a timesheet, basically clock in sends a POST, then clock
out sends a PUT with an end date, which results in a completed Timesheet.

Action for picking a jobcode id when navigating through the Jobcode selector

4) Components call Actions

Sections of our app that we call Pages we create as a View
Component, a.k.a Container component

TimecardView container component

Timecard stateless component

Jobcode stateless component

ManagedList stateless component - can select button
item and navigate within nested structure

Clock In/Out stateless component - calls clock in clock out

Components: Container
(smart) + Stateless (dumb)

Instead of one single component that takes state, calls actions, and
renders DOM, we instead are choosing to design using a combination
of two types of components

Container: passes state from Redux store as props to sub-
components (container or stateless) and emits actions. Just
renders sub-components. Has data concerns.

Stateless: no dependencies, only gets data and callbacks via
props. Presentation-only. Can use other stateless sub-
components, but no container sub-components

Read more by Dan Abramov and a related Gist

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0#.9cixnbm4h
https://gist.github.com/chantastic/fc9e3853464dffdb1e3c

TimecardView - container

TimecardView is our container component

Is mapped to a path via react-router in
src/routes/index.js

It initially populates the list of Jobcodes
from the API

Maps state and actions to the stateless
components

Notice callback functions for UI
interactions passed down into Timecard
sub-component

Timecard - stateless

Timecard is a stateless
component

Passes what is necessary to
child components Jobcode
and ClockIn

Jobcode - stateless

Jobcode is a stateless
component

Passes what is necessary to
ManagedList

ManagedList - stateless

Designed to be generic, as there
will be other data rendered in a
component like this, such as
another Timesheet field called
Custom Fields

Notice how we have been
passing down the isSelected
function

That function determines when
we select a child, that the parent
also shows up as highlighted

It was passed in via props from
the Jobcode component

Reusable Components

Use propTypes and
defaultProps

Since we are using
Immutable.js, we can
very explicitly check for
instance of Immutable.js
types, like OrderedMap
and Map

What will we cover next?

Async API operations using Redux thunk and actions/
action creators

How to ensure that data is loaded that is needed for a
React Component

Using mapDispatchToProps and bindActionCreators to
bring different action creators into React component
scope

Should you ever use React Component local state?

Jeremy Zerr
Blog: http://www.jeremyzerr.com

LinkedIn: http://www.linkedin.com/in/jrzerr
Twitter: http://www.twitter.com/jrzerr

Thanks! Connect with Us!

A Software Presentation From

Andrew Chumich

LinkedIn: https://www.linkedin.com/in/andrewchumich
Twitter: https://twitter.com/AndrewChumich

http://www.jeremyzerr.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr
https://www.linkedin.com/in/andrewchumich
https://twitter.com/AndrewChumich

