
React Server Side Rendering

A Software Presentation From

Jeremy Zerr
Site: https://www.zerrtech.com

https://www.linkedin.com/in/jrzerr
https://twitter.com/jrzerr

http://www.zerrtech.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

The Plan

Start with a React project started from Create React App
that has some API calls, defines title tag, and a couple
routes

Show what problem we are trying to solve and how we
would like to solve it

Evolve the app into a React Server Side Rendering,
showing the challenges encountered along the way

The App

The App - Title tags

The App - API Calls

/heroes

/heroes/0

https://angular-1-training-class-api.herokuapp.com/heroes
https://angular-1-training-class-api.herokuapp.com/heroes/0

The App - Code

Zerrtech/zerrtech-react-ssr-demo

4 branches, 1 for each iteration

step-1-normal-app

step-2-ssr-initial

step-3-ssr-server-seed

step-4-ssr-api  

https://github.com/Zerrtech/zerrtech-react-ssr-demo
https://github.com/Zerrtech/zerrtech-react-ssr-demo/tree/step-1-normal-app
https://github.com/Zerrtech/zerrtech-react-ssr-demo/tree/step-2-ssr-initial
https://github.com/Zerrtech/zerrtech-react-ssr-demo/tree/step-3-ssr-server-seed
https://github.com/Zerrtech/zerrtech-react-ssr-demo/tree/step-4-ssr-api

Initial App Demo
Branch: step-1-normal-app

Initial page load has nothing!

Page fetches heroes from
API then renders

1

Initial App Demo
Empty HTML

This empty initial page load is by design.
It’s a Single Page App (SPA) after all.

React renders into the div id=“root”

1

What’s wrong with that?

Google can crawl Javascript on a page, but it takes extra steps
and can delay full indexing since they have to wait for rendering
by doing two passes.

Performance wise, one trip to the server is quicker than N trips to
the server to generate a page, especially in mobile where #
parallel requests is smaller and connections are slower.

Combined with SSR caching, this can mean that each page is
only rendered once and used by many users. Loading indicators
added while waiting for API calls wouldn’t really show up, better
user experience.

1

Image from SEOpressor

Rendering HTML
only page

1

https://seopressor.com/blog/javascript-seo-how-does-google-crawl-javascript/

Image from SEOpressor

Rendering JS
page

https://seopressor.com/blog/javascript-seo-how-does-google-crawl-javascript/

Google uses Chrome 41 to
crawl

I have version 71

Google Search Rendering Guide

Can I Use - 41 vs. 71

Use the Google Search
Console to Fetch as Google

(or new Search Console
URL Inspection)

1

https://developers.google.com/search/docs/guides/rendering
https://caniuse.com/#compare=chrome+41,chrome+71

Why don’t all sites
do SSR then?

It’s good for content-heavy, largely publicly accessible apps.

If most of your content is behind a login, then SSR can’t get
at it either.

A proper SSR implementation would use a layer of caching,
so if you have data that absolutely needs to be as up to date
as possible, probably not a good fit.

Requires redesigning data fetching within components,
ideal solution is specific to your app, no generic solution

1

Wait!!!
Weren’t all sites
like this in 1999?

How does React rendering
normally work?

A user types your home page URL into the browser

Browser sends a request to the server for your home page

HTML for home page is returned to Browser, but has a
blank content body and links to scripts/CSS

React boots up in Browser, renders the home page

Browser React component may fire off API requests that
when they return, causes another React render

1

How does React SSR work?

A user types your home page URL into the browser

Browser sends a request to the server for your home page

Server fetches data needed for the home page, seeds your component
state, renders your React components, gets the HTML created by them,
stuffs it into your React root in index.html and returns it to the browser

React boots up in Browser, realizes everything was already rendered
so has no changes (virtual DOM)

Browser React component does not need to fire off API calls because
they were already done on the server

1

Initial SSR
Branch: step-2-ssr-initial

Initial page load has
our loading indicator

Client fetches heroes from
API then renders

2

Initial SSR
Code changes

Code diff - step 1 vs step 2

Added a server script

Babel compiled

Express

React DOM Server renderToString and StaticRouter

Build prod with yarn build, then start SSR with yarn start:ssr

2

https://github.com/Zerrtech/zerrtech-react-ssr-demo/compare/step-1-normal-app...step-2-ssr-initial

Step 2 - server.js

Static files served
out of build dir

We load our Routes
under StaticRouter

instead of BrowserRouter

We grab our index.html
and stuff our HTML in

https://github.com/Zerrtech/zerrtech-react-ssr-demo/blob/b4973c9b290ae49c01efea7f3ad0c23fec05bf1b/server/server.js

Initial SSR
Review

Notice no API calls were done within SSR

The render is synchronous, makes one pass through then
returns what it has

Fact: when doing SSR, componentDidMount is not called

We need to do our API calls on the server, then seed our
state within our component so SSR can do the full page

2

SSR Server Seed
 Branch: step-3-ssr-server-seed

Data all there!

Title tag, check!

3

SSR Server Seed
Code changes

Code diff - step 2 vs step 3

Added fetching data into the server script by using a
static method on each route component

Pass the data into the component using StaticRouter
context param

Render Helmet and replace in HTML

3

https://github.com/Zerrtech/zerrtech-react-ssr-demo/compare/step-2-ssr-initial...step-3-ssr-server-seed

SSR Server Seed
Data fetching

Static method called
getInitialState() added
into Route component.
Static so it can be called
on the server easily.

Server looks for a
matching route and a
getInitialState method, if
so calls it

3

SSR Server Seed
Data fetching

We wait for API calls to
be done then add data to
context passed into
StaticRouter

Back in the Route
component, we look for
that data and merge into
state in the constructor.

staticContext is provided
by React router
withRouter()

3

SSR Server Seed
Review

OK great, but now we
are wasting our API
call on the frontend,
how do we prevent
that?

We’ll put that same
initialState in our
index.html so on the
client side, we can
also seed that data
and avoid the API call

3

SSR API
 Branch: step-4-api

Data all there! No extra API call

Title tag, check!

4

SSR API
Code changes

Code diff - step 3 vs step 4

Add a placeholder in index.html we can stuff our initial
state into

Check for this existing data in our static getInitialState()
method

Delete the data after we use it so other pages don’t use
it

4

https://github.com/Zerrtech/zerrtech-react-ssr-demo/compare/step-3-ssr-server-seed...step-4-ssr-api

SSR API
API call saving

Add a variable in
index.html

Server will stuff
initialState into that
var

HeroList
getInitialState
checks for existing
data

4

React SSR Summary

Demo of React SSR from create react app without
ejecting webpack config

Showed how to use SSR on an app that has async API
calls and dynamic title tags

Implemented where SSR is used and we also eliminate
the client side API calls for max efficiency

As good as 1999? Definitely!

Next Steps

Great opportunity to build a generic SSR React component
for Route components to inherit from

Encapsulates all that window and staticContext stuff
to make it easy on devs.

Put caching in front of SSR so that you aren’t running SSR
on the page every time

React Suspense API has high hopes to make it easier to
identify those async API calls and make SSR easier

Thanks! Connect with us!
We would love to build your next app

A Software Presentation From

Jeremy Zerr
Site: https://www.zerrtech.com

https://www.linkedin.com/in/jrzerr
https://twitter.com/jrzerr

http://www.zerrtech.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

