
AngularJS
What? How? Why?

by Jeremy Zerr
!

Blog: http://www.jeremyzerr.com
LinkedIn: http://www.linkedin.com/in/jrzerr

Twitter: http://www.twitter.com/jrzerr

http://www.jeremyzerr.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

What is AngularJS

Open Source Javascript MVVM framework.

Extend HTML vocabulary with your own elements and attributes.

Built-in HTTP and more specifically REST API communication services.

Includes its own client-side templating language.

Two-way data binding to allow the Model to be used as the source of truth.

Has client-side routing to enable creating single page apps (SPA)

Sponsored by Google, lots of contributions by Google employees, but on
Github as public repo.

Requirements

Does not require jQuery, but will use it if you have it.

Can be implemented for sub-sections of a page, so can interoperate with other
components.

Testing examples given in Jasmine and ran using Karma.

Minified is 100k, gzipped brings down to 37k (version 1.2.9). Also pretty
common to use ngResource which is 3k minified.

–Stephen R. Covey, The 7 Habits of Highly Effective
People

“…to learn and not to do is really
not to learn. To know and not to

do is really not to know.”

AngularJS Examples
First examples, then we’ll talk about the bigger picture

of why you should consider using AngularJS
in your next web app.

Starter AngularJS app

We’ll start by defining some Javascript objects in a
controller to represent our Models

Then we will display the object using AngularJS built-in
template system

Follow along with this Plunker

http://plnkr.co/edit/OF044j?p=preview

Starter AngularJS app
(templating)

This shows what AngularJS
client-side templating looks like

ng-controller provides an
identifier to link with code

ng-repeat iterates through a
variable in the controller’s
$scope

Starter AngularJS App
(controller)

The name of our app is myApp

Controller is ToddlerCtrl

We define the controller and fill
our scope up with Toddler
objects. (its just a Javascript
data structure - JSON)

What is a $scope?

$scope is the application ViewModel

It is the glue between the controller and the view.

AngularJS documentation on $scope

http://docs.angularjs.org/guide/scope

Using client-side models from
different data sources

Data sources:

Using JSON in the initial page load to pre-populate Services

Using a static JSON file

Using a REST API

We’ll build on the previous example by creating our Models using
different data sources.

Follow along with this Plunker

http://plnkr.co/edit/a6oYcW?p=preview

Using JSON in initial page
load

Assign the JSON to a variable in a <script>
tag.

Create a Service using $resource

Pass the JSON to the constructor

Using REST API & JSON file

You create a URL
template. This
identifies the object
ID field (aid)

Controller body shows
initializing data 4
different ways

With the same Adult
resource, you do a
get() to request a
single object

Templating methods

Directives + AngularJS templating allows you to create custom HTML markup, both elements
and attributes

Templating types:

We’ve already seen inline HTML

Can define within Javascript

Can include within <script> tags

Can include in an external HTML file

We’ll take our existing code, pick the local JSON file as the data source, and show a
comparison between these different templating methods.

Follow along with this Plunker

http://plnkr.co/edit/GQvU4O?p=preview

Templating method:
Javascript

Can also declare your template right in Javascript

Templating method: <script>

Template cache can be pre-loaded by including a template within <script>
tags, using a special type.

Two-way data binding

You can bind a variable in $scope to elements or inputs

You can also use a $scope variable to control which class gets
applied to an element

If the input changes its value, the underlying $scope variable also
changes.

Follow along with this Plunker

How would you have done this with jQuery + Mustache? See this
Plunker

http://plnkr.co/edit/HkSFCn?p=preview
http://plnkr.co/edit/nhalNS?p=preview

Two-way data binding:
ng-model + ng-class

To achieve 2-way data binding, you use ng-model to attach an element to
something in the $scope

As the checkbox is clicked, the underlying structure changes

The ng-class construct also applies the appropriate class as the underlying
model changes

You can also do 1-way data binding using ng-bind instead of ng-model

Watch a $scope variable

AngularJS allows us to monitor a $scope variable using
$watch

Allows you to have a callback fire whenever the value
changes

Prefer using this rather than ng-click or ng-change if possible.

Replaces jQuery click or change events.

Follow along with this Plunker

http://plnkr.co/edit/TJMlV3?p=preview

Watch a $scope variable (code)

You can use $watch on a $scope variable to hook into whenever it is changed

Client-side routing

Allows you to map URL fragments, using #, to templates and
controllers to design single page apps easier.

Perfect for perma-linking and allowing browser history to work like
the user would expect.

Uses ngRoute to accomplish this mapping of URL paths to templates
and controllers.

Similar function to a Front Controller design pattern that you would
use server-side in MVC design.

Follow along with this Plunker

http://plnkr.co/edit/OfA01d?p=preview

Client-side routing (code)

You map hash routes
to a controller and
template

#/adults is how the
path would look in the
address bar. (or #/
adults/1)

Other Notable Directives…

The AngularJS API page has a full list of directives.

ngShow and ngHide similar to jQuery .show() and .hide()

ngInclude, ngIf, ngSwitch to use a template and
manipulate the DOM based on a condition

http://docs.angularjs.org/api/

AngularJS Advanced
Now that we have the basics down

Let’s get into some more advanced topics

Interacting with a REST API

As seen in other examples, the syntax makes the
Asynchronous REST API call “appear” synchronous.

The call to query() returns an empty object, that is filled
back in when the AJAX response returns.

There are a lot of default methods provided in
ngResource, get(), query(), remove(), delete(), save().

Let’s do a $save, Follow along with this Plunker

http://plnkr.co/edit/DNFp0b?p=preview

Interacting with a REST API
(code)

Other than $watch, you have a lot of other hooks into view changes. Here we use ng-change to call a
function to issue an AJAX $save to the REST API

The argument to the Adult REST API is pulled from the $routeParams, the server is called like /adults/1.json

Creating a custom date filter

AngularJS also has the ability for you to easily create
filters.

There are some that are built-in, like currency, date,
json, lowercase, uppercase, number.

You can also extend them.

Follow along with this Plunker

http://plnkr.co/edit/spyWst?p=preview

Creating a custom date filter
(code)

The filter() method can
be used to create your
own custom filters.

Here I use $filter to
access the date filter
after parsing a custom
date string to get an
epoch time.

Structuring the Code in your
app

As you can see from the previous Plunker, this code is starting to grow
and get a bit disorganized as we have apps, services, filters, controllers,
all together.

Our goals are to create code that is testable, reusable, and easy to
maintain.

Separate your Object types into separate files. Apps, Controllers,
Services, Directives, Filters.

Use Dependency Injection to only load what you need into your Controller.

Follow along with this Plunker

http://plnkr.co/edit/rVdxnY?p=preview

Making your code capable of
being compressed/minified

You may have noticed that if you ran much of our code
through a Minification process, it wouldn’t work any more.

Why? There are lots of objects/services that AngularJS
defines that are included using Dependency Injection.
These get minified and break.

AngularJS has an additional syntax to use when declaring
objects that allows it to be minified properly.

Follow along with this Plunker

http://plnkr.co/edit/E4jqUT?p=preview

Code differences between
basic code and minifiable code

Notice the difference in syntax

How Does $watch Work

The whole $watch process is a great design pattern to follow in Web
Applications. This is generically called the Observer design pattern.

It goes along with $digest and $apply, it is a part of the $digest cycle.

When a variable changes or $apply is run, this causes the $digest
cycle to kick off and compare the variable values, previous to
current. This only happens to variables you have bind’ed to.

This part of AngularJS is likely where you are first exposed to it’s
inner workings. Why? Custom Directives!

Creating a custom directive

Let’s try and add a custom directive to save the value of
an input when the user presses enter.

We want to create our own ngEnter directive we can
attach to any input element.

Follow along with this Plunker

http://plnkr.co/edit/D8AmuC?p=preview

Creating a custom directive
ngEnter - change model on pressing

enter

You can create your
own directive that
can be used as an
attribute on an
existing element.

You can also pass
$scope parameters
to it.

Directive Best Practices

Choices to consider

Using Attribute vs. Element

Using proper HTML5/XHTML5 markup

Scope considerations for reusable code

See my blog post on AngularJS Directive Best Practices

http://jeremyzerr.com/angularjs-directive-best-practices

Directive Best Practices
(Forms of directives)

Ways to reference a
directive from within
a template.

Equivalent examples
of an attribute that
would match ng-
bind.

Directive Best Practices (cont)

Use your directive as an element name instead of attribute when you are in control of the
template

Use your directive as an attribute instead of element name when you are adding functionality
to an existing element

If you do use a directive as an element, add a prefix to all elements to avoid naming conflicts
with future HTML5 and possible integrations with other libraries.

If HTML5 validation is a requirement, you’ll be forced to use all directives as attributes with a
prefix of “data-“.

If XHTML5 validation is a requirement, same rules as HTML5 validation except need to add
“=“ and a value onto the end of attributes.

Use isolate scope where possible, but do not feel defeated if you can’t isolate the scope
because of the need to two-way data-bind to an outside scope.

What I haven’t (and won’t)
cover in detail

Form validation

Instead of ngResource, you can just use $http for lower level
control (closer to jQuery ajax/get)

Restangular

Writing tests + how the $injector works

Animations

Lots more…

http://docs.angularjs.org/api/ng.directive:form
https://github.com/mgonto/restangular
http://docs.angularjs.org/api/ngAnimate.$animate

Why Use AngularJS?
Now we know what AngularJS can do.

Why should we integrate it into our web application?

Why should you use AngularJS
in your next web app?

Encourages good web app front-end design practices

Model as the source of truth

Using classes for style not functionality

Dependency Injection core to framework to have code that is test-
ready

Use client-side objects that are similar to server-side objects

Easy to hook up to REST API to have server just providing data
and HTML

Less code to write, recall the jQuery vs. AngularJS example

Creating directives that encourage re-use and easy to be
shared with others

Easy to collaborate with other developers by using object-
oriented design principles, reusable components, and
focus on testability

Client-side templating

Does not depend on jQuery, so you don’t need to include
both.

Weaknesses of AngularJS

No server-side templating (supposedly version 2.0).

No easy way to switch out to use a different templating engine

SEO for public-facing web apps is difficult to achieve due to no server-side
templating

Using PhantomJS to create snapshots and save, then use #! in URL: link

Documentation on the AngularJS site could always be improved.

Have to be careful of over-$watching. You can watch all properties of every
object if you really want to.

It’s tough to learn. But what isn’t?

http://www.yearofmoo.com/2012/11/angularjs-and-seo.html

AngularJS vs. Backbone.js

Both have routing, REST API is easy to work with.

AngularJS is more dependent on adding directives and attributes to DOM, so you are
extending HTML.

AngularJS in general will result in less code written.

Backbone.js coding style feels more similar to back-end coding of Models. Feels more
code-heavy. Lots of extending of base classes.

AngularJS is designed to be easy to share code with the developer community. Why?
Directives! Yes, Backbone has plugins, but to me it feels easier to have something you
can drop in and attach to an element.

Two-way data binding is built into AngularJS at its core. Have to wire it up yourself in
Backbone or grab a plugin.

Backbone.js uses Underscore for templating and other
functions. Underscore can run on server-side using
node.js to generate server-side templates.

Backbone.js can also more easily switch out to use a
different templating system like Mustache which has
great server-side support.

Both are seeing similar levels of activity on Stack
Overflow.

Where do you go next?

Basic Tutorial on AngularJS site

Developer Guide on AngularJS site

ng-conf 2014 just happened, videos have been posted

Paid video-based training at egghead.io

See all the code from this presentation, and more, at My
Plunker Page

http://docs.angularjs.org/tutorial
http://docs.angularjs.org/guide/
http://ng-conf.org/
https://egghead.io/
http://plnkr.co/users/jrzerr

Thanks!
!

Jeremy Zerr
!

Blog: http://www.jeremyzerr.com
LinkedIn: http://www.linkedin.com/in/jrzerr

Twitter: http://www.twitter.com/jrzerr

http://www.jeremyzerr.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

