AngularJS

What? How? Why?
by Jeremy Zerr

HE Blog: http://www.jeremyzerr.com
in LinkedIn: http://www.linkedin.com/in/jrzerr
’ Twitter: http://www.twitter.com/jrzerr

http://www.jeremyzerr.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

e — i ——

@ What is AngularJdS

Open Source Javascript MVYVM framework.

Extend HTML vocabulary with your own elements and attributes.
Built-in HTTP and more specifically REST APl communication services.
Includes its own client-side templating language.

Two-way data binding to allow the Model to be used as the source of truth.

Has client-side routing to enable creating single page apps (SPA)

Sponsored by Google, lots of contributions by Google employees, but on
Github as public repo.

Requirements

Does not require jQuery, but will use it if you have it.

Can be implemented for sub-sections of a page, so can interoperate with other
components.

Testing examples given in Jasmine and ran using Karma.

Minified is 100Kk, gzipped brings down to 37k (version 1.2.9). Also pretty
common to use ngResource which is 3k minified.

“...to learn and not to do is really
not to learn. To know and not to

do is really not to know.”

AngularJS Examples

First examples, then we’ll talk about the bigger picture
of why you should consider using AngularJS
In your next web app.

Starter AngularJS app

We’ll start by defining some Javascript objects in a
controller to represent our Models

Then we will display the object using AngularJS built-in
template system

Follow along with this Plunker

http://plnkr.co/edit/OF044j?p=preview

Starter AngularJsS app
(templating)

<h1l>Starter Angularl]S app</hl>
<div ng-controller="ToddlerCtrl">

<hZ2>Toddlers</h2> :
<table> (1 This shows what AngularJ$S

<tr> client-side templating looks like
<th>Name</th>

<th>Birthday</th> = troll id
<th>Happy?</th> ng-controlier provides an

</tr> identifier to link with code

<tr ng-repeat="toddler in toddlers">
<td>{{toddler.name}}</td> 1 na-r t iterates thr M
<td>{{toddler.birthday}}</td> J) ePea. ki ouq i
<td>{{toddler.happy}}</td> variable in the controller’s
</tr> $scope
</table>
</div>

Starter AngularJS App
(controller)

Lo~ S WN =

// Instantiate the app, the "'myApp' parameter must
// match what 1s 1n ng-app
var myApp = angular.module('myApp', [1);

// Create the controller, the 'ToddlerCtrl' parameter
// must match an ng-controller directive

- myApp .controller('ToddlerCtrl', function ($scope) {

D o (1 The name of our app is myApp
// Define an array of Toddler objects
$scope.toddlers y[]

“name”: "Toddler One", [1 Gontroller is ToddlerCtrl
"birthday": "1/1/2011",
"happy": true

[0 We define the controller and fill
oy 252011 our scope up with Toddler
happy’ true objects. (its just a Javascript
data structure - JSON)

"name": "Toddler Three",
"birthday": "3/3/2011",
"happy": false

What is a $scope?

$scope is the application ViewModel
It is the glue between the controller and the view.

AngularJS documentation on $scope

http://docs.angularjs.org/guide/scope

e —— e ——

Using client-side models from
different data sources

Data sources:

Using JSON in the initial page load to pre-populate Services

Using a static JSON file

Using a REST API

We’ll build on the previous example by creating our Models using
different data sources.

Follow along with this Plunker

http://plnkr.co/edit/a6oYcW?p=preview

Using JSON in initial page
load

<script type="text/javascript”>
// Define an array of Toddler objects
window.toddlers = [

(1 Assign the JSON to a variable in a <script>
tag.

"name": "Toddler One",
"birthday": "1/1/2011",

"happy": true [1 Create a Service using $resource

"name": "Toddler Two",

"birthday": "2/2/2011", [1 Pass the JSON to the constructor
"happy": true

myApp . factory('Toddler', function($resource
"name": "Toddler Three", YAPP $ }’(. dc’ﬂ. . $$) {
"birthday": "3/3/2011", return $resource('toddlers.json');

"happy": false });

1;
</script> $scope.toddlers = [];
angular.forEach(window.toddlers, function (item) {
$scope.toddlers.push(new Toddler(item));

B;

- /t*
Adult 1s a service that calls a REST API
It's not really a REST API, but just calling our local .json file

as an exawle 1 You create a URL

If you call Adult.query(), it will GET adults. json
* If you call Adult.get({}, {aid: 1}) it will GET adults/1.7json i
y template. This

- myApp . factory('Adult', function($resource) { identifies the ObjECt

return $resource('adults/:adultld.json’', {adultld: '@aid'});

D; DRCNEID)

// treate the controller, the 'PersonCtrl’' parameter must
// match an ng-controller directive

- myApp.controller('PersonCtrl’', function ($scope, Toddler, Teen, Adult) { Contmller bOdy ShOWS

// Initialze Toddlers from JSON defined on initial page load II'IItIEI'IZII'Ig data 4

$scope.toddlers = []; L

angular. forEach(window. toddlers, function (item) { dlfferent WayS
$scope.toddlers.push(new Toddler(item));

s

// Teens are from static json file With the same AdUIt

$scope.teens - Teen.query(); resourCE, you do a

// Adults are from REST API

$scope.adults = Adult.query(); get() to re_qUGSt d
single object

// Example of grabbing single Adult from REST API
$scope.singleAdult = Adult.get({}, {aid: 1});

Templating methods

[1 Directives + AngularJS templating allows you to create custom HTML markup, both elements
and attributes

[1 Templating types:
[0 We’ve already seen inline HTML
1 Can define within Javascript
[0 Can include within <script> tags
[0 Can include in an external HTML file

[0 We’ll take our existing code, pick the local JSON file as the data source, and show a
comparison between these different templating methods.

[0 Follow along with this Plunker

http://plnkr.co/edit/GQvU4O?p=preview

Templating method:
Javascript

/**
* Use a javascript-based template
%/
myApp.directive('teenJavascript', function() {
return {
restrict: 'AE',
scope: {
teen: '='

¥
template: '<tr><td>{{teen.name}}</td><td>{{teen.birthday}}</td><td>{{teen.happy}}</td></tr>"
};

1)

[1 Gan also declare your template right in Javascript

Templating method: <script>

<script type="text/ng-template” charset="utf-8" id="teen-internal.html">
<tr>
<td>{{teen.name}}</td>
<td>{{teen.birthday}}</td>
<td>{{teen.happy}}</td>
</tr>
</script>

[1 Template cache can be pre-loaded by including a template within <script>
tags, using a special type.

Two-way data binding

You can bind a variable in $scope to elements or inputs

You can also use a $scope variable to control which class gets
applied to an element

If the input changes its value, the underlying $scope variable also
changes.

Follow along with this Plunker

How would you have done this with jQuery + Mustache? See this
Plunker

http://plnkr.co/edit/HkSFCn?p=preview
http://plnkr.co/edit/nhalNS?p=preview

Two-way data binding:
ng-model + ng-class

<tr ng-repeat="teen in teens" ng-class="{'happy': teen.happy, 'sad': !'teen.happy}">
<td>{{teen.name}}</td>
<td>{{teen.birthday}}</td>
<td><input type="checkbox" ng-model="teen.happy"/></td>

</tr>

To achieve 2-way data binding, you use ng-model to attach an element to
something in the $scope

As the checkbox is clicked, the underlying structure changes

The ng-class construct also applies the appropriate class as the underlying
model changes

You can also do 1-way data binding using ng-bind instead of ng-model

Watch a $scope variable

AngularJS allows us to monitor a $scope variable using
$watch

Allows you to have a callback fire whenever the value
changes

Prefer using this rather than ng-click or ng-change if possible.

Replaces jQuery click or change events.

Follow along with this Plunker

http://plnkr.co/edit/TJMlV3?p=preview

Watch a $scope variable (code)

myApp.controller('PersonCtrl', function ($scope, Adult) {
$scope.giftTotal = 0;

$scope. $watch('giftTotal', function(newVal, oldVal) {
if(newVal === oldVal) { // happens on initial $watch registration
return;

}
console.log("'New Val:' + newVal + ' Old Val:' + oldVal);

s

// Adults are from REST API (really a static json file)
$scope.adults = Adult.query();

s

[0 You can use $watch on a $scope variable to hook into whenever it is changed

Client-side routing

Allows you to map URL fragments, using #, to templates and
controllers to design single page apps easier.

Perfect for perma-linking and allowing browser history to work like
the user would expect.

Uses ngRoute to accomplish this mapping of URL paths to templates
and controllers.

Similar function to a Front Controller design pattern that you would
use server-side in MVC design.

Follow along with this Plunker

http://plnkr.co/edit/OfA01d?p=preview

Client-side routing (code)

/**
* This 1s the configuration for the routes
* Maps a URL fragment to a template and controller
>y
myApp . config(function($routeProvider) {] You map hash routes

$routeProvider. to a controller and
when('/adults', {
templateUrl: 'adult-list.html’, template
controller: 'PersonCtrl’
). :
when('/adults/:adultld’, { L1 #/adults is how t_he
templateUrl: 'adult-detail.html’, path would look in the

controller: 'PersonDetailCtrl’ address bar. (or #/
3. adults/1)

otherwise({
redirectTo: '/adults'

$)s

Other Notable Directives...

The AngularJS API page has a full list of directives.

ngShow and ngHide similar to jQuery .show() and .hide()

nginclude, nglf, ngSwitch to use a template and
manipulate the DOM based on a condition

http://docs.angularjs.org/api/

AngularJS Advanced

Now that we have the basics down
Let’s get into some more advanced topics

Interacting with a REST API

As seen in other examples, the syntax makes the

Asynchronous REST API call “appear” synchronous.

The call to query() returns an empty object, that is filled
back in when the AJAX response returns.

There are a lot of default methods provided in
ngResource, get(), query(), remove(), delete(), save().

Let’s do a $save, Follow along with this Plunker

e

http://plnkr.co/edit/DNFp0b?p=preview

Interacting with a REST API
(code)

<div>Birthday: {{adult.birthday}}</div>
<div>Happy?: <input type="checkbox" ng-model="adult.happy" ng-change="saveAdult(adult)"/></div>

/*t
* Create the controller for the detail view
* Using route it is hooked into DOM using ng-view directive
*/
myApp.controller('PersonDetailCtrl', function ($scope, $routeParams, Adult) {
$scope.adultld = $routeParams.adultld;
$scope.adult = Adult.get({}, {aid: SrouteParams.adultld});

$scope.saveAdult = function(adult) {

adult.$save();
};

[0 Other than $watch, you have a lot of other hooks into view changes. Here we use ng-change to call a
function to issue an AJAX $save to the REST API

[0 The argument to the Adult REST API is pulled from the $routeParams, the server is called like /adults/1.json

Creating a custom date filter

AngularJS also has the ability for you to easily create

filters.

There are some that are built-in, like currency, date,

json, lowercase, uppercase, number.

You can also extend them.

Follow along with this Plunker

http://plnkr.co/edit/spyWst?p=preview

Creating a custom date filter
(code)

33. /t’

34
35
36
37
38
39

We can add a custom date filter that still uses the built-in date filter
The reason for a custom filter is that our date starts off like:
mm/dd/yyyy

and not the epoch time in microseconds or other standard date format that
the date filter expects.

40 - myApp.filter(' formatDate', function($filter) {

41-
42-

43
44
45
46
47
48
49

return function (myDate) {
1f(typeof myDate === 'undefined') {
return myDate;
}
var dateTokens = myDate.split("/");
var month « parselnt(dateTokens[@]) - 1;
var day = parselnt(dateTokens[1]);
var year = parselnt(dateTokens[2]);
var jsDate = new Date(year, month, day, @, 0, 0, @);

return $filter('date')(jsDate.getTime(), 'fullDate');

(1 The filter() method can
be used to create your
own custom filters.

Here | use $filter to
access the date filter
after parsing a custom
date string to get an
epoch time.

e —— e ——

Structuring the Code in your
app

As you can see from the previous Plunker, this code is starting to grow
and get a bit disorganized as we have apps, services, filters, controllers,
all together.

Our goals are to create code that is testable, reusable, and easy to
maintain.

Separate your Object types into separate files. Apps, Controllers,
Services, Directives, Filters.

Use Dependency Injection to only load what you need into your Gontroller.

Follow along with this Plunker

http://plnkr.co/edit/rVdxnY?p=preview

e —— e ——

Making your code capable of
being compressed/minified

You may have noticed that if you ran much of our code
through a Minification process, it wouldn’t work any more.

Why? There are lots of objects/services that AngularJdS
defines that are included using Dependency Injection.
These get minified and break.

AngularJ$S has an additional syntax to use when declaring
objects that allows it to be minified properly.

Follow along with this Plunker

http://plnkr.co/edit/E4jqUT?p=preview

Code differences between
basic code and minifiable code

myControllers.controller('PersonCtrl’', function ($scope, Adult) {
$scope.adults = Adult.query();

P;

myControllers.controller('PersonCtrl’, ['$scope’, 'Adult', function ($scope, Adult) {
$scope.adults = Adult.query();

11);

[1 Notice the difference in syntax

How Does swatch Work

The whole $watch process is a great design pattern to follow in Web
Applications. This is generically called the Observer design pattern.

It goes along with $digest and $apply, it is a part of the $digest cycle.
When a variable changes or $apply is run, this causes the $digest
cycle to kick off and compare the variable values, previous to

current. This only happens to variables you have bind’ed to.

This part of AngularJs is likely where you are first exposed to it’s
inner workings. Why? Custom Directives!

Creating a custom directive

Let’s try and add a custom directive to save the value of
an input when the user presses enter.

We want to create our own ngEnter directive we can
attach to any input element.

Follow along with this Plunker

http://plnkr.co/edit/D8AmuC?p=preview

e e ee—

Creating a custom directive
ngEnter - change model on pressing
enter

* Update a $scope variable when user is in an input field

* and presses enter
* <input ng-enter="giftTotal"/> [1 You can create your

*/ own directive that
- myApp.directive('ngEnter', function() {
return function(scope, element, attrs) { can be used as an
element.bind("keydown keypress", function(event) { attribute on an
if(event.which === 13) { AH
scope. $apply(function(){ EXIStmg element.
scope[attrs.ngEnter] = element.val();

})s

You can also pass

event.preventDefault(); $sc0pe parameters

})3 to it.

Directive Best Practices

Choices to consider

Using Attribute vs. Element

Using proper HTML5/XHTML5 markup

Scope considerations for reusable code

See my blog post on AngqularJS Directive Best Practices

http://jeremyzerr.com/angularjs-directive-best-practices

e —

Directive Best Practices
(Forms of directives)

<my-dir></my-dir>
<gspan my-dir="exp">
<l== directive: my-dir exp =->

<gpan class="my-dir: exp;">

Ways to reference a
directive from within
a template.

Equivalent examples
of an attribute that
would match ng-
bind.

Directive Best Practices (cont)

Use your directive as an element name instead of attribute when you are in control of the
template

Use your directive as an attribute instead of element name when you are adding functionality
to an existing element

If you do use a directive as an element, add a prefix to all elements to avoid naming conflicts
with future HTML5 and possible integrations with other libraries.

If HTML5 validation is a requirement, you’ll be forced to use all directives as attributes with a
prefix of “data-“.

If XHTMLS validation is a requirement, same rules as HTML5 validation except need to add
“=%and a value onto the end of attributes.

Use isolate scope where possible, but do not feel defeated if you can’t isolate the scope
because of the need to two-way data-bind to an outside scope.

——

e —— e ——

What I haven’t (and won’t)
cover in detail

Form validation

Instead of ngResource, you can just use $http for lower level
control (closer to jQuery ajax/get)

Restangular

Writing tests + how the $injector works

Animations

Lots more...

http://docs.angularjs.org/api/ng.directive:form
https://github.com/mgonto/restangular
http://docs.angularjs.org/api/ngAnimate.$animate

Why Use AngularJS?

Now we know what AngularJ$S can do.
Why should we integrate it into our web application?

e —— e ——

Why should you use AngularJS
in your next web app?

Encourages good web app front-end design practices

Model as the source of truth

Using classes for style not functionality

Dependency Injection core to framework to have code that is test-
ready

Use client-side objects that are similar to server-side objects

Easy to hook up to REST API to have server just providing data
and HTML

Less code to write, recall the jQuery vs. AngulardS example

Creating directives that encourage re-use and easy to be
shared with others

Easy to collaborate with other developers by using object-
oriented design principles, reusable components, and
focus on testability

Client-side templating

Does not depend on jQuery, so you don’t need to include
both.

Weaknesses of AngulardJS

No server-side templating (supposedly version 2.0).

No easy way to switch out to use a different templating engine

SEOQ for public-facing web apps is difficult to achieve due to no server-side
templating

[0 Using PhantomJsS to create snapshots and save, then use #! in URL: lin

Documentation on the AngularJS site could always be improved.

Have to be careful of over-$watching. You can watch all properties of every
object if you really want to.

It’s tough to learn. But what isn’t?

http://www.yearofmoo.com/2012/11/angularjs-and-seo.html

AngularJS vs. Backbone.js

Both have routing, REST API is easy to work with.

AngularJS is more dependent on adding directives and attributes to DOM, so you are
extending HTML.

AngularJS in general will result in less code written.

Backbone.js coding style feels more similar to back-end coding of Models. Feels more
code-heavy. Lots of extending of base classes.

AngularJsS is designed to be easy to share code with the developer community. Why?
Directives! Yes, Backbone has plugins, but to me it feels easier to have something you
can drop in and attach to an element.

Two-way data binding is built into AngularJS at its core. Have to wire it up yourself in
Backbone or grab a plugin.

Backbone.js uses Underscore for templating and other
functions. Underscore can run on server-side using
node.Js to generate server-side templates.

Backbone.js can also more easily switch out to use a
different templating system like Mustache which has
great server-side support.

Both are seeing similar levels of activity on Stack
Overflow.

Where do you go next?

Basic Tutorial on AnqularJs site

Developer Guide on AngularJs site

ng-conf 2014 just happened, videos have been posted

Paid video-based training at egghead.io

See all the code from this presentation, and more, at My
Plunker Page

http://docs.angularjs.org/tutorial
http://docs.angularjs.org/guide/
http://ng-conf.org/
https://egghead.io/
http://plnkr.co/users/jrzerr

Thanks!

Jeremy Zerr

HE Blog: http://www.jeremyzerr.com
in LinkedIn: http://www.linkedin.com/in/jrzerr
’ Twitter: http://www.twitter.com/jrzerr

http://www.jeremyzerr.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

