
React Design Best Practices

A Software Presentation From

Josh Taylor
Site: https://www.zerrtech.com

https://www.linkedin.com/in/jj-taylor/
https://twitter.com/joshuaj_taylor

Jeremy Zerr
Site: https://www.zerrtech.com

https://www.linkedin.com/in/jrzerr
https://twitter.com/jrzerr

http://www.zerrtech.com
https://www.linkedin.com/in/jj-taylor/
https://twitter.com/joshuaj_taylor
http://www.zerrtech.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

The Plan

General Design Considerations

Project Setup/Structure

Boilerplates

Package Manager

Node Version Manager

Code style

Style approach

Folder Structure

Project Code

Use Redux

Use Babel-Polyfill

Error Handling

Version Checking

Kinds of Components

Handling Side Effects

Routers

Testing

Documenting in Code

Our Philosophy

Be practical - know the ideal but be realistic

Don’t require devs to remember a bunch of rules

Use tools that encourage education instead of
automagically fixing stuff

Don’t be so set in your ways that you ignore an option
that is the right fit for a particular project but not others 

Ways to improve code

Questions to ask yourself when fixing/refactoring code

Could I have prevented this bug from happening?

What did I do to cause this difficulty? Takes
responsibility

Learn from refactoring and do it better the first time on
the next project

Look out for code smells

Duplicated code

Large class

Too many arguments/attributes

Lines that are too long

Your linter should help grow your intuition on these so they
become second nature 

Project Setup/Structure
Best Practices

create-react-app
vs other boilerplates

The official boilerplate

Excellent documentation

Familiar to client devs

Promising future support

It’s ejectable

Use a Package manager w/ a
lock file

Lock file is required for accurate reproducibility

Old way

npm + npm shrinkwrap - manual process

New ways

npm v5.0+ now has lock file built in

yarn

Had a lock file from the beginning

Faster install w/ parallelism

Make sure lock file is committed in repository

Clearly state package manager of choice in Readme

Node Version Manager (NVM)

Not specifying the node version can cause
reproducibility issues down the road

Good practice to match production environment

Add an .nvmrc file that specifies the exact node version
in the codebase.

Code Style

Goal: Encourage code readability/consistency

Linter

Use create-react-app lint rules in .eslintrc file + additional rules.

In VS Code use “ESLint” extension to highlight broken rules (won’t show up in console)

Editor Configuration File

We use an .editorconfig file to enforce editor formatting rules, like spaces and end of line/
file newline.

In VS Code use “EditorConfig for VS Code” extension.

We don’t use auto code formatters like "prettier”

We prefer educating the developer on changes necessary to meet code style guidelines

Styles
.css files vs CSS-in-JS

We prefer CSS files over CSS-in-JS, CSS modules, or inline styles

Easier for designers to modify CSS files

No JS/React knowledge is necessary

Examples

CSS files

Styles
.css files vs CSS-in-JS

Styled components (styled-components)

Styles inline

CSS Modules

CSS Preprocessors
LESS vs SASS

We choose the one that is most popular with the libraries we use

Bootstrap v2/v3 used LESS so we have used LESS

Bootstrap v4 uses SASS so we plan to use SASS more often

Leave the generated CSS files and maps out of repo/codebase

When using “import ‘./mycomponent.css’” in components, avoid
CSS naming collisions by using a unique className on
component’s parent element

Folder Structure

All components have their own folder

Contains all related code and styles

Sub components included in folder

Put React component code in a named .js file
(.jsx is not recommended)

Stack trace and editor readability

Include related reducers, action creators,
sagas in store/

Export everything in an index.js file

Folder Structure

Why we chose this structure

It scales well

Allows for code-splitting

Locality of all related
code and styles

Project Code
Best Practices

Use Redux in most cases

We use Redux almost exclusively

One-way data flow coupled with the React virtual
DOM computations provides performant web apps

Redux + Redux Dev Tools === Awesome

Use Action Creators in Redux

Actions in Redux are objects that have a type and payload

The payload is specific to the action type

Tough to know the payload structure for a particular type of action without a
standard defined

Action Creators turn actions into functions that have a name and can be
imported

Parameters to Action Creators can be formally defined data structures using
JSDoc or Typescript. Making them easy to use across the code base

Minimizes the searching a developer has to do to use something

Use Action Creators in Redux

Here is how it looks without an action creator

Use Action Creators in Redux

Adding an action
creator creates a
standard form for

the action

Use immutable data changes
within your reducers

Use only immutable data changes within your reducers
to unlock the performance of your web app

Allows PureComponent to be used, increasing
performance

We don’t use ImmutableJS often, but we should use it
for the data structures inside Redux reducers

Use immutable data changes
within your reducers

Bad

Good

Use Babel-Polyfill

Using ES6 features can cause problems in Firefox
and Internet Explorer

Array.from, other Array methods, and some
Map methods

We choose to take the code size hit (50-60kb)
and not limit our usage of ES6 features

Babel version can only be changed if we eject
create-react-app

$ yarn add babel-polyfill

Error Handling

We transform common Errors to be more descriptive

For example, we transform 401 Unauthorized into a
custom UnauthorizedError and re-throw it

Error-dependent code is easier to read

Abstracts the response checking logic to a central
location.

Error Handling: Example

Error Handling - Sentry

Send unhandled errors to a monitoring service

We use Sentry

Own your errors. Be aware of them. Fix them!

Sentry can also include redux state and action history

raven-js is the official Sentry npm package

raven-for-redux is the redux integration npm package we
prefer

Version Checking

Problem

What if your users are still using an old version of
your SPA because they haven’t refreshed in a week?

How do they get your newest code?

Version Checking

Solution - Track the running and released versions

Prompt user to refresh or force a reload on old version

Released version - track using a JSON file in the
codebase

We use public/manifest.json

Running version - Fetch the JSON file on initial load

Version Checking

Periodically fetch the JSON version file to compare versions

Trigger on user interactions, on route changes, and/or at intervals

Make sure the JSON file and index.js are never cached

Add randomly generated garbage to the URL like /manifest.json?t=28239828282

An alternative - backend tracks the released frontend version and compares on API
requests

Why we choose to compare on the frontend

No extra database/redis read

Don’t have to update/release backend on every frontend change

Function vs Class

Choose Functions when possible

Pros - simpler, easier to understand, more memory
efficient, easier to test

Cons - Lack lifecycle methods and state.

Dumb vs Smart

Dumb/presentational components present stuff, generally
should be pure components.

Smart/container components manipulate/provide data to
other components

When possible decouple data handling from the markup
by creating dumb components

Allows using dumb components with multiple smart
components

Dumb vs Smart

PureComponent vs
Component

Use PureComponent when possible

Only re-renders when data has changed.

Works great with immutable data

Improves performance, prevents unnecessary re-
renders

Easy to add - one line modified

PureComponent vs
Component

Only line 2 changed
The big change happens in shouldComponentUpdate()

Returns True by default
PureComponent overrides this with a shallow compare

Side effects
Thunks vs Sagas vs Epics

Side effects = async API calls

Thunks (redux-thunk)

Simple, but lack flexibility

Sagas (redux-saga)

Flexibility - taking actions when you want

Fit into redux flow well

Epics (redux-epic)

Flexible

Streams can add complexity

We choose Sagas/Epics over Thunks for added flexibility/features

Routers - History

React Router was the first go-to routing solution.

Redux introduced separate application and routing state

react-router-redux introduced the concept of multiple sources of
props where state was split between redux and within the URL

Redux Little Router took the React Router philosophy but moved
routing state into Redux’ application state.

Redux-First Router took it another step by removing routing
components: <Route /> and <Fragment />

React Router

We have used this in past
projects (even with Redux)

Obvious choice for
applications not using
Redux.

Redux Little Router

Good alternative to
React Router if Redux-
First Router didn’t exist

Redux-First Router

Our preference w/ Redux

Fits seamlessly into the Redux store

Trigger side effects on specific route
changes

Every route change has a different
action type (compared to Redux Little
Router’s single action type)

History of a user’s route changes

We use action creators to do stuff like
goHome() or goVideoDetail(video_id)

Testing

No opinion on libraries

create-react-app comes with Jest

How much testing is good enough?

100%!! But that’s never practical/realistic

Prioritize

Complex code

“Popular” code

Low-hanging fruit

Tests for bug fixes

100% Test Coverage!

Documentation in Code

PropTypes (prop-types)

Can prevent logic errors

Documents in simple, readable code

defaultProps

Set defaults in a standard way

Evaluated by PropTypes

Override defaults by passing ‘null’

Documentation in Code

Typescript

Overkill on most smaller projects

Factor in client’s technical abilities

Easier dev on-boarding on large projects

@types can be missing for some libraries

Our friend “any” has come to the rescue many times.

JSDoc

Alternative to TypeScript

VS Code supports JSDoc

Most common standard for documenting JS code

Q&A

Those are our opinions - what are yours?

What did we miss?

Thanks! Connect with us!
We would love to build your next app

A Software Presentation From

Josh Taylor
Site: https://www.zerrtech.com

https://www.linkedin.com/in/jj-taylor/
https://twitter.com/joshuaj_taylor

Jeremy Zerr
Site: https://www.zerrtech.com

https://www.linkedin.com/in/jrzerr
https://twitter.com/jrzerr

http://www.zerrtech.com
https://www.linkedin.com/in/jj-taylor/
https://twitter.com/joshuaj_taylor
http://www.zerrtech.com
http://www.linkedin.com/in/jrzerr
http://www.twitter.com/jrzerr

