
Understanding
Automated Incident
Response for SREs

© ServiceNow, Inc. All rights reserved. Lightstep is the trademark of Lightstep, Inc., a ServiceNow company.

Understanding Automated Incident
Response for SREs .03

Barriers to Site Reliability
Engineering Incident Response .04

Too much data .04

Application complexity .05

Collaboration challenges .06

Painful postmortems .06

Overcoming Barriers with Automation .07

Diving into data .07

Taming complexity .08

Collaborating effectively .08

Painless postmortems .09

Next Steps .10

Understanding Automated Incident Response for SREs

Table of Contents

Understanding
Automated Incident
Response for SREs
Site Reliability Engineers (SREs) have one of
the most demanding jobs in the DevOps world.
Modern enterprises depend on applications and
software services to keep their businesses running.
Errors, slowdowns, and outages are costly. So when
incidents occur, we must resolve them immediately.
Unfortunately, the incident resolution isn’t always
straightforward.

Over the past decade, most enterprises have
undertaken digital transformation initiatives
to help them respond more quickly to changes
in the marketplace. These initiatives frequently
replaced monolithic apps running on-premises with
containerized apps and microservices deployed
 in the cloud.

Distributed microservice architectures help
enterprises adapt quickly to changing business
needs. However, microservices also can make
incidents more difficult to resolve. Debugging
applications based on microservices is a complex
process that involves understanding alerts,
assembling data to understand the situation,
analyzing that data, and taking manual
or automated actions to remedy the situation.

Often, essential parts of the incident resolution
are far too manual and repetitive. At this point,
however, the day to day work of SREs has
become better understood and a new generation
of intelligent incident response tooling is rapidly
increasing automation across the board. This paper
reviews how this increased level of automation
is transforming the way that SREs do their jobs.

 Monolithic Architecture Microservices Architecture

User Interface

Business Layer

Data Interface

04Understanding Automated Incident Response for SREs

Barriers to Site Reliability
Engineering Incident Response

Let’s start by examining the challenges we face that can be improved with
automation. Then, for each challenge, we’ll explore how an automated incident
response platform can help us respond to incidents more quickly and reduce
mean time to resolution (MTTR).

 Too much data

SREs need as much meaningful data as possible
about application and service performance
to diagnose an incident’s cause and begin
resolution. The challenge facing most SREs
is that an overwhelming level of data is available
when an alert is raised. For example, a typical
microservice-centric app might store:

՘	 Logs in Elasticsearch

՘	 Distributed tracing data in Jaeger
or OpenTelemetry

՘	 Kubernetes performance data in Prometheus

՘	 Application Performance Monitoring (APM)
information in Dynatrace or Datadog

And that information is just a start. Not only
do enterprise applications generate many types
of data, but they also generate a staggering
amount of data types that could help SREs
determine an incident’s cause in the real world
— if we had time to sift through all of it.

The catch is that it’s difficult to separate signal
from noise. An SRE trying to resolve an incident
doesn’t always have time to sift through multiple
data sources to determine what went wrong.
Even worse, each monitoring system might send
a separate alert when an incident occurs, forcing
us to spend valuable time ensuring that all warnings
we see are related to the same incident.

We need a way to ingest all our monitoring,
tracing, and performance data and automatically
correlate it when an incident occurs. This automated
correlation ensures we have a complete view
of every incident’s root causes and helps
us reduce MTTR.

 Application complexity

While microservices typically make it easier
to debug a problem with an individual service,
they often add complexity when it comes to
a collection of applications that share a portfolio
of reusable microservices. Tracking down exactly
where an incident-triggering glitch happened
in a monolith was hard enough. But, if developers
split a monolith into twelve microservices, each with
a separate database, our job as SREs becomes more
difficult. Instead of one application that can trigger
alerts to wake us up at 2 AM, we now have a dozen
that may depend on each other in complex ways.

Microservices themselves aren’t our only worry.
Every point of communication between two
microservices represents a potential point of failure.
What was once a failsafe and speedy method call
inside a monolith can now fail or slow down due to
a network outage or Kubernetes misconfiguration.

If that weren’t enough, when SREs get an alert about
a problem with a microservice, we can’t be sure
there’s anything wrong with the service triggering the
alert. For example, a microservice-based application
might call on several microservices to serve a single
web request — and each of those services might call
several other services, and so on.

We could get an alert about a service that’s
down due to a problem in a downstream service.
But that’s not always obvious, so we may waste
time digging through logs and APM data before
we realize the problem is in another service that’s
a different SRE’s responsibility.

Wouldn’t it be nice if we had an automated system
to show us all services that an incident impacts to
help us pinpoint the problem’s cause?

06Understanding Automated Incident Response for SREs

 Collaboration challenges

SREs don’t operate in a vacuum. We usually need to
bring in other responders to help resolve incidents.
But when an incident is ongoing, we typically don’t
want to waste time browsing the company directory
or	frantically	CTRL+F-ing	through	an	incident	
response plan, trying to figure out who to contact.

It doesn’t get any easier after notifying the response
team. Once all responders have acknowledged the
incident, the team needs a way to communicate.
Without an up-front plan, incident response teams
must improvise.

Some coordinate via email. Others fire up 1:1 Slack
chats. Or, one incident responder might set up
a Slack channel and invite the other responders.
While these ad-hoc communication approaches
do work, they all require manual intervention and
waste precious time.

 Painful postmortems

SREs are busy. After we’ve solved a problem,
we’d like to forget about it and focus on the rest
of our work — or go back to enjoying our weekend
if an incident happened while we were on-call.

But the incident response doesn’t stop when the
incident resolves. As SREs, we have a professional
obligation to conduct an incident postmortem.
Incidents that impact site availability are never
good, but they can still provide lasting value.
We can take what we’ve learned while diagnosing
and resolving every incident and use that information
to develop a plan to prevent similar incidents from
happening again.

Unfortunately, postmortems can be more painful
than we’d like. A proper postmortem requires
specific, detailed information, including:

՘	 What triggered the incident

՘	 When the incident trigger(s) occurred

Time spent figuring out how to communicate
is time not spent resolving the incident.

If that weren’t enough, incident response teams
must also inform business stakeholders if an
incident is severe enough. These stakeholders
then need to field questions from customers and
executives who want to know what’s happening.

As SREs, we’d prefer to spend our time solving
an incident’s technical causes. We’re not hermits.
We enjoy interacting with our colleagues.
That said, during an incident, we best spend our
time attacking the incident’s technical cause.

We’d rather not spend our time pinging incident
responders via email or Slack. And we’d do anything
to avoid drive-by requests for resolution ETA from
frustrated executives. Ideally, we’d like automated
systems to notify incident responders and ensure
they’re taking action.

՘	 A list of impacted services

՘	 When responders were notified

՘	 What resolution actions responders performed

՘	 When responders performed each
resolution action

՘	 When the incident resolved

While we can reconstruct all of this after the fact,
it’s time-consuming and tedious. It’s the very
definition of toil. Time spent manually dredging
up incident data doesn’t add value to a postmortem.
If we could automate these manual steps, we’d be
able to spend more time on the most valuable parts
of every postmortem:

՘	 Incident impact assessment

՘	 Analysis of what went right, what went wrong,
where we got lucky, and lessons learned

՘	 A list of action items to prevent incident recurrence

07Understanding Automated Incident Response for SREs

Overcoming Barriers with Automation

Now that we’ve clarified how manual toil slows us down, let’s talk and end-to-end walk
through the workflow automation that tools like Lightstep Incident Response offer.

We’ll first see a summary Lightstep built from the
data all of our monitoring tools supplied. We’ll see
which data source triggered the alert, which service
it applies to, and what kind of problem is occurring.

From there, we can drill down into each data source
to find out more about what’s going wrong with
the service that triggered the alert. The first order
of business when we receive a notification is to
ensure it represents an actual problem. Automation
can help us here too. Lightstep, for example, will
automatically correlate information from all data
sources relevant to the alert — so we don’t need
to search for it. Instead, we can quickly gather data
on the alert trigger, whether an elevated error rate,
increased latency, or a complete outage.

Once we’re confident the alert is not a false alarm,
we can promote it to an incident and get the ball
rolling on incident resolution.

 Diving into data

It all starts with data. We discussed the problem
— too much data from disparate services
writing performance metrics and logs to multiple
monitoring systems, with each system triggering
its own alerts. The trouble is that SREs don’t want
numerous overlapping warnings — they just lead
to confusion and alert fatigue.

Incident response automation platforms like
Lightstep help us solve data overload by talking
to all the observability tools monitoring our
services, such as Datadog, New Relic and
Prometheus. As a result, we can centralize alerts
in one place. When errors occur, we’ll hear about
it once — in a single notification from Lightstep —
instead of hearing about it ad nauseam from every
monitoring tool we use.

But that’s just the start. When we receive a mobile
alert from Lightstep, we can acknowledge it right
from our mobile device then switch over to desktop
to investigate the incident in depth.

Centralize alerts
in one place

Mobile alert
from Lightstep

Investigate the
incident in depth

Incident
resolution

08Understanding Automated Incident Response for SREs

 Taming complexity

Once we’ve triggered an incident, the SRE
managing the incident must determine how
widespread the problem is. Earlier, we covered
the complexity microservices can introduce.
Any service involved in an incident likely has
upstream services that depend on it and
downstream services that it depends on.

Resolving the incident that we’re working on
depends on understanding its full scope. Tools like
Lightstep Incident Response automatically show
us a high-level view of how many other services
our incident is impacting. If the problem is limited
to the service triggering the alert responsible for
our incident, we can notify our response team and
begin working on remediation immediately.

If, however, we see that the problem has started to
cascade to other services, we may want to increase

our incident’s severity level, sound the alarm,
and start bringing in other SREs and response
teams to help manage the situation.

On the other hand, we might find that a problem
in an upstream service (that our service depends
on) causes our incident. In that case, after we’ve
verified that the team responsible for the upstream
service is working on a solution, we may have
to “hurry up and wait” until the upstream incident
team fixes the problem. Once the upstream service
is working correctly, we can monitor our service
to ensure it recovers gracefully.

Whatever the incident’s ultimate cause, automated
access to a high-level view of the incident’s scope
ensures we minimize incident resolution time
because we don’t over- or under-react.

 Collaborating effectively

Although we usually serve as incident response
quarterbacks, we rarely solve incidents on our own.
Anything small enough for an SRE to fix in a minute
or two without assistance probably isn’t large
enough to qualify as an incident.

Incidents tend to be significant, business-impacting
events, meaning we must pull in a team of incident
responders immediately. We’d rather not do this
manually because, at a minimum, we’ll need to find
a developer who’s familiar with the service. We also
want someone to handle communications from
business stakeholders.

Automated on-call management helps us quickly
spin up our incident response team by telling us
exactly who is on-call to respond to an incident with
the impacted service. We can then alert every team
member by any means necessary — email, SMS
message, voice calls — whatever it takes.

Effective incident response automation tools like
Lightstep can handle these notifications for us
so we can devote our time to reducing incident
resolution time. We can even set up escalation
policies, so if a member of the incident team fails
to respond within a certain timeframe, Lightstep
automatically notifies that responder’s backup.

Once all responders are online, they need a way
to communicate. Enabling inter-team comms
shouldn’t require any extra work: Lightstep can
automatically create a Slack or Teams channel for
the incident and invite all members of the response
team. As with everything else we automate,
communications automation leads to faster
incident resolution because we’re not wasting
time on administrative busywork.

Understanding Automated Incident Response for SREs

After we’ve pulled in an incident responder to handle
communications with business stakeholders like
product managers, VPs, and other executives,
an ideal incident response automation tool should
notify these stakeholders automatically, so they’ll
know we’re aware of the incident and are working
on a resolution. This notification is precisely
what Lightstep and other incident management

automation tooling do, ensuring that SREs are free
to spend more time on incident resolution and less
time taking flak from stakeholders.

After we’ve finished analyzing data and taken steps
to resolve the incident, we can use automated tools
to let all stakeholders know we resolved the incident
and everything is back to normal.

 Painless postmortems

Although postmortems can be painful, good SRE
teams don’t shy away from them. And with a bit
of help from automation, postmortems don’t need
to be painful at all.

Let’s consider all the data we’ll need to construct
an incident timeline for our postmortem. An ideal
incident response platform should automatically
compile timeline data. Fortunately, that’s precisely
what Lightstep does. This automatic compilation
frees up our time so we can devote it to the most
valuable aspects of the postmortem.

With data gathering and compilation off our plate,
we can apply our SRE knowledge and experience
to determine the incident’s overall impact. Then,
we can document what we learned as a team and
develop action items the organization should follow
to prevent a recurrence of the incident.

Automation also helps us fulfill another fundamental
tenet of good SRE practice: blameless postmortems.
It’s easy to avoid blatantly biased postmortems that
say things like, “the outage is Joe’s fault because
he deleted all data from the production database.”
It’s more challenging, though, to avoid subtleties
like confirmation bias — a bias that makes us more
likely to notice data that supports what we already
thought the incident’s root causes were and less
likely to notice data that invalidates our hypothesis.

By using Lightstep to provide a clear, unambiguous
record of events and timelines throughout an incident’s
lifecycle, we don’t need to rely on memory or worry
about unconscious bias. In relying on our incident
response platform to attach all relevant data to the
postmortem, we can focus on understanding what
went wrong to ensure we produce clear, blame-free
postmortems that educate our SRE peers.

00Focusing SRE Incident Response Through Automation

Next Steps
We know from experience that incident management
is no walk in the park — and we’re okay with that.
As SREs, we’re proud of the work we do to keep
apps and services running smoothly.

Without a doubt, incident management can be
complex. We’ve seen many parts of the incident
resolution process where SREs can spin their
wheels on toil instead of staying laser-focused
on problem-solving.

But there’s no need to make incidents more
complicated than necessary! Automation —
particularly the sophisticated automation we get
from Lightstep Incident Response— lets us skip
low-value activities to focus our time and talent
on solving incidents as quickly as possible.

If you’re ready to see
what automation can
do for your SRE workflow,
why not give Lightstep
Incident Response a try?

00Focusing SRE Incident Response Through Automation

See it for yourself

© ServiceNow, Inc. All rights reserved. Lightstep is the trademark of Lightstep, Inc., a ServiceNow company.

Contact us | Follow us

lightstep.com/incident-response/

https://twitter.com/LightstepHQ
https://go.lightstep.com/contact.html
https://www.linkedin.com/company/lightstep/
https://lightstep.com/incident-response/
https://www.youtube.com/channel/UCTrVTDpZTRz-KA5WMJfniUA

