
How to outsmart time 🧠🕒
Building futuristic JavaScript applications using Temporal

Ujjwal Sharma (@ryzokuken)
 HolyJS Piter, April 2021

About me 👦
● Ujjwal Sharma (@ryzokuken)

● Compilers Hacker at Igalia
● TC39 Delegate

● Temporal Champion

● Node.js Core Collaborator

● V8 Contributor

● International Speaker

Recap 🔙
● Date severely outdated, has serious issues.
● Popular third party libraries for date/time handling.
● Quite a few problems exist, need to do something.
● Temporal: state-of-the-art date/time handling in JS.
● Ergonomic API with special focus on common use-cases.
● Powerful feature set accommodating complex use-cases.

○ Calendar Support
○ Custom Time Zones and Calendars

Temporal is now Stage 3! 🎉

What does that mean? 🤔
● All the tiny details have been discussed.

● The specification text has been approved.

● The committee is satisfied with the design.

● Time to start implementing and using Temporal.

● Polyfill implementations.

● Browser implementations.

Stage Process ⚙

● Stage 0: Strawperson
○ Just an idea

● Stage 1: Proposal
○ Describe shape of solution

○ Identify potential blockers

Stage Process ⚙

● Stage 2: Draft
○ Describe precise syntactic and semantic details

● Stage 3: Candidate
○ Further feedback from implementations and users

● Stage 4: Finished
○ Tested and ready for addition to the standard

What changed? 😯
● Absolute renamed to Instant.
● DateTime and friends prefixed with “Plain”.
● ZonedDateTime! ✨
● New functionality like rounding.
● Improved ergonomics.
● Various cleanups and bugfixes.
● No more subclassing.

Summary

● Instant and Plain* types work as previously talked about.

● ZonedDateTime is the combination of an Instant and a TimeZone.

● All arithmetic operations are done using Durations.

● TimeZones are used in ZDT primarily, direct conversion removed.

● Calendars are used for Date and all supersets.

● All other features could be added in a v2 proposal.

● ISO8601/RFC3339 old and limited.

● Ad-hoc formats with additional time zone.

● Need to also add calendar into the mix.

● The need for a generalized extension format.

● The need to standardize.

● Working through the standards process.

draft-ryzokuken-datetime-extended 📜

ISO? IETF? RFC?

● ISO = International Organization for Standardization
○ ISO 8601

○ ISO/TC 154/WG 5

○ CalConnect

● IETF = Internet Engineering Task Force

● RFC = Request for Comments

● I-D = Individual Draft

Let’s make an invoice calculator! 🖩

Step 1: Pick a date-time picker

● Pick a date-time picker component that fits rendering strategy.

● Should return an ISO-8601 string.
○ Should return a Temporal type?

● There are already many you can pick from!
○ react-datetime-picker (React)

○ datetimepicker (jQuery)

Temporal.PlainDateTime.from(myString)

Step 3: Two date-times? Find the difference!

● When you have a start point and and end point, you can find the difference.

● Durations can be both positive and negative, direction is important!
○ Note when adding durations especially.

○ Also especially when dealing with money!

● You can check the sign with duration.sign

● You can find the absolute value by duration.abs()

Step 3: Two date-times? Find the difference!

const earlier = Temporal.Instant.from('2020-01-09T00:00Z');
const later = Temporal.Instant.from('2020-01-09T04:00Z');

const result = later.since(earlier, {
 largestUnit: 'hours'
}); // 'PT4H'

const result2 = earlier.until(later, {
 largestUnit: 'minutes'
}); // 'PT240M'

Step 4: Find out how much you worked!

● Once you have an array of durations, you can add all of them together.
● durations.reduce(

 (total, current) => total.add(current),
 new Temporal.Duration()
);

● const total = Temporal.Duration.from(‘PT0S’);
durations.forEach(duration => total.add(duration));

● Remember to call abs() if you need to!

Duration Interchange Format

● Temporal.Duration.from({
 years: 1, months: 2, weeks: 3, days: 4,
 hours: 5, minutes: 6, seconds: 7})
.toString(); // 'P1Y2M3W4DT5H6M7S'

● Can use fractions! (careful)

Step 5a: 💸 by the hour

● Depending on the contract, you might want to charge per day or per hour.
● The math is easy! In fact, it’s built into Temporal.
● For bringing things to a single unit, just use total(...).

// How many 24-hour days is 1,000,000 seconds?

d = Temporal.Duration.from(‘PT1000000S’);

d.total({ unit: ‘hours’ }); // 277.77777777777777

Step 5b: Relativity is important!

// Find totals in months, with and without taking DST into account
d = Temporal.Duration.from({ hours: 2756 });
d.total({
 relativeTo: '2020-01-01T00:00+01:00[Europe/Rome]',
 unit: 'months'
}); // => 3.7958333333333334
d.total({
 unit: 'months',
 relativeTo: '2020-01-01'
}); // => 3.7944444444444443

Step 5c: Rounding for the win!

● The final value can be rounded up or down, depending on the contract.
● Sometimes you don’t charge by a “X”, but rather “n Xs”.
● round(...) to the rescue!

d = Temporal.Duration.from({ minutes: 6 });
d.round({
 smallestUnit: 'minutes',
 roundingIncrement: 5,
 roundingMode: 'ceil' }); // => PT10M

Step 6: Profit 💰

Assignment Time 📋

Links to the future (and present) 🔗
● Polyfill

● V8 tracking issue

● SpiderMonkey tracking issue

● JavaScriptCore tracking issue

● core-js tracking issue

● Temporal v2

https://www.npmjs.com/package/proposal-temporal
https://bugs.chromium.org/p/v8/issues/detail?id=11544
https://bugzilla.mozilla.org/show_bug.cgi?id=1519167
https://bugs.webkit.org/show_bug.cgi?id=223166
https://github.com/zloirock/core-js/issues/365
https://github.com/js-temporal/proposal-temporal-v2

Special Thanks 🙏
● Temporal Champions

● Moment.js Maintainers

● Temporal Stage 3 Reviewers

● ECMA 262 Editors

● HolyJS Organizers and PC

спасибо!
❤🕒

