
React Loadable:
Code Splitting with Server Side Rendering

About me

● Former Senior Frontend Developer at Oppex

● Tech Lead at Toughbyte Ltd

● React

● github.com/northerneyes

● medium.com/@northerneyes

● twitter.com/nordfinn

Agenda

● Problem statement

● Code-Splitting

● Server Side Rendering

● Code-Splitting + Server Side Rendering

● Universal Data Fetching

Big applications

Loading time is big

Why is it
important?

Usability

Performance

HTTP2

Solution: Code Splitting

What is it?

Instruments:

&

Demo

Route-based splitting vs
Component-based splitting

We can do better

Component-based splitting

What is advantage?

More places to split apart our app:

● Modals

● Tabs

● Some hidden content

● And many more UI

But you can use routing as well

React Loadable

What is React Loadable?

Small library created by
@thejameskyle

Loadable is Higher-Order
Component (HoC)

Example

import AnotherComponent from './another-component';

class MyComponent extends React.Component {

 render() {

 return <AnotherComponent/>;

 }

}

AnotherComponent
being imported synchronously via
import

Let’s make it loaded asynchronously

class MyComponent extends React.Component {
 state = {
 AnotherComponent: null
 };

 componentWillMount() {
 import('./another-component').then(AnotherComponent => {
 this.setState({ AnotherComponent });
 });
 }

 render() {
 let {AnotherComponent} = this.state;
 if (!AnotherComponent) {
 return <div>Loading...</div>;
 } else {
 return <AnotherComponent/>;
 };
 }
}

A bunch of manual work

Loadable is simple

Loadable

import Loadable from 'react-loadable';

function MyLoadingComponent() {
 return <div>Loading...</div>;
}

const LoadableAnotherComponent = Loadable({
 loader: () => import('./another-component'),
 LoadingComponent: MyLoadingComponent
});

class MyComponent extends React.Component {
 render() {
 return <LoadableAnotherComponent/>;
 }
}

What about error handling?

Error handling is simple

function MyLoadingComponent({ error }) {

 if (error) {

 return <div>Error!</div>;

 } else {

 return <div>Loading...</div>;

 }

}

Automatic code-splitting on import()

Thanks to

Demo

Avoiding Flash Of Loading Component

Do you remember the first slide?

Avoiding Flash Of Loading Component

export default function MyLoadingComponent({ error, pastDelay }) {

 if (error) {

 return <div>Error!</div>;

 } else if (pastDelay) {

 return <div>Loading...</div>;

 } else {

 return null;

 }

}

Easy to change delay parameter

Loadable({

 loader: () => import('./another-component'),

 LoadingComponent: MyLoadingComponent,

 delay: 300

});

What else we can do?

What about Preloading ?

Preloading

let LoadableMyComponent = Loadable({
 loader: () => import('./another-component'),
 LoadingComponent: MyLoadingComponent,
});

class MyComponent extends React.Component {
 state = { showComponent: false };

 onClick = () => {
 this.setState({ showComponent: true });
 };

 onMouseOver = () => {
 LoadableMyComponent.preload();
 };

 render() {
 return (
 <div>
 <button onClick={this.onClick} onMouseOver={this.onMouseOver}>
 Show loadable component
 </button>
 {this.state.showComponent && <LoadableMyComponent/>}
 </div>
)
 }
}

Server Side Rendering

What is Isomorphic Rendering?

Rendering the web app on server and sending the complete
HTML to the client.

The client creates the HTML in memory(Virtual Dom),
checks if there are changes and re-renders the page on
client.

Advantages

Better UX as user gets the complete page on first hit to the
server.

Everybody like this picture :)

Better SEO as the bots can easily index the pages

Let’s make google happy

Server Side Rendering with React
is easy

React Server Rendering

import ReactDOMServer from 'react-dom/server';

ReactDOMServer.renderToString(
 <Provider store={store}>
 <StaticRouter location={req.url} context={{}}>
 <App />
 </StaticRouter>
 </Provider>,
);

Code-splitting + Server rendering

From react-router page:

We’ve tried and failed a couple of times. What we learned:

❏ You need synchronous module resolution on the server so you can get
those bundles in the initial render.

❏ You need to load all the bundles in the client that were involved in the
server render before rendering so that the client render is the same as the
server render. (The trickiest part, I think its possible but this is where I gave
up.)

❏ You need asynchronous resolution for the rest of the client app’s life.

How we can solve these problems?

Let’s go back to React Loadable

Loadable

import Loadable from 'react-loadable';

function MyLoadingComponent() {
 return <div>Loading...</div>;
}

const LoadableAnotherComponent = Loadable({
 loader: () => import('./another-component'),
 LoadingComponent: MyLoadingComponent
});

class MyComponent extends React.Component {
 render() {
 return <LoadableAnotherComponent/>;
 }
}

From react-router page:

We’ve tried and failed a couple of times. What we learned:

❏ You need synchronous module resolution on the server so you can get
those bundles in the initial render.

❏ You need to load all the bundles in the client that were involved in the
server render before rendering so that the client render is the same as the
server render. (The trickiest part, I think its possible but this is where I gave
up.)

✔ You need asynchronous resolution for the rest of the client app’s life.

From react-router page:

We’ve tried and failed a couple of times. What we learned:

❏ You need synchronous module resolution on the server so you can get
those bundles in the initial render.

❏ You need to load all the bundles in the client that were involved in the
server render before rendering so that the client render is the same as the
server render. (The trickiest part, I think its possible but this is where I gave
up.)

✔ You need asynchronous resolution for the rest of the client app’s life.

Synchronous module resolution on the
server

Synchronous loading for the server

import path from 'path';

const LoadableAnotherComponent = Loadable({

 loader: () => import('./another-component'),

 LoadingComponent: MyLoadingComponent,

 delay: 200,

 serverSideRequirePath: path.join(__dirname, './another-component')

});

From react-router page:

We’ve tried and failed a couple of times. What we learned:

✔ You need synchronous module resolution on the server so you can get
those bundles in the initial render.

❏ You need to load all the bundles in the client that were involved in the
server render before rendering so that the client render is the same as the
server render. (The trickiest part, I think its possible but this is where I gave
up.)

✔ You need asynchronous resolution for the rest of the client app’s life.

From react-router page:

We’ve tried and failed a couple of times. What we learned:

✔ You need synchronous module resolution on the server so you can get
those bundles in the initial render.

❏ You need to load all the bundles in the client that were involved in the
server render before rendering so that the client render is the same as the
server render. (The trickiest part, I think its possible but this is where I gave
up.)

✔ You need asynchronous resolution for the rest of the client app’s life.

Yes, This is the most complicated

We need 2 things

webpack --json > output-webpack-stats.json

Webpack stats about our bundle

let webpackStats = require('./output-webpack-stats.json');

let modules = {};

let bundles = {};

webpackStats.modules.forEach(module => {

 let parts = module.identifier.split('!');

 let filePath = parts[parts.length - 1];

 modules[filePath] = module.chunks;

});

webpackStats.chunks.forEach(chunk => {

 bundles[chunk.id] = chunk.files;

});

And special function flushServerSideRequires from react-loadable

import {flushServerSideRequires} from 'react-loadable';

let app = ReactDOMServer.renderToString(<App/>);

let requires = flushServerSideRequires();

let scripts = ['bundle-main.js'];

requires.forEach(file => {

 let matchedBundles = modules[file + '.js'];

 matchedBundles.forEach(bundle => {

 bundles[bundle].forEach(script => {

 scripts.unshift(script);

 });

 });

});

And the result

 res.send(`

 <!doctype html>

 <html>

 <head>

 <meta charset="utf-8">

 <title>react-loadable-example</title>

 </head>

 <body>

 <div id="root">${app}</div>

 ${scripts.map(script => {

 return `<script type="text/javascript" src="scripts/${script}"></script>`

 }).join('\n')}

 </body>

 </html>

 `)

})

Demo

Universal Data Fetching (Redux)

Fetching is simple

class News extends React.Component {

 constructor(props) {

 super(props);

 props.getNews();

 }

 render() {

 const { items } = this.props.news;

 return (

);

 }

}

High order function

export default function fetch(fn) {
 return (WrappedComponent) => {
 class FetchOnLoad extends React.Component {
 constructor(props) {
 fn(this.context.store);
 }

 render() {
 return (
 <WrappedComponent {...this.props} />
);
 }
 }

 return FetchOnLoad;
 };
}

But constructor is called both on
server and client

Let’s change it

export default function fetch(fn) {
 return (WrappedComponent) => {
 class FetchOnLoad extends React.Component {
 componentDidMount(props) {
 fn(this.context.store);
 }

 render() {
 return (
 <WrappedComponent {...this.props} />
);
 }
 }

 FetchOnLoad.fetch = fn;

 return FetchOnLoad;
 };
}

On the server

components.filter(component => Boolean(component && component.fetch))

 .map(component => component.fetch(store))

The problem to have information
about these components

The solution is simple: let’s avoid
dealing with components at all

Universal fetch

export default function fetch(fn) {
 const fetch = props => store => fn(store, props)

 return (WrappedComponent) => {
 class FetchOnLoad extends React.Component {

 constructor(props, context) {
 super(props);
 if (context.fetches) {
 context.fetches.push(fetch(props));
 }
 }

 componentDidMount() {
 if (!window.__INITIAL_STATE__) {
 fn(this.context.store, this.props);
 }
 }

 render() {
 return (
 <WrappedComponent {...this.props} />
);
 }
 }
 return FetchOnLoad
 ...

On the server

function renderApp(store, req, fetches) {
 return ReactDOMServer.renderToString(
 <Provider store={store}>
 <FetchProvider fetches={fetches}>
 <App />
 </FetchProvider>
 </Provider>,
);
}

...
// First render to collect all fetches
const fetches = [];
renderApp(store, req, fetches);

const promises = fetches.map(fetch => fetch(store));
await Promise.all(promises);

FetchProvider

export default class FetchProvider extends React.Component {
 getChildContext() {
 return {
 fetches: this.props.fetches
 };
 }

 render() {
 return this.props.children;
 }
}

FetchProvider.propTypes = {
 children: PropTypes.node.isRequired,
 fetches: PropTypes.array
};

FetchProvider.childContextTypes = {
 fetches: PropTypes.array
};

Demo

Conclusions

● We’ve organized Code-Splitting + Server Side Rendering for big React

application

● Plus added Universal Data Fetching

Links
Main Project Link (https://github.com/northerneyes/react-stack-playground/tree/fetching)

Webpack hot server middleware (https://github.com/60frames/webpack-hot-server-middleware)

Interesting github account (https://github.com/faceyspacey)

https://github.com/northerneyes/react-stack-playground/tree/fetching
https://github.com/60frames/webpack-hot-server-middleware
https://github.com/faceyspacey

Other Links
Usability Engineering, Jakob Nielsen, 1993 (https://www.nngroup.com/books/usability-engineering/)

Page Insights (https://developers.google.com/speed/pagespeed/insights/)

HTTP/2 (https://en.wikipedia.org/wiki/HTTP/2)

Webpack 2 documentation (https://webpack.js.org/)

React Loadable (https://github.com/thejameskyle/react-loadable)

Medium article (https://medium.com/@thejameskyle/react-loadable-2674c59de178)

Alternatives (https://github.com/ctrlplusb/react-async-component)

React router v4 (https://reacttraining.com/react-router/web/guides/code-splitting/code-splitting-server-rendering)

Webpack 2 code-splitting (https://webpack.js.org/guides/code-splitting-async/)

https://www.nngroup.com/books/usability-engineering/
https://developers.google.com/speed/pagespeed/insights/
https://en.wikipedia.org/wiki/HTTP/2
https://webpack.js.org/
https://github.com/thejameskyle/react-loadable
https://medium.com/@thejameskyle/react-loadable-2674c59de178
https://github.com/ctrlplusb/react-async-component
https://reacttraining.com/react-router/web/guides/code-splitting/code-splitting-server-rendering
https://webpack.js.org/guides/code-splitting-async/

George Bukhanov

● github.com/northerneyes

● medium.com/@northerneyes

● twitter.com/nordfinn

Thanks!

React Loadable:

Code Splitting with Server Side
Rendering

