
_Embedding V8
in the_

real world

Vladimir Mutafov & Stanimira Vlaeva
Software Engineers at Progress

NativeScript Core Team

@StanimiraVlaeva

in 4 PartsA Story

Introduction
Part 0 / 4

 So…

 NativeScript

Framework for building

native Android and iOS apps

with Angular, Vue or plain JS.

JavaScript in the Mobile world

NativeScript
Android Runtime

NativeScript
Android Runtime

AndroidAndroid iOSNative
Code

Layouts, UI Widgets, CSS, ...

Native API
Access

Cross
Platform

Abstraction

Application
Framework

NativeScript 'light'
Data-binding, Navigation, ….

Angular Vue

NativeScript
iOS Runtime

Native API Access
Part 1 / 4

 The Application Package

Android

Android Application

NativeScript Magic

Android

Android Application

JS code

Android

Android Application

JS code {N} runtime

Executing JavaScript

V8 Executes JS

Embedded in Chrome, Node,
and NativeScriptJavaScript Engine

A crash course in JIT compilers by Lin Clark

Life of a Script
by Sathya Gunasekaran & Jakob Kummerow

Read more

https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://www.youtube.com/watch?v=voDhHPNMEzg
https://www.youtube.com/watch?v=voDhHPNMEzg

Android

Android Application

JS code {N} runtime V8

const recorder = new android.media.MediaRecorder();

Wut?

Metadata Generator

Native
Library

Metadata
Generator

Runtime
Binary

const recorder = new android.media.MediaRecorder();

Metadat

a

Android

Android Application

JS code {N} runtime V8 Metadata

Initialize V8 Load Metadata Attach Callbacks

Application launch

Callbacks

android -> Set as global object in the running V8 instance

android.media -> Package getter callback
finds android.media in the android package metadata

android.media.MediaRecorder -> Package getter cb
finds MediaRecorder in android.media
MediaRecorder is a class -> a constructor function is returned

android.media.MediaRecorder

Constructor callback

Instantiates the native object in the Android world

How?

new android.media.MediaRecorder()

Allows V8 to send
instructions to ART and
vice versa.

The bridge between the two
VMs.

JNI
Java Native Interface

Creates a JS proxy object

Returns it back to the JS world

Constructor callback

Instantiates the native object in the Android world

new android.media.MediaRecorder()

Field getter callback

Queries the original Java object for someRandomField

recorder.someRandomField

A slight complication...

java.lang.String !== String

Marshalling

Converts data from the Java
world to the JS world and
vice versa.

Java objects are proxied to
special JS objects.

Method callback

Calls the method on the Java object

The result is marshallized and returned back to the JS world

recorder.doStuff()

const recorder = new android.media.MediaRecorder();

JavaScript Virtual Machine

NativeScript Runtime

Android OS

Calls the constructor callback

Requests an instance of the class

const recorder = new android.media.MediaRecorder();

Returns a proxy object

Returns an instance of the class

JavaScript Virtual Machine

NativeScript Runtime

Android OS

const result = recorder.doStuff();

Calls the method callback

Calls the method on the native object

JavaScript Virtual Machine

NativeScript Runtime

Android OS

const result = recorder.doStuff();

Returns the marshalled JS data

Returns the method call result

JavaScript Virtual Machine

NativeScript Runtime

Android OS

Objects lifecycle
Part 2 / 4

Garbage
collection

Retrieves the memory of
unused objects

Nondeterministic nature

Both the Android Runtime
and V8 have GC

Synchronization
by the

NativeScript
Runtime

Ensures no object is
prematurely collected

Uses V8 finalizer callbacks

Stores strong/weak
references to Java objects
created with JS code

V8 marks an object for collection

Finalizer callback is triggered

Does the
Runtime

reference
the object?

Tell V8 it’s safe to delete the object

Is it a strong
reference?

Does it
contain a
value?

Make it a weak one

Tell V8 to keep the object

no

yes

no, it’s a weak one

yes

yes no

Android GC

If there is a strong reference,
object is in use

If there is only a weak
reference, object can be
collected

Deleting an object depends
on V8’s GC

Challenges

Possible
memory
problems

The Java objects require
several GC cycles to be
collected

Creating big Java objects
through JS may lead to "out
of memory" exceptions

Forcing
Garbage
Collection

1. V8 GC

2. Android Runtime GC

3. V8 GC

releaseNativeCounterpart: fn

Multithreading
Part 3 / 4

JS in NativeScript -> Single Thread

JS in NativeScript -> Single Thread

= User Interface Thread

Jank
60 frames per second

1 second / 60 frames =
16.66 millisecond budget

Failing to meet the budget
==> frame rate drop

Frame rate comparison

https://www.youtube.com/watch?v=npMreLeVD6o
http://www.youtube.com/watch?v=npMreLeVD6o

Frame rate comparison 2

https://www.youtube.com/watch?v=pfiHFqnPLZ4
http://www.youtube.com/watch?v=pfiHFqnPLZ4

No jank
Building UI

Animations

HTTP/network requests

Jank
Executing CPU-intensive
operations.

The same happens in native
Android apps.

Worker
threads

Background threads in the
JavaScript world

Based on the web workers
API

No JS memory sharing

 Worker thread = ???

Theory time!

Isolate
V8's way to allocate and
isolate memory for a code
that's running.

Isolates can run in parallel.

One isolate = multiple contexts.

No memory isolation.

Contexts can't run in parallel.
Context

 Worker thread = ???

 Worker thread = Isolate

Snapshots
Part 4 / 4

Let's talk about start up time...

File System Requests

Parsing & Compiling JS

require 'main.js' = 2142ms

Bundled app =
fewer FS requests =

faster launch time

What about 'Parse & Compile'?

JavaScript Start-up Performance by Addy Osmani

x86

https://medium.com/reloading/javascript-start-up-performance-69200f43b201

We must load the JS

at some point...

Custom startup snapshots!

Snapshots in NativeScript

Creating custom snapshots

Snapshots in Atom

https://www.nativescript.org/blog/improving-app-startup-time-on-android-with-webpack-v8-heap-snapshot
https://www.nativescript.org/blog/improving-app-startup-time-on-android-with-webpack-v8-heap-snapshot
https://www.nativescript.org/blog/improving-app-startup-time-on-android-with-webpack-v8-heap-snapshot
https://blog.atom.io/2017/04/18/improving-startup-time.html

1. Load the snapshot binary

2. Set up the parameters for
the new isolate

3. Create the new isolate

--> The context in the isolate
will be a copy of the context
in the snapshot.

Loading
snapshots

Bare context

-> no native APIs

-> no require

3rd party-code

Limitations

// Creating a snapshot throws an error.

// ReferenceError: android is not defined

const version =

android.os.Build.VERSION.SDK_INT;

function doStuff() {

 console.log(version);

 ...

}

// Creating a snapshot works.

// The native getter is not evaluated immediately.

const getVersion = () =>

android.os.Build.VERSION.SDK_INT;

function doStuff() {

 const version = getVersion();

 console.log(version);

 ...

}

Wrapping native API access

Be lazy.

@StanimiraVlaeva
@VladimirMutafov

