
DECOMPOSITION
OF THE
MAIN THREAD

THROUGHPUT
1

HELLO!
I am Nikolay Matvienko
JS Developer at Grid Dynamics
You can find me at twitter.com/
github.com/

2

Node.js

WEB UI BACKEND
ORCHESTRATION LAYER

MICROSERVICES

3

ADDING NEW FEATURE

MAIN THREADMAIN THREAD

4

WHATEVER IS FAST
TODAY

IS SLOW TOMORROW AS
DEMANDS CAN ONLY

GO UP
5

BLOCKED EVENT
LOOP

HTTP response

DB response

MODULE response

HTTP response

 INCOMING
 REQUESTS

USERS THAT ARE
WAITING FOR
RESPONSE

6

QUEUE
IN

7

BIG LATENCY
HROUGHPUT

8

SCALING

APP
worker

- CLUSTER module
- PM2

WEB SERVER
/ REVERSE PROXY

- PHUSION PASSENGER
- NGINX

APP
worker

APP
worker

APP
worker

WEB SERVER / REVERSE PROXY

APP
worker

APP
worker

FREE
CORE

FREE
CORE

9

LOAD BALANCING
WEB SERVER / REVERSE PROXY

APP
worker

APP
worker

FREE
CORE

FREE
CORE

1. 2.
PROCESS
MANAGER

10

RESPONSE TIME

11

PROFILLER

GARBAGE COLLECTION

METRICS COLLECTION

FRAMEWORK

Server-Side RENDERING

DISPERSION

12

COMPUTATIONS

LOGGING

.... TOO MANY REQUESTS
ARE HANDLED IN NODE.JS

13

1414

PROFILLER

GARBAGECOLLECTION

 “THE WORLD
IS MINE”

 © GARBAGE COLLECTOR
 1959

15

GARBAGE COLLECTION

STOP THE SERVER
STOP THE WORLD

MAIN THREADMAIN THREAD

16

 LESS PERFORMANCE IMPACT

INCREMENTAL COLLECTION

17

MAIN THREAD

MAIN THREAD

GC DECOMPOSITION

1. PARALLEL
MARK-SWEEP

2. PARALLEL
SCAVENGER

3. PARALLEL
MARK-EVACUATE

execution

mark overhead
evacuate overhead

MAIN THREADMAIN THREADMAIN THREAD

18

 “THE WORLD
IS MINE NOW”

 © JS COMPUTING OPERATION IN NODE.JS
 2009

… 50 years later

19

DEMO APP
ARCHITECTURE

APP
CONFIGU
RATION
LOGIC

CHOOSE

20

PROFILLER

CURRENT

THROUGHPUT: 114 REQ/S

21

COMPUTATIONS

CPU-BOUND TASKS
MAIN THREAD

22

LOGIC IN CB

REDIS response

REDIS response

HTTP response

 INCOMING
 REQUESTS

HOW TO PERFORM?
1. Child Process fork

2. Threads/Workers

libraries

3. Microservices

23

4. Native Modules

https://github.com/Microsoft/napajs
https://github.com/Microsoft/napajs
https://www.npmjs.com/package/webworker-threads
https://www.npmjs.com/package/webworker-threads
https://github.com/SyntheticSemantics/List-of-Parallel-JS-Projects
https://github.com/SyntheticSemantics/List-of-Parallel-JS-Projects
https://github.com/SyntheticSemantics/List-of-Parallel-JS-Projects

CHILD
PROCESS

CHILD
PROCESS

PROCESS POOL
of

workers

workers
APP

W

W

W

tasks

24

WEB
SERVER
APP

WEB
SERVER
APP

WEB
SERVER
APP

WEB
SERVER
APP

Node.js Cluster

CPU
TASKS
WORKER

CPU
TASKS
WORKER

CPU
TASKS
WORKER

CPU
TASKS
WORKER

CLUSTER

IN-PROCESS
COMPUTING

PARALLEL
OFF-PROCESS
COMPUTING

25

CPU TASKS PARALLELIZATION

RESULT

26

3X
MORE REQ/S
WITH
OFF-PROCESS
(PARALLEL) JS
COMPUTATION

114

338

PROFILLER

FRAMEWORK

27

FRAMEWORK

CURRENT

THROUGHPUT: 338 REQ/S

HAPI, EXPRESS, RESTIFY…

FRAMEWORK

Node.js HTTP SERVER

~ 1.5 – 2X SLOWLY

28

https://github.com/fastify/fast-json-stringify

FRAMEWORK

OPTIMIZATIONS

Node.js HTTP SERVER

29

https://github.com/expressjs/express
https://github.com/delvedor/router-benchmark
https://github.com/delvedor/router-benchmark
https://github.com/fastify/fast-json-stringify
https://github.com/fastify/fast-json-stringify
https://github.com/fastify/fastify

LONG
SERIALIZATION

30

FRAMEWORK CHANGE

31

RESULT
+30%
MORE REQ/S
WITH FASTIFY

440

338

PROFILLER

LOGGING

32

LOG

CURRENT

THROUGHPUT: 440 REQ/S

MAIN THREAD

LOGGING

1. Winston
2. Banyan
3. Morgan and

others

LOGGERS: MESSAGE

 MESSAGE

 LOGIC

33

MAIN THREAD
APP

OFF-PROCESS LOGGER
TRANSPORT

1. Pino
2. Roarr

LOGGERS:

MAIN THREAD
LOGGER TRANSPORT

34

APP
Node.js

LO
G

G
E

R

LOGGER
TRANSPORT
Node.jsLO

G
G

E
R

APP
Node.js

35

STORE

STORE

PERFORMANCE OVERHEAD:

PERFORMANCE OVERHEAD:

WEB
SERVER

Elastic
search

LOGGER

WEB
SERVER

LOGGER

WEB
SERVER

LOGGER

WEB
SERVER

LOGGER

process.stdout

36

CLUSTER

OFF-PROCESS LOGGING
RESULT

37

+17%
MORE REQ/S
WITH
OFF-PROCESS
LOGGER
TRANSPORT

440
518

385

PROFILLER

APPLICATION PERFORMANCE
MONITORING

38

APM

CURRENT

THROUGHPUT: 518 REQ/S

MAIN THREAD

APPLICATION PERFORMANCE
MONITORING

1. NewRelic
2. Dynatrace
3. OpenTracing
4. node-measured

APM vendors/agents:
METRICS COLLECTION

AGGREGATION

TRANSPORT

39

WEB
SERVER
WORKER

WEB
SERVER
WORKER

WEB
SERVER
WORKER

WEB
SERVER
WORKER

Cluster/Load balancer

APM

Time series
DB

Analytics &
Monitoring
Dashboard

APM APM APM

SaaS

40

IN-PROCESS
APM
AGENT
THE APM AGENT PROBLEMS
ARE APPLICATION PROBLEMS

WEB
SERVER
APP

WEB
SERVER
APP

WEB
SERVER
APP

WEB
SERVER
APP

.send()

Message queue
.on()

 Message
 Queue

Time series
DB

Analytics &
Monitoring
Dashboard

41

OFF-PROCESS APM AGENT

OFF-PROCESS MONITORING
RESULT

42

+25%
MORE REQ/S
WITH
OFF-PROCESS
METRIC AGENT

518

652

PROFILLER

43

SSR

CURRENT

THROUGHPUT: 652 REQ/S

SERVER-SIDE RENDERING

RENDERING

REDIS response

REDIS response

HTTP response

MAIN THREAD

44

 INCOMING
 REQUESTS

STREAMING SERVER-SIDE
RENDERING

MAIN THREAD

Network
HTML chunks

Asynchronous execution in
STREAM with

renderStream.pipe(res, { end: 'false' });
renderStream.on('end', () =>
{response.end('</div></body></html>'); });

45

MICRO FRONTENDS
MAIN THREAD

Renders full page to HTML string

Renders full page

46

RENDERING
WORKER

PARALLEL RENDERING
WITH WORKERS

APP
MICROSERVICE

Combines streams of
Different page parts

47

RENDERING
WORKER

renderToNodeStream()

renderToStaticNodeStream()

DYNAMIC
CONTENT

STATIC
CONTENT

2X
THROUGHPUT
* Average value.

REACT 16

48

49

FROM

114 REQ/S

TO 652
50

ORDER?
51

IN NODE.JS

THREADING
52

Hhheeelllooo
Wwoorrlldd

53

WEBWORKER THREADS

V8 INSTANCE

V8 INSTANCE

V8 INSTANCE

V8 INSTANCE

EVENT LOOP

MODULES

LIBUV THREAD
POOL for IO

54

https://www.npmjs.com/package/webworker-threads

MICROSOFT NAPA.JS

EVENT LOOP

MODULES

LIBUV THREAD
POOL for IO

WORKER 1
V8 Instance

WORKER 2
V8 Instance

WORKER 3
V8 Instance

WORKER 1
V8 Instance

WORKER 2
V8 Instance

WORKER 3
V8 Instance

MEMORY
USAGE

vs 8 MB

STARTUP
TIME

vs 70 ms

MESSAGE
PASSING

vs IPC

55

https://github.com/Microsoft/napajs

ALIBABA ALIOS

EVENT LOOP

MODULES

LIBUV THREAD
POOL for IO

EVENT LOOP

V8 INSTANCE

MODULES

EVENT LOOP

V8 INSTANCE

MODULES

MEMORY
USAGE

vs 8 MB

STARTUP
TIME

vs 70 ms

SHARED
GLOBAL
MEMORY

56

https://github.com/alibaba/AliOS-nodejs

PROCESS/THREAD POOL ?

57

NEW WORKER
API IN NODE.JS
TO PERFORM CPU TASKS

?
WORKER THREAD

NODE.JS MAIN THREAD

58

DECOMPOSED MAIN THREAD
 MAIN THREAD
 APPLICATION

 process
V8
THREADPOOL

LIBUV
THREADPOOL

 process

 Tasks WORKER

Use for creation of
New Node.js modules

59

FINALY

6 REQ/S
THROUGHPUT

60

61

REFERENCES
Long-running Background Process in Node.js
https://vimeo.com/229536743
Background tasks in Node.js
https://www.youtube.com/watch?v=NNTsHzER31I&t=2207s
https://blog.evantahler.com/background-tasks-in-node-js-a-survey-with-redis-971d3575d9d2
Streaming Server-Side Rendering and Caching
https://zeit.co/blog/streaming-server-rendering-at-spectrum
https://github.com/zalando/tailor
Microservices on UI
https://www.youtube.com/watch?v=3l9IP9j5n1o
https://www.youtube.com/watch?v=E6_UyQPmiSg&t=2997s

62

https://vimeo.com/229536743
https://www.youtube.com/watch?v=NNTsHzER31I&t=2207s
https://blog.evantahler.com/background-tasks-in-node-js-a-survey-with-redis-971d3575d9d2
https://zeit.co/blog/streaming-server-rendering-at-spectrum
https://github.com/zalando/tailor
https://www.youtube.com/watch?v=3l9IP9j5n1o
https://www.youtube.com/watch?v=E6_UyQPmiSg&t=2997s

REFERENCES
New Garbage Collection with threads
https://v8project.blogspot.ru/2017/11/
https://v8project.blogspot.com/2016/04/jank-busters-part-two-orinoco.html
Pino
https://github.com/pinojs/pino
New Worker API in Node.js discussion
https://github.com/nodejs/worker/issues/4
IPC Communication Performance
https://60devs.com/performance-of-inter-process-communications-in-nodejs.html
List of Parallel JS Projects
https://github.com/SyntheticSemantics/List-of-Parallel-JS-Projects

63

https://v8project.blogspot.ru/2017/11/
https://v8project.blogspot.com/2016/04/jank-busters-part-two-orinoco.html
https://github.com/nodejs/worker/issues/4
https://60devs.com/performance-of-inter-process-communications-in-nodejs.html
https://github.com/SyntheticSemantics/List-of-Parallel-JS-Projects

REFERENCES

64

https://github.com/nickkooper/Decom
position-of-the-Main-Thread-in-Node.js

THANKS
!

65

Nikolay Matvienko

Twitter.com/
github.com/

