
The State of crypto in Node.js

Ujjwal Sharma (@ryzokuken)
ryzokuken@pm.me

1

@ryzokuken

“Few false ideas have more
firmly gripped the minds of so
many intelligent men than the
one that, if they just tried, they
could invent a cipher that no
one could break.”

– David Kahn
2

About Me

3@ryzokuken

DISCLAIMER: What does “crypto” mean here

const crypto = require(‘crypto’);

const tls = require(‘tls’);

crypto === cryptocurrency // => false

4@ryzokuken

“Why do I need
crypto?”

I am already using TLS!

● Encryption

● Key Exchange

● Cryptographic Hashing

● Data Signing

● CSPRNG

● Interoperation

5@ryzokuken

Encryption

● Encoding data to prevent unauthorized access
● “Confidentiality”

● Cipher and Decipher classes

✘ createCipher/createDecipher

✔ createCipheriv/createDecipheriv

6@ryzokuken

Encryption: Illustration

7@ryzokuken

Encryption DecryptionPlaintext Plaintext
Ciphertext

Key Key

@ryzokuken

Encryption: Example

Encryption

const cipher =
crypto.createCipheriv(

'aes192', K, IV
);

let enc = cipher.update(
P, 'utf8', 'hex'

);

enc += cipher.final('hex');

Decryption

const decipher =
crypto.createDecipheriv(

'aes192', K, IV
);

let dec = decipher.update(
C, 'hex', 'utf8'

);

dec += decipher.final('utf8');
8

Key Exchange

● Securely exchanging keys over a public channel
● One way to agree upon a key before a conversation

● Two types
a. Prime Number-based
b. Elliptic Curve-based

● DiffieHellman and ECDH classes respectively

9@ryzokuken

Key Exchange: Illustration

10@ryzokuken

1. Secret Key: Ka
2. Calculate: P.Ka

1. Secret Key: Kb
2. Calculate: P.Kb

Calculate P.Ka.KbCalculate P.Ka.Kb

Alice Bob

Key Exchange: Example (DiffieHellman)

const alice = crypto.createDiffieHellman(2048);
const bob = crypto.createDiffieHellman(

alice.getPrime(), alice.getGenerator()
);

const aliceKey = alice.generateKeys();
const bobKey = bob.generateKeys();

const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); ✔

11@ryzokuken

Key Exchange: Example (ECDH)

const alice = crypto.createECDH(‘P-256’);
const bob = crypto.createECDH(‘P-256’);

const aliceKey = alice.generateKeys();
const bobKey = bob.generateKeys();

const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

assert.strictEqual(aliceSecret.toString(‘hex’), bobSecret.toString(‘hex’)); ✔

12@ryzokuken

Hashing

● Hash Functions
○ Map arbitrarily sized data to fixed-sized bit strings (hash)
○ Hard to invert, collision-resistant

● “Authentication” and “Integrity”
● Data Signing, HMACs, etc

● Hash class
● Hmac class

13@ryzokuken

Hashing: Illustration

14@ryzokuken

Message (arbitrary length)

Hash Value (fixed length)

H

@ryzokuken

Hashing: Example

Hash
const hash = crypto.createHash(

'sha256'
);

hash.update('some data to hash');
console.log(hash.digest('hex'));

15

Hmac
const hmac = crypto.createHmac(

'sha256', ‘a secret’
);

hmac.update('some data to hash');
console.log(hmac.digest('hex'));

Data Signing

● Presenting authenticity of digital messages and documents
● “Authentication”, “Non-Repudiation”, “Integrity”

● Sign and Verify classes

16@ryzokuken

Data Signing: Illustration

17@ryzokuken Source: Wikimedia Commons

@ryzokuken

Data Signing: Example

Sign
const sign =
crypto.createSign('SHA256');

sign.update('some data to sign');

const privateKey = getPrivateKey();

const signature =
sign.sign(privateKey, 'hex');

18

Verify
const verify =
crypto.createVerify('SHA256');

verify.update('some data to sign');

const publicKey = getPublicKey();

const result = verify.verify(
publicKey, signature

); // => true

Pseudo-random Number Generator

● Cryptographic applications require random numbers
○ Key Generation
○ Initialization Vectors
○ Salts
○ One-time pads, Claude Shannon’s perfect secrecy

● Need for higher entropy

● randomBytes and randomFill functions

19@ryzokuken

@ryzokuken

“The generation of
random numbers is
too important to be
left to chance.”
– Robert R. Coveyou

20

@ryzokuken

PRNG: Example

randomBytes

Synchronous

const buf = crypto.randomBytes(256);
console.log(buf);

Asynchronous

crypto.randomBytes(256, (e, buf) => {
console.log(buf);

});

randomFill

Synchronous

const buf = Buffer.alloc(256);
const fb = crypto.randomFill(buf);
console.log(fb.toString(‘hex’));

Asynchronous

const buf = Buffer.alloc(256);
crypto.randomFill(buf, (e, buf) => {

console.log(buf.toString(‘hex’));
});

21

Interoperability

● Many great crypto libraries
○ Bouncy Castle (Java, C#)
○ NaCL (C)
○ libsodium (C)
○ PyCryptodome (Python)
○ …

● Node.js uses OpenSSL
● WebCrypto
● BoringSSL, Chromium, Electron

22@ryzokuken

Why crypto isn’t
easy

● Simplicity

● Conventions

● Security and Safety

● Compatibility

● Feature-completeness

23

A justification

@ryzokuken

WebCrypto Compatibility

● WebCrypto - JavaScript API for crypto stuff
● High-value target for interoperability

● Different goals and values — “It’s JavaScript, right?”
● Road to interoperability

○ Key Generation - DER vs PEM (@tniessen)
○ Key Objects
○ ...

24@ryzokuken

Side-channel attacks

● Not based on the weakness of the implemented algorithm
● Based on the information gained from the implementation

● Cache attack
● Timing attack

○ crypto.timingSafeEqual(a, b)
● Power-monitoring
● ...

25@ryzokuken

Don’t roll out your
own crypto

The beauty and pragmatism
behind using OpenSSL

● Building cryptosystems
is hard

● Building secure
cryptosystems is harder

● Building on top of a
battle-tested
foundation: OpenSSL

26@ryzokuken

@ryzokuken

“Did I ever tell you about the
do-it-yourself brain surgery I
performed on my late
mother-in-law? Everything went
fine until she went and died. ”

– Bob Bryan
27

Homecooked Crypto Hall of Shame

● IOTA - Curl
● Telegram

○ MTProto
○ Encrypted Profiles

● MIFARE - Crypto1
● SaltStack - RSA
● WEP

28@ryzokuken

@ryzokuken
IT’S OVER 9000!

29

OpenSSL

● OpenSSL is a robust, commercial-grade, and full-featured
toolkit for the TLS and SSL protocols. It is also a
general-purpose cryptography library.

● Built and scrutinized by experts
● Trust the ecosystem

○ Python’s hashlib
○ Ruby’s openssl

● Please don’t build your own: Go, Rust

30@ryzokuken

@ryzokuken

Also, it’s fast.

Like… Really fast.
31

@ryzokuken

Fastest for AES
32Source: https://panthema.net/2008/0714-cryptography-speedtest-comparison/

@ryzokuken

Fastest for 3DES. By a fair margin.
33Source: https://panthema.net/2008/0714-cryptography-speedtest-comparison/

@ryzokuken

Pretty damn fast for everything else.
34Source: https://panthema.net/2008/0714-cryptography-speedtest-comparison/

@ryzokuken

Did I tell you it was also the most popular?
35Source: https://crocs.fi.muni.cz/public/papers/acsac2017

The State of
crypto

The past, the present and
the future of the module

● AEAD: GCM, CCM, OCB

● AEAD: Improvements

● Key Generation

● createCipher deprecated

● Password-based KDFs

● RSASSA-PSS

36@ryzokuken

@ryzokuken

Timeline
37

v10.x

Present

● AEAD - OCB
● Key Generation
● ✘ createCipher
● scrypt
● AEAD improvements

v11.x

Future

● Key Objects
● AEAD - ChaCha20
● ?

v0.x

Fork Era

● AEAD - GCM
● PBKDF2

v4.x

Past

● RSASSA-PSS
● AEAD - CCM
● ⚠ createCipher

AEAD and AAD

● Encryption + Authentication = AEAD (or AE)
● Way too common to be done separately
● cipher.getAuthTag() and decipher.setAuthTag()
● cipher.setAAD() and decipher.setAAD()

● Cipher modes
○ GCM (@KiNgMaR) v0.11.10
○ CCM (@tniessen) v10.0.0 (semver-major)
○ OCB (@tniessen) v11.0.0 (backported to v10.10.0)
○ ChaCha20-Poly1305 (@chux0519) Coming soon to a binary near you

38@ryzokuken

@ryzokuken

Encrypt-then-MAC

39

Encrypt-and-MAC MAC-then-Encrypt

Source: Wikipedia

Improvements to Authenticated Encryption

● Allow to restrict valid GCM tag length
○ Narrow down the list of valid tag lengths to a single value
○ @tniessen, v10.12.0

● Allow to produce GCM tags with a specific length
○ Add support for authLengthTag option
○ @tniessen, v10.12.0

● Disallow multiple calls to setAuthTag
○ Makes no sense whatsoever
○ Makes it hard to detect bugs
○ @tniessen, v11.0.0

40@ryzokuken

Key Generation

● Asymmetric key generation
● Supports multiple cryptosystems

○ RSA (prime number based)
○ DSA (discrete log based)
○ EC (elliptic curve based)

● Supports DER alongside PEM (WebCrypto compatibility)
● generateKeyPair and generateKeyPairSync functions
● @tniessen, v11.0.0 (backported to v10.12.0)

41@ryzokuken

Key Generation: Support Matrix

42@ryzokuken

RSA 📢 RSA DSA 📢 DSA EC 📢 EC

PKCS#1 ✔ ✔ ✘ ✘ ✘ ✘

PKCS#1 🔒 ✘ ✔ ✘ ✘ ✘ ✘

SPKI ✔ ✘ ✔ ✘ ✔ ✘

PKCS#8 ✘ ✔ ✘ ✔ ✘ ✔

PKCS#8 🔒 ✘ ✔ ✘ ✔ ✘ ✔

SEC1 ✘ ✘ ✘ ✘ ✘ ✔

SEC1 🔒 ✘ ✘ ✘ ✘ ✘ ✔

@ryzokuken

“IV or not to be, that
is the question.”

– Prince Hamlet
43

createCipher and createDecipher deprecation

● Added security, randomness
● createCipher may be insecure
● Don’t use CTR, GCM or CCM modes
● IV reuse causes vulnerabilities

● Use createCipheriv and createDecipheriv
● doc-only deprecation in v10.0.0 (@tniessen)
● runtime deprecation in v11.0.0 (@tniessen)

44@ryzokuken Source: Wikipedia

Password-based Key Derivation Functions

● Deriving a secure key using an insecure password
● Makes password cracking difficult — “key stretching”

● Supported functions
○ PBKDF2 (@pixelglow) forever: v0.6.0
○ scrypt (@bnoordhuis) v10.5.0

● Userland: @joepie91’s scrypt-for-humans

45@ryzokuken

RSASSA-PSS

● “Probabilistic” padding scheme
● Like normal RSA, but only for signatures
● Stronger than PKCS#1 v1.5
● Security reducible to the RSA problem

● Alternative to PKCS#1 v1.5 in the Sign and Verify classes
● @tniessen, v8.0.0

46@ryzokuken

Special Thanks

● Tobias Niessen (@tniessen)
● Ben Noordhuis (@bnoordhuis)
● Sven Slootweg (@joepie91)
● Anna Henningsen (@addaleax)
● Shelley Vohr (@codebytere)

● Node.js core collaborators
● HolyJS organizers

47@ryzokuken

@ryzokuken 48

