
Getting Started

Docs and information available at www.solidjs.com

SolidJS: Origins

SolidJS: Yet another JavaScript Framework

- Started development in 2016
- A return to fine-grained

reactivity
- Performance without a

Virtual DOM

SolidJS: Performance Champion

Enter React Hooks

- Return to primitives
- Adopted almost in every

framework
- They look a lot like reactive

primitives

Reactivity vs Hooks

function MyApp() {

 const count = observable(0);

 const double = pureComputed(

 () => count() * 2

);

 computed(

 () => console.log(double())

);

 /* ... */

}

function MyApp() {

 const [count] = useState(0);

 const double = useMemo(

 () => count * 2

 , count);

 useEffect(

 () => console.log(double)

 , double);

 /* ... */

}

Primitives everywhere

- React Hooks
- Reactivity as a language
- Composition API
- Solid’s primitives
- Common Hooks for Web

Components

SolidJS: Reactivity

What’s Reactive Programming?

a = b + c

* where the value of a updates whenever the value of b or c
changes.

Why Reactive Programming

Declarative

Composable

Simple model consists of only 3 concepts:

● Signals
● Derivations
● Effects

Signals

Getter, Setter, and a value

Also known as Observable,
Ref, Atom, Behavior

Effects

Creates Side Effects

Also known as: Reactions,
Autoruns, Watches,
Computeds

Derivations

Both observer and a signal

Only re-calculates when value
of dependencies change

Also known as Computeds,
Memos, Selectors

Why Derivations?

Cache work from expensive computations

Used in more than one computation

One of multiple dependencies in computation

What can be derived, should be derived

Dynamic Tracking

Every execution dependencies are cleaned up and collected again.

This ensures that only currently dependencies are tracked.

This is something that can only feasibly be done at runtime.

SolidJS: Rendering

Introducing JSX

JSX is a XML syntax in JavaScript
popularized by React.

Describe your view inside your
JavaScript.

Convenient syntax sugar for the
DOM.

function Counter() {

 const [count, setCount] = createSignal(0);

 return createElement("h2", {}, count());

}

React’s JSX

function Counter() {

 const [count, setCount] = createSignal(0);

 return <h2>{count()}</h2>;

}

function Counter() {

 const [count, setCount] = createSignal(0);

 const el = document.createElement("h2");

 createEffect(() => {

 el.textContent = count();

 });

 return el;

}

Reactive JSX

function Counter() {

 const [count, setCount] = createSignal(0);

 return <h2>{count()}</h2>;

}

Making a Counter in Solid

import { createSignal, onCleanup } from "solid-js";

function Counter() {

 const [count, setCount] = createSignal(0);

 const id = setInterval(() => {

 setCount(count() + 1)

 }, 1000);

 onCleanup(() => clearInterval(id));

 return <h2>{count()}</h2>;

}

{

 list().map(

 (item) => {item}

)

}

 <For each={list()}>{

 (item) => {item}}

 </For>

 <Paginated each={list()}>{

 (item) => {item}}

 </Paginated>

Controlling Flow

Reactive Advantage

Components Run Once

Templates compile to Real DOM Nodes

State Independent of Component

SolidJS: Getting Started

Single Page App Starters

> npx degit solidjs/templates/js my-app
> cd my-app
> npm i # or yarn or pnpm
> npm run dev # or yarn or pnpm

Static Site Generation with Astro

> cd my-app
> npm init astro # select Solid
> npm i
> npm run dev

SolidStart: Adaptive Server Side Rendering

> cd my-app
> npm init solid@next
> npm i # or yarn or pnpm
> npm run dev # or yarn or pnpm

site: https://solidjs.com
twitter: @solid_js
github: https://github.com/solidjs

https://solidjs.com

