M SOLIDJS

Getting Started

Docs and information available at www.solidjs.com

NI (e e

Origins

SolidJS

SolidJS: Yet another JavaScript Framework

- Started development in 2016

- Areturnto fine-grained
reactivity

- Performance without a
Virtual DOM

SolidJS: Performance Champion

).
Duration in milliseconds + standard deviation (Slowdown = Duration / Fastest) bbb bbb bbbt
oIz 0000000000000 00DO0D0DO0DO0O0DO0DO0DO0DO0DO0DO0DO0DO0DO0D0O0D0O0D0O0
- solid- inferno- hyperhtml- preact- vue- svelte- angular- marko- react- mithril- hyperapp- ember- knockout-
Name vanilléis- o 10- vs30- x;f?;g' V213.0- VB26- v25.16- \287- v6.1.0- vA123- vI64d- viid- v129- @30 . 000000000000000000000000000000000
keyed Keyed keyed e keyed Keyed keyed Keyed Keyed keyed keyed keyed keyed Keyed 0000000000000 00000000O0O0O00O0DO00O0D0O0D0O0D0O00O00
0000000000000 0D0D0D0O0D0DO0D00000000000D0O0OO0
create/rows 0000000000000 0000D000000O0O00DO0DO0DO0DO0D0O00O00O
Duration for creating 220.4 +49
1000 rows after the) 0000000000000 000D000200000000000000
Ego adon. ©000000000000000000000000000000000
reglaco all rows 000
Dikation for.updating al 231.6 £33 269.1 +236 335.9 +66
1000 rows of the table S
(with 5 warmup a.n (20 @5)
iterations).
partial update
1"'" il ':P;l’:"m"'m 156.4 98 134.9 42 1349 x59
5 warmup iterations) for (24 (24 ()
atable with 10k rows.
select row
Duration to highlight a
row in response to a "“':'"""'
click on the row. (with 5 =
warmup iterations). o 587
swap rows 725 535 88 734 361
Time to swap 2 rows on a 1348 101 625 163 820
ks uens o o s
[<] 5.90 1452 029 564 11.82
remove row
Duration to remove a L] 128
m-:ifl:x:w;rmup (-] 714 551 192 781 1264
jons).
o 000 1145 747 1270 365
create many rows 2376.0 + 1 2,931.9 + 3,081.0 a 645 220 018 590 148
Duration to create 429 1309
10,000 rows @5 [1448
. — — 2] 167 420
g o ta o 11 1148 765 833 202
large table 3425 +60 354.4 =118 - B
Duration for adding an) an i’ <IDLE> in transaction .
1000 rows on atatle's ~ o s Tras o7 50
,000 rows.
[0] 052 14.22 7.32 6.05 1152
clear rows
Duration to clear the 2639 +30 21 .él» 2] 672 846
table filled with 10.000 a 12,69 9.83 13.55
rows: [385 1461 838 10.96 992
slowdown a 757 738 1099 865 552
geometric mean a - -

Enter React Hooks

- Return to primitives

- Adopted almost in every
framework

- They look a lot like reactive
primitives

Reactivity vs Hooks

main.tsx +

function MyZpp () {

const count = observable (0);

const double = pureComputed (
() => count() * 2

) ;

computed (
() => console.log(double())

) ;

/* ... */

main.tsx +

function My2Zpp () {

const [count] = useState(0);
const double = useMemo (

() => count * 2
, count) ;
useEffect(

() => console.log(double)
, double) ;
/* ... */

Primitives everywhere

€@", RichHarris @
- React HOOkS =N for anyone following along —my thinking has evolved in the last hour. |
.. i don't think hooks are the right direction for Svelte. Instead | want to do
- R@CICthlty as ala ng UCIge something more like this, which we can do because WE'RE A COMPILER,
oy MOFQOS
- Composition API
- Solid’s primitives <script>
- Common Hooks for Web let count = 1;
Components

let double = count * 2;
</script>

<div on:click="count += 1">

| use
Functional
Reactive

Cool! What
is that?

It’s programming man,
but it makes your software more
functional and reactive

Cool! What does
that mean exactly?

Oh | definitely know what
it means, but | don't think
you would understand it
' Why don't you try me?

Why don’t you stop
asking stupid questions!

SolidJS: Reactivity

What's Reactive Programming?

a = b + cC

* where the value of a updates whenever the value of b or ¢
changes.

Why Reactive Programming

Declarative
Composable
Simple model consists of only 3 concepts:

e Signals
e Derivations
e [Effects

update

Signals

Getter, Setter, and a value const [count, setCount] = createSignal(Q);

Also known as Observable,
Ref, Atom, Behavior

console. log(count());

setCount(5);
console. log(count());

Effects

Creates Side Effects

Also known as: Reactions,
Autoruns, Watches,
Computeds

const [count, setCount] = createSignal(9);

createEffect(() => {
console.log("The count is", count());

Y)s

setCount(5):

setCount(10);

Derivations
Both observer and a signal s [first, setFirst] = createSignal("John");
n [last, lastName] = createSignal("Smith");
Only re-calculates when val fullName = createMemo(() => “${first()} ${

of dependencies change
createEffect(() => {

Also known as Computeds, console. log("My name is", fullName());
Memos, Selectors };

setFirst("will");

Why Derivations?

Cache work from expensive computations
Used in more than one computation
One of multiple dependencies in computation

What can be derived, should be derived

0%, ”"-f;(f) f6‘9) //em }zfjﬁ/{//"’f/a)}/g@z
/f 1<‘ { }wi%’&?:fz =N '
\ ey >To> ({ 52)7’
LR s sl L g Y
éﬁﬁyg '\%&, i ¢[é,)[vklxl ’f/t.%&) l /7_/4"‘ ‘rd / ///

y - b S / ;
X ‘@&Z' ‘

\z@_y: wise g y1) DR[| (h""ﬁ’? »’9 7/

AL SN /// ‘ ///
/7 ’

W i

W €y

X]’\' C“f

where
11 /l/(}))Z &) di’(g) f(z) }5 o/ \\\\\“

N

¢ .,lfeloavoj frx?ﬂb)'no v+ / S //

Dynamic Tracking

Every execution dependencies are cleaned up and collected again.
This ensures that only currently dependencies are tracked.

This is something that can only feasibly be done at runtime.

1st displayName = createMemo(() => {
if (!showFullName()) return firstName();

return “${firstName()} ${lastName()}"

i I

Introducing JSX

JSXis a XML syntax in JavaScript
popularized by React.

Describe your view inside your
JavaScript.

Convenient syntax sugar for the
DOM.

React’'s JSX

function Counter () { function Counter () {
const [count, setCount] = createSignal(0); const [count, setCount] = createSignal(0) ;

return <h2>{count () }</h2>; return createElement ("h2", {}, count());

Reactive JSX

function Counter () ({

const [count, setCount] = createSignal (0);

function Counter () {

const [count, setCount] = createSignal(0); const el = document.createElement("h2");

return <h2>{count() }</h2>; createEffect(() => {

) |e1.textContent = count() ;

})

return el;

Making a Counter in Solid

import { createSignal, onCleanup } from "solid-js";

function Counter () {
const [count, setCount] = createSignal (0) ;
const id = setInterval(() => {
setCount (count() + 1)
}, 1000);

onCleanup(() => clearInterval (id));

return <h2>{count () }</h2>;

Controlling Flow

{
<Paginated each={list() }>{
(item) => {item}</1li>}
</Paginated>

>

Reactive Advantage

Components Run Once
Templates compile to Real DOM Nodes

State Independent of Component

SolidJS: Getting Started

Single Page App Starters

npx degit solidjs/templates/js my-app
cd my-app

npm i # or yarn or pnpm

npm run dev # or yarn or pnpm

vV VvV VvV VvV

Static Site Generation with Astro

cd my-app
npm init astro # select Solid

npm i
npm run dev

vV VvV VvV VvV

o

SolidStart: Adaptive Server Side Rendering

cd my-app

npm init solid@next

npm i # or yarn or pnpm

npm run dev # or yarn or pnpm

vV VvV VvV VvV

/

OG WANT To EAT MEH’R

JUST PUT IN MOUTH,
RIGHT ?

BURN HANDS?

NO! USE FlRE!\
COOK MEAT !

FIRE HOT!
HowW | NOT

USE POINTY
STICK! OR USE
HOT ROCK! OR
KEEP FIRE IN BOX !

TOO MANY
cHolces!
HOW | PICK?

OK, MEAT ON FIRE!
NOW EAT, RIGHT?

NoO' wAT!
LET COOK!
THEN ADD
SALT ROCK
AND FLAVOR

-
SO IN ORDER TO EHT\
MEAT, | NEED FIRE

AND STICK AND WAIT

ﬁb ROCK AND LEAz

| JUST EAT MEAT Raw,
STUPID.

4
AND THAT'S WHY

| THINK THAT MODERN
JAVASCRIPT IS
TOO COMPLICATED,

AN N R R Y
3 ¢ g “ .MRw.ﬁN%.)«b. A s e ¥ i
3 - - T A s e i

& AR R L7 T e
AT ST T o,

- L £
SN AT R

Gy #

.com

//solidjs
_js

https:

ite:
twitter

SI

id

@sol

djs

.com/soli

ithub

/g

thub: https:

.

gl

https://solidjs.com

