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SolidJS: Yet another JavaScript Framework

- Started development in 2016

- Areturnto fine-grained
reactivity

- Performance without a
Virtual DOM




SolidJS: Performance Champion
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Enter React Hooks

- Return to primitives

- Adopted almost in every
framework

- They look a lot like reactive
primitives




Reactivity vs Hooks

main.tsx  +

function MyZpp () {

const count = observable (0);

const double = pureComputed (
() => count() * 2

) ;

computed (
() => console.log(double())

) ;

/* ... */

main.tsx  +

function My2Zpp () {

const [count] = useState(0);
const double = useMemo (

() => count * 2
, count) ;
useEffect(

() => console.log(double)
, double) ;
/* ... */



Primitives everywhere

€@", RichHarris @
- React HOOkS =N for anyone following along —my thinking has evolved in the last hour. |
.. i don't think hooks are the right direction for Svelte. Instead | want to do
- R@CICthlty as ala ng UCIge something more like this, which we can do because WE'RE A COMPILER,
oy MOFQOS
- Composition API
- Solid’s primitives <script>
- Common Hooks for Web let count = 1;
Components

let double = count * 2;
</script>

<div on:click="count += 1">




| use
Functional
Reactive

Cool! What
is that?

It’s programming man,
but it makes your software more
functional and reactive

Cool! What does
that mean exactly?

Oh | definitely know what
it means, but | don't think
you would understand it
' Why don't you try me?

Why don’t you stop
asking stupid questions!

SolidJS: Reactivity




What's Reactive Programming?

a = b + cC

* where the value of a updates whenever the value of b or ¢
changes.




Why Reactive Programming

Declarative
Composable
Simple model consists of only 3 concepts:

e Signals
e Derivations
e [Effects

update




Signals

Getter, Setter, and a value const [count, setCount] = createSignal(Q);

Also known as Observable,
Ref, Atom, Behavior

console. log(count());

setCount(5);
console. log(count());




Effects

Creates Side Effects

Also known as: Reactions,
Autoruns, Watches,
Computeds

const [count, setCount] = createSignal(9);

createEffect(() => {
console.log("The count is", count());

Y)s

setCount(5):

setCount(10);




Derivations
Both observer and a signal s [first, setFirst] = createSignal("John");
n [last, lastName] = createSignal("Smith");
Only re-calculates when val fullName = createMemo(() => “${first()} ${

of dependencies change
createEffect(() => {

Also known as Computeds, console. log("My name is", fullName());
Memos, Selectors };

setFirst("will");




Why Derivations?

Cache work from expensive computations
Used in more than one computation
One of multiple dependencies in computation

What can be derived, should be derived
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Dynamic Tracking

Every execution dependencies are cleaned up and collected again.
This ensures that only currently dependencies are tracked.

This is something that can only feasibly be done at runtime.

1st displayName = createMemo(() => {
if (!showFullName()) return firstName();

return “${firstName()} ${lastName()}"

i I







Introducing JSX

JSXis a XML syntax in JavaScript
popularized by React.

Describe your view inside your
JavaScript.

Convenient syntax sugar for the
DOM.




React’'s JSX

function Counter () { function Counter () {
const [count, setCount] = createSignal(0); const [count, setCount] = createSignal(0) ;

return <h2>{count () }</h2>; return createElement ("h2", {}, count());




Reactive JSX

function Counter () ({

const [count, setCount] = createSignal (0);

function Counter () {

const [count, setCount] = createSignal(0); const el = document.createElement("h2");

return <h2>{count() }</h2>; createEffect(() => {

) |e1.textContent = count() ;

})

return el;




Making a Counter in Solid

import { createSignal, onCleanup } from "solid-js";

function Counter () {
const [count, setCount] = createSignal (0) ;
const id = setInterval(() => {
setCount (count() + 1)
}, 1000);

onCleanup(() => clearInterval (id));

return <h2>{count () }</h2>;




Controlling Flow

<ul>{
<Paginated each={list() }>{
(item) => <li>{item}</1li>}
</Paginated>

</ul>>




Reactive Advantage

Components Run Once
Templates compile to Real DOM Nodes

State Independent of Component




SolidJS: Getting Started



Single Page App Starters

npx degit solidjs/templates/js my-app
cd my-app

npm i # or yarn or pnpm

npm run dev # or yarn or pnpm

vV VvV VvV VvV




Static Site Generation with Astro

cd my-app
npm init astro # select Solid

npm i
npm run dev

vV VvV VvV VvV

o



SolidStart: Adaptive Server Side Rendering

cd my-app

npm init solid@next

npm i # or yarn or pnpm

npm run dev # or yarn or pnpm

vV VvV VvV VvV
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OG WANT To EAT MEH’R

JUST PUT IN MOUTH,
RIGHT ?

BURN HANDS?

NO! USE FlRE!\
COOK MEAT !

FIRE HOT!
HowW | NOT

USE POINTY
STICK! OR USE
HOT ROCK! OR
KEEP FIRE IN BOX !

TOO MANY
cHolces!
HOW | PICK?

OK, MEAT ON FIRE!
NOW EAT, RIGHT?

NoO' wAT!
LET COOK!
THEN ADD
SALT ROCK
AND FLAVOR

-
SO IN ORDER TO EHT\
MEAT, | NEED FIRE

AND STICK AND WAIT

ﬁb ROCK AND LEAz

| JUST EAT MEAT Raw,
STUPID.

4
AND THAT'S WHY

| THINK THAT MODERN
JAVASCRIPT IS
TOO COMPLICATED,
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https://solidjs.com

