
GraphQL
 the holy contract between  

client and server

Pavel Chertorogov
@nodkz

with GraphQL since 2015

Client-server 
intro

3

Intro4

Client-server apps

SERVER CLIENTS

NodeJS

C#
.NET Go

Java Python

Ruby etc…
Browsers iOS Android

etc…

MySQL
MongoDB

ESPostgreSQL
Redis

etc…

HTTP
WS

HTML

REST

XML

JSON

etc…

URL
url-encoded

form-data
etc…

Intro5

Invoice Customer

id
name

id
customer_id
amount

1*

date

Simple DB Schema Diagram

Backend capabilities

Intro6

Drupal8 Schema (60 tables) SalesLogix Schema (168 tables)

Wordpress 4.4.2 Schema (12 tables)

Intro7

… and even more Monster with 333 tables

Magento: Commerce Solutions for Selling Online (333 tables)Hi-Res: http://anna.voelkl.at/wp-content/uploads/2016/12/ce2.1.3.png

Order table 
(138 fields)

http://anna.voelkl.at/wp-content/uploads/2016/12/ce2.1.3.png

Intro8

How to create API  
for this db-schema  

HELL?

Intro9

Wait! I have a better plan!

GraphQL Basics10

Wikipedia MBT-70 schema

This is GraphQL Schema

GraphQL  
basics

11

GraphQL Basics12

GraphQL – is a …

query  
language 
for APIs

query  
executor 

on Schema

for Frontenders for Backenders

+
NodeJS

C#
.NET

Go

Python

Ruby
etc…

http://graphql.org/

GraphQL Basics13

GraphQL Query Language

GraphQL query Response in JSON

GraphQL Basics14

GraphQL Query Language

GraphQL query Response in JSON

GraphQL Basics15

GraphQL Schema

Query Mutation Subscription
Type

Single entrypoint

READ (stateless) WRITE (stateless) EVENTS (stateful)

GraphQL Schema

Type Type

GraphQL Basics16

Type

Field 1

Field N

Invoice

id
customerId
amount

Type

Field

Field

Field

date Field

ObjectType

Name

Name

GraphQL Basics17

Function with fetch logic from any data source

Type

Args

Resolve

Scalar or Object Type which returns resolve

Set of input args for resolve function

Description

DeprecationReason

Documentation

Field hiding

Type

Field 1

Field N

Field Config

GraphQL Basics18

Invoice Customer

id
name

id
customerId
amount

1*

Type Type

Field
Field

Field

Field

Field

date Field

Int

Int

Int

String

Decimal

Date

Relations between types

id

GraphQL Basics19

Invoice Customer1*

One does not simply draw a relation line in GraphQL!

GraphQL Basics20

Invoice Customer

id
name

id
customerId
amount

Type Type

Field

Field

Field

Field

Field

customer

invoices Field

date Field

select * from customer where  
id = {invoice.customerId}

select * from invoice where  
customer_id = {customer.id}

Field Resolve

Resolve

Customer

Array<Invoice>

Relation is a new field in your Type

GraphQL Basics21

Invoice Customer

id
name

id
customerId
amount

Type Type

Field
Field

Field

Field

Field

invoices Field

date Field

select * from invoice where  
customer_id = {customer.id}  

limit {args.limit}

Resolve
Args

Limit: 3

— Limit? Offset? Sort? Additional filtering?
— No problem, add them to args and process in resolve function!

Array<Invoice>

GraphQL Basics22

function

// fetch data logic (from any mix of DBs)

// access logic (check permissions)

ANY PRIVATE BUSINESS LOGIC…

// processing logic (operations, calcs)

source, args, context, info() {

}
return data;

Resolve function

GraphQL Basics23

ResolveJust remove

and you get PUBLIC schema

functions

printSchema(schema); // txt output (SDL format) 
 
graphql(schema, introspectionQuery); // json output (AST)

(private business logic)

Schema Introspection

GraphQL Basics24

• types
• fields
• args
• docs
• resolve
• directives
• input types
• enums
• interfaces
• unions

type Customer {  
 id: Int  
 name: String  
 # List of Invoices for current Customer  
 invoices(limit: Int): [Invoice]  
}  
  
Show me the money  
type Invoice {  
 id: Int  
 customerId: Int  
 amount: Decimal  
 # Customer data for current Invoice  
 customer: Customer  
 oldField: Int @deprecated(reason: "will be removed")  
}

SDL format
(txt)

Schema Introspection example

GraphQL Basics25

an ability for awesome tooling:

GraphiQL — graphical interactive in-browser GraphQL IDE
Eslint-plugin-graphql — check queries in your editor, CI
Relay-compiler — generates type definitions from queries

• Autocompletion
• Query validation
• Documentation
• Visualization
• TypeDefs generation for static analysis (Flow, TypeScript)

Schema Introspection provides

GraphQL Basics26

const QueryType = new GraphQLObjectType({  
 name: 'Query',  
 fields: () => ({  
 films: {  
 type: new GraphQLList(FilmType),  
 args: {  
 limit: { type: GraphQLInt, defaultValue: 5 },  
 },  
 resolve: async (source, args) => {  
 const data = await loadData(`https://swapi.co/api/films/`);  
 return data.slice(0, args.limit);  
 },  
 },  
 ...otherFields,  
 }),  
});

Type definition example

GraphQL Basics27

const QueryType = new GraphQLObjectType({  
 name: 'Query',  
 fields: () => ({  
 films: {  
 type: new GraphQLList(FilmType),  
 args: {  
 limit: { type: GraphQLInt, defaultValue: 5 },  
 },  
 resolve: async (source, args) => {  
 const data = await loadData(`...`);  
 return data.slice(0, args.limit);  
 },  
 },  
 ...otherFields,  
 }),  
});

Query
Type

type
args

resolve

field

Fi
el

dC
on

fig

Type

Args

Resolve

Description

DeprecationReason

Type

Field 1

Field N

Type definition example

GraphQL Basics28

• input types
• directives
• enums
• interfaces
• unions
• fragments

Don’t forget to read about

http://graphql.org/learn/

http://graphql.org/learn/

Client requirements
https://graphql-compose.herokuapp.com/

Backend capabilities

GraphQL
Demo

29

https://graphql-compose.herokuapp.com/

30

REST API

GraphQL

Fetch sub-fetch 1

sub-fetch 2

sub-fetch N

Network
Delay

Network
Delay

RESULT

Query Network
Delay

RESULT

- Sub-fetch logic on client side (increase bundle size)

+ Sub-fetch logic implemented on server side

+ No additional network round-trip (speed)

- Over-fetching (redundant data transfer/parsing)

+ Exactly requested fields (speed)

Intro31
A copy from one of the previous slides…

Client-server apps

SERVER CLIENTS

NodeJS

C#
.NET Go

Java Python

Ruby etc…
Browsers iOS Android

etc…

MySQL
MongoDB

ESPostgreSQL
Redis

etc…

HTTP
WS

HTML

REST

XML

JSON

etc…

URL
url-encoded

form-data
etc…

32

GraphQL – is a query language for APIs

NodeJS

C#
.NET Go

Java
PythonRuby etc…

Browsers iOS
Androidetc…

MySQL

MongoDB
ES

PostgreSQL
Redis

etc…

HTTP

WS

etc…

SERVER
CLIENTS

Specification for describing  
the capabilities and requirements  

of data models  
for client‐server apps

SCHEMA 
INTROSPECTION

Pretty QUERY 
Language

http://graphql.org/

Static
Analysis

For frontend 
developers

33

Static Analysis34

PRODUCTIVITY

• Holy refactoring

Static type checks 🚀

• Functions call checks
• Types checks

• Auto-suggestion

Static program analysis is the analysis of computer software that is performed without actually executing programs

Static Analysis35

Let’s turbo-charge  
our client apps static analysis 
with GraphQL queries

SERVER JS CLIENT

File with 
GraphQL Query 

and Response processing

GraphQL
Schema

Static Analysis36

SERVER JS CLIENT

File with 
GraphQL Query 

and Response processing

Schema
Introspection

GraphQL
Schema

1

Static Analysis37

Relay-compiler
Apollo-codegen

SERVER JS CLIENT

File with 
GraphQL Query 

and Response processing

Schema
Introspection

GraphQL
Schema

Watcher

1

2

Static Analysis38

Hey, you have a wrong Query

SERVER JS CLIENT

File with 
GraphQL Query 

and Response processing

Schema
Introspection

GraphQL
Schema

Watcher

File with  
Response Type Defs

1

2 3

Static Analysis39

SERVER JS CLIENT

File with 
GraphQL Query 

and Response processing

Schema
Introspection

GraphQL
Schema

Watcher

File with  
Response Type Defs

1

2 3

4

Static Analysis

SERVER JS CLIENT

File with 
GraphQL Query 

and Response processing

Schema
Introspection

GraphQL
Schema

Watcher Flowtype

File with  
Response Type Defs

1

2 3

4

5

40

or TypeScript

Static Analysis41

SERVER JS CLIENT

File with 
GraphQL Query 

and Response processing

Schema
Introspection

GraphQL
Schema

Watcher Flowtype

File with  
Response Type Defs

1

2 3

4

5

Houston, we have a Type Check problem
at line 19287 col 5: possible undefined value

6

Static Analysis42

GraphQL Query
Generated Response Type Def

Flow error

Crappy Code

DEMO

Flow typed Code

Static Analysis

import { graphql } from 'react-relay';  
const query = graphql`  
 query BalanceQuery {  
 viewer {  
 cabinet {  
 accountBalance  
 }  
 }  
 }`;

43

GraphQL Query

Balance.js

JS CLIENT

File with 
GraphQL Query 

and Response processing

Watcher Flowtype

File with  
Response Type Defs

3

4

5

Static Analysis

/* @flow */  
/*::  
export type BalanceQueryResponse = {|  
 +viewer: ?{|  
 +cabinet: ?{|  
 +accountBalance: ?number;  
 |};  
 |};  
|};  
*/

44

Generated Response Type Def

Writer time: 0.53s [0.37s compiling, …]
Created:
 - BalanceQuery.graphql.js
Unchanged: 291 files
Written default in 0.61s

__generated__/BalanceQuery.graphql.js

JS CLIENT

File with 
GraphQL Query 

and Response processing

Watcher Flowtype

File with  
Response Type Defs

3

4

5

Static Analysis45

Crappy Codeimport { graphql } from 'react-relay';  
import * as React from 'react';  
  
export default class Balance extends React.Component {  
 render() {  
 const { viewer } = this.props;  
 return <div>
 Balance {viewer.cabinet.accountBalance}
 </div>;  
 }  
}  
const query = graphql`query BalanceQuery {  
 viewer { cabinet { accountBalance } }
}`;

Balance.js

JS CLIENT

File with 
GraphQL Query 

and Response processing

Watcher Flowtype

File with  
Response Type Defs

3

4

5

Static Analysis46

Flow typed Code 
import { graphql } from 'react-relay';  
import * as React from 'react';  
import type { BalanceQueryResponse } from './__generated__/BalanceQuery.graphql';  
  
type Props = BalanceQueryResponse;
 
export default class Balance extends React.Component<Props> {  
 render() {  
 const { viewer } = this.props;  
 return <div>Balance {viewer.cabinet.accountBalance}</div>;  
 }  
}  
const query = graphql`query BalanceQuery {  
 viewer { cabinet { accountBalance } }  
}`;  
  

Balance.js

JS CLIENT

File with 
GraphQL Query 

and Response processing

Watcher Flowtype

File with  
Response Type Defs

3

4

5

Static Analysis47

Flow typed Code/* @flow */  
import { graphql } from 'react-relay';  
import * as React from 'react';  
import type { BalanceQueryResponse } from './__generated__/BalanceQuery.graphql';  
  
type Props = BalanceQueryResponse;
 
export default class Balance extends React.Component<Props> {  
 render() {  
 const { viewer } = this.props;  
 return <div>Balance {viewer.cabinet.accountBalance}</div>;  
 }  
}  
const query = graphql`query BalanceQuery {  
 viewer { cabinet { accountBalance } }  
}`;  
  

Balance.js

JS CLIENT

File with 
GraphQL Query 

and Response processing

Watcher Flowtype

File with  
Response Type Defs

3

4

5

Static Analysis48

Error: src/_demo/Balance.js:11

 11: return <div>Your balance: {viewer.cabinet.accountBalance}</div>;
 ^^^^^^^ property `cabinet`.
 Property cannot be accessed on possibly null value
 11: return <div>Your balance: {viewer.cabinet.accountBalance}</div>;
 ^^^^^^ null

Error: src/_demo/Balance.js:11
 11: return <div>Your balance: {viewer.cabinet.accountBalance}</div>;
 ^^^^^^^ property `cabinet`.
 Property cannot be accessed on possibly undefined value
 11: return <div>Your balance: {viewer.cabinet.accountBalance}</div>;
 ^^^^^^ undefined

Flow errors

Static Analysis49

type Props = BalanceQueryResponse;
class Balance extends React.Component<Props> {  
 render() {  
 const { viewer } = this.props;  
 return <div>{viewer.invoices}</div>;  
 }  
}

Flow errors for missing field

Static Analysis50

Error: src/_demo/Balance.js:11
 11: return <div>{viewer.invoices}</div>;
 ^^^^^^^^ property `invoices`.
Property not found in
 v-
 13: +viewer: ?{|
 14: +cabinet: ?{|
 15: +accountBalance: ?number;
 16: |};
 17: |};
 -^ object type. See: src/_demo/__generated__/
BalanceQuery.graphql.js:13

Flow errors for missing field

51

GraphQL
Query
Problems

For backend 
developers

GraphQL Query Problems52

Denial of Service attacks

• pre-approve queries that
the server can execute

(persisted queries by unique ID)

query HugeResponse {  
 user {  
 friends(limit: 1000) {  
 friends(limit: 1000) {  
 friends(limit: 1000) {  
 ...  
 }  
 }  
 }  
 }  
}

aka Resource exhaustion attaks

• cost analysis on the query

using by Facebook

Solutions:

• avoid nesting relations

GraphQL Query Problems53

query NestedQueryN1 {  
 {  
 productList {  
 id  
 categoryId  
 category {  
 id  
 name  
 }  
 }  
 }  
}

N+1 query problem

1 query for  
ProductList

N queries  
for fetching every  

Category by id

Solution: DataLoader

const CatLoader = new DataLoader(
 ids => Category.findByIds(ids)
);
 
CatLoader.load(1);  
CatLoader.load(2);  
CatLoader.load(1);  
CatLoader.load(4);

will do just one BATCH request  
on next tick to the Database

Schema
construction  
problems

For backend 
developers

54

Problem #1: too much copy/paste55

const QueryType = new GraphQLObjectType({  
 name: 'Query',  
 fields: () => ({  
 films: ...,  
 persons: ...,  
 planets: ...,  
 species: ...,  
 starships: ...,  
 vehicles: ...,  
 }),  
});

6 fields and
every FieldConfig 
consists from  
almost identical 
12 ctrl+c/ctrl+v lines

Query Type example

https://swapi.co
The Star Wars API

Problem #1: too much copy/paste56

 films: {  
 type: new GraphQLList(FilmType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: async (source, args) => {  
 const data = await loadData(`https://swapi.co/api/films/`);  
 if (args && args.limit > 0) {  
 return data.slice(0, args.limit);  
 }  
 return data;  
 },

FieldConfig example for films field

Problem #1: too much copy/paste

{  
 films: {  
 type: new GraphQLList(FilmType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: async (source, args) => {  
 const data = await loadData(`https://swapi.co/api/films/`);  
 if (args && args.limit > 0) {  
 return data.slice(0, args.limit);  
 }  
 return data;  
 },  
 },
 
 planets: {  
 type: new GraphQLList(PlanetType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: async (source, args) => {  
 const data = await loadData(`https://swapi.co/api/planets/`);  
 if (args && args.limit > 0) {  
 return data.slice(0, args.limit);  
 }  
 return data;  
 },  
 },  
}  

57

differs  
only by url

Comparison of two FieldConfigs

Problem #1: too much copy/paste58

function createListResolve(url) {  
 return async (source, args) => {  
 const data = await loadData(url);  
 if (args && args.limit > 0) {  
 return data.slice(0, args.limit);  
 }  
 return data;  
 };  
}

Solution 1: you may generate your resolve functions

create a function  
which returns a resolve function

Problem #1: too much copy/paste

 
 films: {  
 type: new GraphQLList(FilmType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: createListResolve(`https://swapi.co/api/films/`),  
 },  

 
 planets: {  
 type: new GraphQLList(PlanetType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: createListResolve(`https://swapi.co/api/planets/`),  
 },  

{  
 films: {  
 type: new GraphQLList(FilmType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: async (source, args) => {  
 const data = await loadData(`https://swapi.co/api/films/`);  
 if (args && args.limit > 0) {  
 return data.slice(0, args.limit);  
 }  
 return data;  
 },  
 },

 
 planets: {  
 type: new GraphQLList(PlanetType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: async (source, args) => {  
 const data = await loadData(`https://swapi.co/api/planets/`);  
 if (args && args.limit > 0) {  
 return data.slice(0, args.limit);  
 }  
 return data;  
 },  
 },  
}  

59

Solution 1: you may generate your resolve functions

reduce N times 7 LoC to 1 LoC

Problem #1: too much copy/paste

  
 films: {  
 type: new GraphQLList(FilmType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: createListResolve(`https://swapi.co/api/films/`),  
 },  

 
 planets: {  
 type: new GraphQLList(PlanetType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: createListResolve(`https://swapi.co/api/planets/`),  
 },  

60

Solution 2: you may generate your FieldConfigs

differs only by `Type` and `url`

Problem #1: too much copy/paste61

function createFieldConfigForList(type, url) {  
 return {  
 type: new GraphQLList(type),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: createListResolve(url),  
 };  
}

Solution 2: you may generate your FieldConfigs

create a function  
which returns a FieldConfig

Problem #1: too much copy/paste62

 films: {  
 type: new GraphQLList(PlanetType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: createListResolve(`https://swapi.co/api/films/`),  
 },  
 planets: {  
 type: new GraphQLList(FilmType),  
 args: { limit: { type: GraphQLInt, defaultValue: 5 } },  
 resolve: createListResolve(`https://swapi.co/api/planets/`),  
 },

{  
 films: createFieldConfigForList(FilmType, `https://swapi.co/api/films/`),  
 planets: createFieldConfigForList(PlanetType, `https://swapi.co/api/planets/`),  
}

10 LoC reduced to 2 LoC

Solution 2: you may generate your FieldConfigs

Problem #1: too much copy/paste63

DRY principle 
(don't repeat yourself)

was 
reduced  

in 3 times

90 LoC

30 LoC

Solution 1: you may generate your resolve functions
Solution 2: you may generate your FieldConfigs

Problem #2: keep GraphQL types in sync with ORM/DB64

With time you may:
• add new fields
• change field types
• remove fields
• rename fields

Model: User Type: User

SYNC

How to keep to Schemas in SYNC?

Problem #2: keep GraphQL types in sync with ORM/DB65

GENERATE

• via some cli/script
• on server boot load (better)

Solution: generate GraphQL types from ORM models

SSOT principle

(single source of truth)

Model: User Type: User

Problem #3: mess in types and resolve functions66

InvoiceType.js CustomerType.js

id
name

id
customerId
amount

customer

invoices
date

select * from CUSTOMER  
where …

select * from INVOICE  
where …

Resolve

Resolve

InvoiceType.js contains CUSTOMER query
CustomerType.js contains INVOICE query

Problem #3: mess in types and resolve functions67

select * from INVOICES where …

CustomerType.js
id
name
invoices
transactions
tickets
events
likes
messages
…

select * from TRANSACTIONS where …
select * from TICKETS where …
select * from EVENTS where …
select * from LIKES where …
select * from MESSAGES where …
select * from …

CustomerType.js knows too much  
about queries of others types

Problem #3: mess in types and resolve functions68

AdminNoteType.js

id
msg

Customer

Product

Invoice

…

Resolve

Resolve

Resolve

Resolve

What if you need to restrict access for some group of users?
Modify resolvers in all places?

Problem #3: mess in types and resolve functions69

Solution: GraphQL Models*

* “GraphQL Model” is not a part of GraphQL specification. 
 
It’s suggested additional layer of abstraction for more
comfortable way to construct and maintain your schema
and relations into it.

Problem #3: mess in types and resolve functions

  
class CustomerGQLModel {  
 type: CustomerGraphQLType;  
 resolvers: {  
 findById: {  
 type: CustomerGraphQLType,  
 args: { id: 'Int!' },  
 resolve: (_, args) =>  
 load(`select * from customer where id = ${args.id}`),  
 },  
 findMany: { ... },  
 createOne: { ... },  
 updateOne: { ... },  
 removeOne: { ... },  
 ...  
 };  
 inputType: CustomerGraphQLInputType; 
}  
  

70

1. type definition

Contains:

2. all possible
ways to CRUD
data
3. may have other
helper methods
and data

Type

MAP<FieldConfig>

InputType

1
2

3

Solution: GraphQL Models

Problem #4: import { makeExecutableSchema } from ‘graphql-tools';

Writing Types via SDL and providing resolvers separately.

71

const schema = makeExecutableSchema({ typeDefs, resolvers });  

const typeDefs = `  
 type Query {  
 customer(id: Int!): Customer
 invoices(limit: Int): [Invoice]  
 }
 
 type Customer {  
 id: Int!  
 firstName: String  
 invoices: [Invoice]  
 }`;

It’s nice developer experience for small to medium sized schema BUT…

const resolvers = {  
 Query: {  
 customer: (_, { id }) =>
 Customer.find({ id: id }),
 invoices: (_, { limit }) =>
 Invoice.findMany({ limit }), 
 },  
 Customer: {  
 invoices: (source) =>
 Invoice.find({ customerId: source.id }),  
 },  
};

type args resolve

Problem #4: import { makeExecutableSchema } from ‘graphql-tools';72

• If one InputType used in several resolvers, then the
complexity of refactoring increases dramatically.

Hard to work with complex input args
 type Query {
 invoices(filter: FilterInput): [Invoice]  
 }
 
 input FilterInput {  
 num: Int  
 dateRange: DateRangeInput 
 status: InvoiceStatusEnum  
 }

 input DateRangeInput {
 min: Date
 max: Date
 }

 enum InvoiceStatusEnum {  
 unpaid paid declined 
 }

 
 invoices: (_, { filter }) => {  
 const { num, dateRange, status } = filter;  
 const q = {};  
 if (num) q.num = num;  
 if (dateRange)
 q['date.$inRange'] = dateRange;  
 if (status) q.status = status;  
 return Post.findMany(q);  
 },  

• If one InputType per resolver, then too much  
copy/paste almost similar types.

All highlighted parts with red lines should be in sync

* This example contains an error in the code, try to find it ;)

Problem #4: import { makeExecutableSchema } from ‘graphql-tools';

Solution: build the schema programmatically
Generate FieldConfigs via your custom functions (Resolvers) …

73

class InvoiceGQLModel {  
 findManyResolver(configOptions) {  
 return {  

 type: InvoiceType,  
 args: {  
 filter: { type: new GraphQLInputObjectType({ … })},  
 },  
 resolve: (_, args) => Invoice.findMany(args),  
}

 }
 findByIdResolver() { … }
 … … and then …

type

args

resolve

Problem #4: import { makeExecutableSchema } from ‘graphql-tools';74

import { GraphQLSchema, GraphQLObjectType } from 'graphql';  
import InvoiceResolvers from './InvoiceResolvers';  
  
const schema = new GraphQLSchema({  
 query: new GraphQLObjectType({  
 name: 'Query',  
 fields: {  
 invoices: InvoiceResolvers.findManyResolver(),  
 ...  
 },  
 }),  
}); http://graphql.org/graphql-js/constructing-types/

Solution: build the schema programmatically
…and then build your Schema from fields and your Resolvers

http://graphql.org/graphql-js/constructing-types/

Problem #4: import { makeExecutableSchema } from ‘graphql-tools';75

 type Query {
 invoices(filter: FilterInput): [Invoice]  
 }

 
 invoices: (_, { filter }) => { … }  

{  
 type: new GraphQLList(Invoice),  
 args: {  
 filter: { type: new GraphQLInputObjectType({ … })},  
 },  
 resolve: (_, { filter }) => { … },  
}

combine code from different places 
back to FieldConfig

type args resolve

type

args

resolve

Problem #4: import { makeExecutableSchema } from ‘graphql-tools';76

 type Query {
 invoices(filter: FilterInput): [Invoice]  
 }

 
 invoices: (_, { filter }) => { … }  

{  
 type: [Invoice],  
 args: {  
 filter: `input FilterInput { … }`,  
 },  
 resolve: (_, { filter }) => { … },  
}

my code with 
graphql-compose

combine code from different places 
back to FieldConfig

Graphql-compose
packages

77

For backend 
developers

graphql-compose packages78

Graphql-compose-*

The main idea is to generate GraphQL Schema
from your ORM/Mappings at the server startup
with a small lines of code as possible.

— OSS packages family  
 for generating GraphQL Types

MIT License
Exposes Flowtype/Typescript declarations

With awful docs all packages have more than 460 starts on GitHub

Help wanted

graphql-compose packages

Graphql-compose

79

It bundles your Schema

webpackworks almost like a

from different type sources

graphql-compose packages80

ORM Schema,
Mapping

TypeComposer 
with Resolvers

GraphQL Schema

Generate editable GraphQL Types 
with a set of CRUD Resolvers (FieldConfigs w/ args, type, resolve)

Remove/add fields 
Wrap default Resolvers with custom business logic 
Create own Resolvers (FieldConfigs) 
Build relations between types

Manually created TypeComposers 
or Vanilla GraphQL types

1

2

3

Schema creation workflow

graphql-compose packages81

const InvoiceItemTC = TypeComposer.create(`  
 type InvoiceItem {  
 description: String  
 qty: Int  
 price: Float  
 }  
`); SDL syntax for simple types

(schema definition language)

Graphql-compose provides handy syntax for manual
type creation

graphql-compose packages82

const InvoiceTC = TypeComposer.create({  
 name: 'Invoice',  
 fields: {  
 id: 'Int!',  
 now: {  
 type: 'Date',  
 resolve: () => Date.now()  
 },
 items: () => [InvoiceItemTC],  
 },  
});

SDL syntax inside

Type as function, [] as List

Config Object Syntax
for complex types

Graphql-compose provides handy syntax for manual
type creation

graphql-compose packages83

TC.hasField('lon'); // boolean  
TC.getFieldNames(); // ['lon', 'lat']  
TC.getField('lon'); // FieldConfig  
TC.getField('lon'); // return FieldConfig  
TC.getFields(); // { lon: FieldConfig, lat: FieldConfig }
TC.setFields({ ... }); // completely replace all fields  
TC.setField('lon', { ... }); // replace `lon` field with new FieldConfig  
TC.removeField('lon');
TC.removeOtherFields(['lon', 'lat']); // will remove all other fields  
TC.reorderFields(['lat', 'lon']); // reorder fields, lat becomes first  
TC.deprecateFields({ 'lat': 'deprecation reason' }); // mark field as deprecated
TC.getFieldType('lat'); // GraphQLFloat  
TC.getFieldTC('complexField'); // TypeComposer  
TC.getFieldArgs('lat'); // returns map of args config or empty {} if no args  
TC.hasFieldArg('lat', 'arg1'); // false  
TC.getFieldArg('lat', 'arg1'); // returns arg config

TC.addFields({ field1: …, field2: … });  
TC.removeField(['field2', ‘field3']);
TC.extendField('lat', { description: 'Latitude', resolve: () => {} });

TOP 3 commonly  
used methods

Bunch of other  
useful methods

Graphql-compose provides methods  
for modifying Types

graphql-compose packages84

InvoiceTC.addField('items', {  
 type: () => ItemsTC,  
 resolve: (source) => {  
 return Items.find({ invoiceId: source.id })  
 },  
});

Graphql-compose create relations between Types
via FieldConfig

Type as function 
solves hoisting problems

graphql-compose packages85

InvoiceTC.addRelation('items', {  
 resolver: () => ItemsTC.getResolver('findMany'),  
 prepareArgs: {  
 filter: source => ({ invoiceId: source.id }),  
 },  
});

Graphql-compose create relations between Types
via Resolvers

Prepare args for Resolver

graphql-compose packages86

graphql-compose-mongoose
graphql-compose-json

graphql-compose-elasticsearch

graphql-compose-pagination
graphql-compose-connection
graphql-compose-relay

type generator

resolver generator

type/resolver modifier

Graphql-compose is a great tool for writing your
own type generators/plugins

type generator

resolver generator

resolver generator

type generator resolver generator
http API wrapper

graphql-compose-aws SDK API wrapper🌶

graphql-compose packages87

graphql-compose-aws
~700 lines of code, 2 days of work
generates more than 10 000 GraphQL Types
schema size ~2 Mb in SDL, ~9 Mb in json

Huge GraphQL Schema example

JUST IN 2 DAYS

graphql-compose packages88

125 Services 3857 Operations 6711 Input/Output params

https://graphqlbin.com/plqhO

AWS Cloud API in GraphQL Schema generation takes about ~1-2 seconds

https://graphqlbin.com/plqhO

graphql-compose packages89

https://github.com/nodkz/graphql-compose-examples

https://github.com/lyskos97/graphql-compose-swapi

Mongoose, Elastic, Northwind

Wrapping REST API

Graphql-compose schema demos

https://graphql-compose.herokuapp.com

https://graphql-compose-swapi.herokuapp.com

https://github.com/nodkz/graphql-compose-examples
https://github.com/lyskos97/graphql-compose-swapi
https://graphql-compose.herokuapp.com
https://graphql-compose-swapi.herokuapp.com

90

Last words…

91

GraphQL

less network traffic
less time on coding

less errors

less stress more success

is awesome!

👍
PS. SOMETIMES A LOT LESS

Tutorials92

howtographql.com

medium graphql

youtube graphql

Read

Watch

Glue

https://www.howtographql.com/
https://www.google.com/search?q=medium+graphql
https://www.google.com/search?q=youtube+graphql

93 Take away!

GraphQL is powerful query language  
with great tools

GraphQL is typed so it helps with  
static analysis on clients

Generate GraphQL Schemas on server

94

Pavel Chertorogov
THANKS!

nodkz

95

GraphQL
is a

server and client apps
for your

