The battle of the event loops

Ujywal Sharma (@ryzokuken)
featuring
Olga Kobets (@homyasusina)

igalia

Ujjwal Sharma (he/him)

Compilers Hacker at Igalia

Node.js Core Collaborator

TC39 Delegate

Work on V8 and Cranelift (Spidermonkey/wasmtime)
Student

Speaker

2 @ryzokuken ft. @homyasusina

bapcux B1000

/A A
PICEDS

Q
.“(“ X I“\

TS

The event loop has to be
one of the most talked about
subjects 1n JavasScript

4 @ryzokuken ft. @homyasusina

Let's dig a little deeper.

5 @ryzokuken ft. @homyasusina

Section |

Concurrency

@ryzokuken ft. @homyasusina

nnnnnnnnn

Concurrency vs Parallelism

y{ @ryzokuken ft. @homyasusina

Concurrency

/kon'kar(a)nsi/
noun

When two or more tasks can start, run, and
complete in overlapping time periods.

Concurrency 8 @ryzokuken ft. @homyasusina

Example: multitasking on a single-core machine

Concurrency 9 @ryzokuken ft. @homyasusina

Concurrency

@ryzokuken ft. @homyasusina

Parallelism

/'paralelizom/
noun

The state of being parallel or of
corresponding in some way.

Concurrency 11

@ryzokuken ft. @homyasusina

Example: the Greek thinkers used to believe in
the parallelism of microcosm and macrocosm

Concurrency 12 @ryzokuken ft. @homyasusina

Concurrency

13

@ryzokuken ft. @homyasusina

Parallelism

/'paralelizom/
noun

When tasks literally run at the same time.

Concurrency 14 @ryzokuken ft. @homyasusina

Concurrency

Example: a multicore processor

15 @ryzokuken ft. @homyasusina

Concurrency

16

@ryzokuken ft. @homyasusina

If computation is said to be concurrent,
then 1t doesn't necessarily dictate how the
concurrency is achieved under the hood.

Concurrency 17 @ryzokuken ft. @homyasusina

Javadcript is single-threaded

nnnnnnnnn Y 18 @ryzokuken ft. @homyasusina

nnnnnnnnn

V8 1s single-threaded

19 @ryzokuken ft. @homyasusina

“There are many who pretend to
despise and belittle that which 1s
beyond their reach.”

— Aesop (Aesop’s Fables)

Concurrency 20 @ryzokuken ft. @homyasusina

JavadScript does not need multithreading

Concurrency 21 @ryzokuken ft. @homyasusina

Two main reasons for operations to be time-consuming:

1. Operations that perform heavy computation.

2. Operations that depend on something.

Concurrency 22 @ryzokuken ft. @homyasusina

Two main reasons for operations to be time-consuming:
1. Operations that require CPU time.

2. Operations that wait for something.

Concurrency 23 @ryzokuken ft. @homyasusina

99% of all applications do nothing 99% of the time

Concurrency 24 @ryzokuken ft. @homyasusina

Multithreading is useful when
1. Significant CPU time 1s required.

2. Need to call an awkward synchronous (blocking) API.

Concurrency 25 @ryzokuken ft. @homyasusina

const cluster

const workers

Concurrency

Node.js

require ("cluster")

requlre ("worker

26

threads")

@ryzokuken ft. @homyasusina

const worker

Concurrency

new Worker (...)

21

@ryzokuken ft. @homyasusina

S0 how do you use single-threaded
concurrency in the real world?

Concurrency 28 @ryzokuken ft. @homyasusina

Section II

Asynchronous Programming

29 @ryzokuken ft. @homyasusina

Asynchrony

/e1'siy kroni/
noun

The occurrence of events independent of

the main program flow and ways to deal
with such events.

Asynchronous Programming 30 @ryzokuken ft. @homyasusina

Event-driven programming is by far the most
popular paradigm to achieve asynchrony

Asynchronous Programming 31 @ryzokuken ft. @homyasusina

Green Threads 1s a popular alternative

Asynchronous Programming 32 @ryzokuken ft. @homyasusina

We’re not the first ones to use event-driven
systems to build web servers

Asynchronous Programming 33 @ryzokuken ft. @homyasusina

e NET (C#)

e Spark (Java)

e Twisted (Python)

e Express (Javascript)
* Vapor (Swiit)

* Rocket (Rust)

@ryzokuken ft. @homyasusina

JavaScript has a concurrency
model based on an event loop

Asynchronous Programming 35 @ryzokuken ft. @homyasusina

Asynchronous Programming 36 @ryzokuken ft. @homyasusina

@igalia
What the heck is the event loop anyway? | Philip Roberts | [SConf EU

JS

Asynchronous Programming 31 @ryzokuken ft. @homyasusina

@ igalia

HMBan Tyny: acCHHXPOHIIIHHA B |S o4 xanmorToM / Muxaun bamrypos (Luxoft)

BaH Tynyn:
ACUHXPOHLLMHA

B JS noa Kanotom /
Muxaunn ballypoB

(Luxoft)

Frontend
F-C Conf

3

Asynchronous Programming 38 @ryzokuken ft. @homyasusina

But the “"event loop” i1s
a theoretical model

Section III

Event Loops

40

@ryzokuken ft. @homyasusina

poll and select

 History: Introduced in the ~80s-90s (old).

* Functionality: More or less the same (boring).

* Speed: Periorm similarly on benchmarks (slow).
* Portability: Everywhere (nice).

* Complexity: As simple as 1t gets (neat).

Event Loops 4] @ryzokuken ft. @homyasusina

Event Loops

Result: libevent

42

@ryzokuken ft. @homyasusina

People loved poll

°* epoll

e /dev/poll
* kRqueue

* pollset

° 1notify

Event Loops 43 @ryzokuken ft. @homyasusina

Event Loops

Result: libevent

44

@ryzokuken ft. @homyasusina

Event Loops

Result: libevent”

* Slightly Faster

45

@ryzokuken ft. @homyasusina

Problem: libevent is too...

Event Loops 46 @ryzokuken ft. @homyasusina

Problem: libevent is too... bloated

Event Loops 47 @ryzokuken ft. @homyasusina

Event Loops

Result: libev

48

@ryzokuken ft. @homyasusina

=

Wi 1d Javascript Runtime appearaed |

Event Loops

V8

Node Standard Library

Node Bindings

Thread Pool

(libe1o)

Event Loop
(libev)

50

@ryzokuken ft. @homyasusina

Narrator: There was a problem.

Event Loops 51 @ryzokuken ft. @homyasusina

Event Loops

52

@ryzokuken ft. @homyasusina

Enter the Dragon

Event Loops 53

@ryzokuken ft. @homyasusina

Enter the Unicorn Velociraptor

Event Loops 54 @ryzokuken ft. @homyasusina

Event Loops

55

@ryzokuken ft. @homyasusina

igalia

LXJS 2012 - Bert Belder - libuv

o
g

Event Loops 56 @ryzokuken ft. @homyasusina

Event Loops

V8

Node Standard Library

Node Bindings

Thread Pool

(libe1o)

Event Loop
(libev)

51

@ryzokuken ft. @homyasusina

Event Loops

V8

Node Standard Library

Node Bindings

58

@ryzokuken ft. @homyasusina

Event Loops

59

@ryzokuken ft. @homyasusina

Section IV

Into the boxing ring

60 @ryzokuken ft. @homyasusina

@ igalia

The lifesaver: autocannon

e wrk and wrkz

* “It’s just JavaScript”
* “It just works”

* mcollina is a legend
e TCP?

e Fake TCP?

Into the boxing ring 61 @ryzokuken ft. @homyasusina

Into the boxing ring

Introducing

Let the benchmarking begin!

Into the boxing ring 63 @ryzokuken ft. @homyasusina

Section V

Conclusion

64 @ryzokuken ft. @homyasusina

Conclusion 1: tokio i1s slow

Conclusion 65

@ryzokuken ft. @homyasusina

% Home Documentation

Community Blog

English ¥

Blog Posts

Making the Tokio scheduler
10x faster

Diagnostics with Tracing

Tokio alpha release with async
& await

A great 2018, an even better
2019

Announcing the Tokio Doc
Push (we need you!)

Experimental async / await
support for Tokio

Tokio 0.1.8 with many
incremental improvements

New Tokio release, now with
filesystem support

New Timer implementation
Announcing the Tokio runtime

Tokio Reform is Shipped and
the Road to 0.2

An RFC for a Tokio revamp
Announcing the tokio-io Crate

Announcing Tokio 0.1

Conclusion

Making the Tokio scheduler 10x faster

October 13, 2019

We've been hard at work on the next major revision of Tokio, Rust’s asynchronous runtime. Today, a
complete rewrite of the scheduler has been submitted as a pull request. The result is huge performance
and latency improvements. Some benchmarks saw a 10x speed up! It is always unclear how much these
kinds of improvements impact “full stack” use cases, so we've also tested how these scheduler
improvements impacted use cases like Hyper and Tonic (spoiler: it's really good).

In preparation for working on the new scheduler, | spent time searching for resources on scheduler
implementations. Besides existing implementations, | did not find much. | also found the source of
existing implementations difficult to navigate. To remedy this, | tried to keep Tokio's new scheduler
implementation as clean as possible. | also am writing this detailed article on implementing the scheduler
in hope that others in similar positions find it useful.

The article starts with a high level overview of scheduler design, including work-stealing schedulers. It
then gets into the details of specific optimizations made in the new Tokio scheduler.

The optimizations covered are:

e The new std: : future task system

e Picking a better queue algorithm

e Optimizing for message passing patterns
e Throttle stealing

e Reducing cross thread synchronization

e Reducing allocations

e Reducing atomic reference counting

The major theme is “reduce.” After all, there is no code faster gmén no code!

T Lha o vt n Al amm mrmt s o rndrim oma e v vmsmtn s rmombn oo] VATt i om o oo o omde s b o b + lanl, Fomm memed s 1n mem sl s

Schedulers, how do
they work?

One queue, many
processors

Concurrency and
mechanical
sympathy.

Many processors,

each with their
own run queue

Work-stealing
scheduler

The Tokio 0.1
scheduler

The next generation
Tokio scheduler

The new task
system

A better run
queue

Optimizing for
message passing
patterns

Throttle stealing

Reducing cross
thread
synchronization

Reducing
allocations

Reducing atomic
reference

cnlintina

Conclusion 2: deno is slow

Conclusion 61

@ryzokuken ft. @homyasusina

Deno's design is different than Node's in that
all native calls are done through zero-copy
message passing. This allows for a more
uniform bindings, where we have
centralised understanding of all calls being
made out of the VM.

— Ryan Dahl

Conclusion 68 @ryzokuken ft. @homyasusina

Ultimately we expect this design to result 1n
better performance, but we're not there yet.
Deno's networking is about 50% the speed

of Node v13. Follow our progress at https://
deno.land/benchmarks

— Ryan Dahl

Conclusion 69 @ryzokuken ft. @homyasusina

https://deno.land/benchmarks
https://deno.land/benchmarks

Conclusion 3: people are still reluctant

Conclusion 10 @ryzokuken ft. @homyasusina

Deno support #1/96 %) igalia

G4 I\l otabekgb opened this issue on 21 Mar - 3 comments

ﬁ otabekgb commented on 21 Mar Assignees

No one assigned
Currently deno is in alpha stage. Do you think when deno is ready for prime time, you could easily use that

as runtime instead of nodejs?

Labels
None yet
kamilmysliwiec commented on 21 Mar Member
\ Projects
Very likely yes. We'll think about it in the future. None yet
Milestone

No milestone

@ kamilmysliwiec closed this on 21 Mar

Notifications Customize

«4)) Subscribe

— . . You're not receiving notifications from
d BrunnerLivio commented on 27 Jul Member .. e thrend 9
; is thread.

Why has this been closed down?
3 participants

“ [l

& lock bot commented 11 days ago

This thread has been automatically locked since there has not been any recent activity after it was closed.
Please open a new issue for related bugs.

Conclusion &, lock bot locked as resolved and limited conversation to cgfldborators 11 days ago @ryzokuken ft. @homya_susj_na

But it's getting there!

12 @ryzokuken ft. @homyasusina

Conclusion

Introducing

Deno 1.0

Special Thanks

e Artem Kobzar

* Ryan Dahl
* Olga Kobets

e Kamil Myshwiec

Conclusion 74

@ryzokuken ft. @homyasusina

Conclusion

crracubo!

15 @ryzokuken ft. @homyasusina

