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The event loop has to be
one of the most talked about
subjects 1n JavasScript

4 @ryzokuken ft. @homyasusina



Let's dig a little deeper.
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Section |

Concurrency
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Concurrency vs Parallelism
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Concurrency

/kon'kar(a)nsi/
noun

When two or more tasks can start, run, and
complete in overlapping time periods.
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Example: multitasking on a single-core machine
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Concurrency
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Parallelism

/'paralelizom/
noun

The state of being parallel or of
corresponding in some way.
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Example: the Greek thinkers used to believe in
the parallelism of microcosm and macrocosm
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Concurrency
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Parallelism

/'paralelizom/
noun

When tasks literally run at the same time.
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Concurrency

Example: a multicore processor
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Concurrency
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If computation is said to be concurrent,
then 1t doesn't necessarily dictate how the
concurrency is achieved under the hood.
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Javadcript is single-threaded
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V8 1s single-threaded
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“There are many who pretend to
despise and belittle that which 1s
beyond their reach.”

— Aesop (Aesop’s Fables)
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JavadScript does not need multithreading
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Two main reasons for operations to be time-consuming:

1. Operations that perform heavy computation.

2. Operations that depend on something.
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Two main reasons for operations to be time-consuming:
1. Operations that require CPU time.

2. Operations that wait for something.

Concurrency 23 @ryzokuken ft. @homyasusina



99% of all applications do nothing 99% of the time
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Multithreading is useful when
1. Significant CPU time 1s required.

2. Need to call an awkward synchronous (blocking) API.
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const cluster

const workers

Concurrency

Node.js

require ("cluster")

requlre ("worker
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threads")
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const worker

Concurrency

new Worker (...)
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S0 how do you use single-threaded
concurrency in the real world?
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Section II

Asynchronous Programming
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Asynchrony

/e1'siy kroni/
noun

The occurrence of events independent of

the main program flow and ways to deal
with such events.
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Event-driven programming is by far the most
popular paradigm to achieve asynchrony
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Green Threads 1s a popular alternative
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We’re not the first ones to use event-driven
systems to build web servers
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e NET (C#)

e Spark (Java)

e Twisted (Python)

e Express (Javascript)
* Vapor (Swiit)

* Rocket (Rust)
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JavaScript has a concurrency
model based on an event loop
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@igalia
What the heck is the event loop anyway? | Philip Roberts | [SConf EU

JS
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@ igalia
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But the “"event loop” i1s
a theoretical model



Section III

Event Loops
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poll and select

 History: Introduced in the ~80s-90s (old).

* Functionality: More or less the same (boring).

* Speed: Periorm similarly on benchmarks (slow).
* Portability: Everywhere (nice).

* Complexity: As simple as 1t gets (neat).
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Event Loops

Result: libevent
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People loved poll

°* epoll

e /dev/poll
* kRqueue

* pollset

° 1notify
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Event Loops

Result: libevent
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Event Loops

Result: libevent”

* Slightly Faster
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Problem: libevent is too...
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Problem: libevent is too... bloated
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Event Loops

Result: libev
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Event Loops

V8

Node Standard Library

Node Bindings

Thread Pool

(libe1o)

Event Loop
(libev)
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Narrator: There was a problem.
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Event Loops
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Enter the Dragon
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Enter the Unicorn Velociraptor
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Event Loops
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igalia

LXJS 2012 - Bert Belder - libuv

o
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Event Loops

V8

Node Standard Library

Node Bindings

Thread Pool

(libe1o)

Event Loop
(libev)
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Event Loops

V8

Node Standard Library

Node Bindings
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Event Loops
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Section IV

Into the boxing ring
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@ igalia

The lifesaver: autocannon

e wrk and wrkz

* “It’s just JavaScript”
* “It just works”

* mcollina is a legend
e TCP?

e Fake TCP?
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Into the boxing ring

Introducing




Let the benchmarking begin!
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Section V

Conclusion
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Conclusion 1: tokio i1s slow
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% Home Documentation

Community Blog

English ¥

Blog Posts

Making the Tokio scheduler
10x faster

Diagnostics with Tracing

Tokio alpha release with async
& await

A great 2018, an even better
2019

Announcing the Tokio Doc
Push (we need you!)

Experimental async / await
support for Tokio

Tokio 0.1.8 with many
incremental improvements

New Tokio release, now with
filesystem support

New Timer implementation
Announcing the Tokio runtime

Tokio Reform is Shipped and
the Road to 0.2

An RFC for a Tokio revamp
Announcing the tokio-io Crate

Announcing Tokio 0.1

Conclusion

Making the Tokio scheduler 10x faster

October 13, 2019

We've been hard at work on the next major revision of Tokio, Rust’s asynchronous runtime. Today, a
complete rewrite of the scheduler has been submitted as a pull request. The result is huge performance
and latency improvements. Some benchmarks saw a 10x speed up! It is always unclear how much these
kinds of improvements impact “full stack” use cases, so we've also tested how these scheduler
improvements impacted use cases like Hyper and Tonic (spoiler: it's really good).

In preparation for working on the new scheduler, | spent time searching for resources on scheduler
implementations. Besides existing implementations, | did not find much. | also found the source of
existing implementations difficult to navigate. To remedy this, | tried to keep Tokio's new scheduler
implementation as clean as possible. | also am writing this detailed article on implementing the scheduler
in hope that others in similar positions find it useful.

The article starts with a high level overview of scheduler design, including work-stealing schedulers. It
then gets into the details of specific optimizations made in the new Tokio scheduler.

The optimizations covered are:

e The new std: : future task system

e Picking a better queue algorithm

e Optimizing for message passing patterns
e Throttle stealing

e Reducing cross thread synchronization

e Reducing allocations

e Reducing atomic reference counting

The major theme is “reduce.” After all, there is no code faster gmén no code!
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Schedulers, how do
they work?

One queue, many
processors

Concurrency and
mechanical
sympathy.

Many processors,

each with their
own run queue

Work-stealing
scheduler

The Tokio 0.1
scheduler

The next generation
Tokio scheduler

The new task
system

A better run
queue

Optimizing for
message passing
patterns

Throttle stealing

Reducing cross
thread
synchronization

Reducing
allocations

Reducing atomic
reference
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Conclusion 2: deno is slow
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Deno's design is different than Node's in that
all native calls are done through zero-copy
message passing. This allows for a more
uniform bindings, where we have
centralised understanding of all calls being
made out of the VM.

— Ryan Dahl
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Ultimately we expect this design to result 1n
better performance, but we're not there yet.
Deno's networking is about 50% the speed

of Node v13. Follow our progress at https://
deno.land/benchmarks

— Ryan Dahl
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https://deno.land/benchmarks
https://deno.land/benchmarks

Conclusion 3: people are still reluctant
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Deno support #1/96 %) igalia

G4 I\l otabekgb opened this issue on 21 Mar - 3 comments

ﬁ otabekgb commented on 21 Mar Assignees

No one assigned
Currently deno is in alpha stage. Do you think when deno is ready for prime time, you could easily use that

as runtime instead of nodejs?

Labels
None yet
kamilmysliwiec commented on 21 Mar Member
\ Projects
Very likely yes. We'll think about it in the future. None yet
Milestone

No milestone

@ kamilmysliwiec closed this on 21 Mar

Notifications Customize

«4)) Subscribe

— . . You're not receiving notifications from
d BrunnerLivio commented on 27 Jul Member .. e thrend 9
; is thread.

Why has this been closed down?
3 participants

“ [l

& lock bot commented 11 days ago

This thread has been automatically locked since there has not been any recent activity after it was closed.
Please open a new issue for related bugs.

Conclusion &, lock bot locked as resolved and limited conversation to cgfldborators 11 days ago @ryzokuken ft. @homya_susj_na



But it's getting there!
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Conclusion

Introducing

Deno 1.0



Special Thanks
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e Kamil Myshwiec
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Conclusion

crracubo!
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