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There is a Bluebird in my 
Talk that Wants to Get out

Rewriting JavaScript

THEWIZARDLUCAS
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THEWIZARDLUCAS

I'm Lucas
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THEWIZARDLUCAS

I'm Lucas, The Wizard
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@THEWIZARDLUCAS

L O N D O N

lucasfcosta.com
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@THEWIZARDLUCAS

L O N D O N

lucasfcosta.com
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Right, but will you 
talk about birds?
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This is a talk about 
Lambda Calculus
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Calculus !== Numbers
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Fun
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Fun
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Functions
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Lambda Calculus 
is what is behind 
Functional 
Programming
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Is it useful?
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Everything 
is an 

expression

In Lambda Calculus

λ
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Everything 
evaluates 
to a value

In Lambda Calculus

λ
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This is Lambda Calculus
RUINING JAVASCRIPT

0

E
Expression
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This is Lambda Calculus
RUINING JAVASCRIPT

1 2 3 4

Identifier

ID λID. E E E (E)

Abstraction Application Grouping
Function definitions Invocation
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This is a lambda
RUINING JAVASCRIPT

λa. a



100

!27

This is a lambda
RUINING JAVASCRIPT

λa. a
Metavariable Body
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This is a lambda
RUINING JAVASCRIPT

a arg
a(arg)

Applying arg to a
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This is a lambda
RUINING JAVASCRIPT

arg
We get back arg

λa. a



100

!30

This is a lambda
RUINING JAVASCRIPT

λa. a
It can only take a single argument!



100

!31

This is a lambda
RUINING JAVASCRIPT

λa. λb. b
Lambdas can return other lambdas
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This is a lambda
RUINING JAVASCRIPT

λa. λb. b
Currying
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This is a lambda
RUINING JAVASCRIPT

a => b => b
In JavaScript...
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This is a lambda
RUINING JAVASCRIPT
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This is a lambda
RUINING JAVASCRIPT

In Haskell...

DivideThreeNumbers :: Int -> Int -> Int -> Int
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This is a lambda
RUINING JAVASCRIPT

(λx. x b) [x→y]
evaluation or substitution
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This is a lambda
RUINING JAVASCRIPT

(y b)
evaluation or substitution
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This is a lambda
RUINING JAVASCRIPT

(λx. x b) [b→y]
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This is a lambda
RUINING JAVASCRIPT

(λx. x b) [b→y]
b is not an argument!
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This is a lambda
RUINING JAVASCRIPT

Each evaluation step is 
called a beta-reduction
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This is a lambda
RUINING JAVASCRIPT

We can only do beta 
reduction when expressions 

have beta-reduxes
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This is a lambda
RUINING JAVASCRIPT

We can only do beta 
reduction when expressions 
contain an applicative form
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This is a lambda
RUINING JAVASCRIPT

When an expression cannot be 
further evaluated it is said to be in 

its beta-normal form
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This is a lambda
RUINING JAVASCRIPT

λx. λy. + y (+ x 1) 
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This is a lambda
RUINING JAVASCRIPT

λx. λy. + y (+ x 1) 4 2 
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This is a lambda
RUINING JAVASCRIPT

(λx. λy. + y (+ x 1)) 4 2 
(λx. λy. + y (+ 4 1)) [x→4] 
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This is a lambda
RUINING JAVASCRIPT

(λx. λy. + y (+ x 1)) 4 2 
(λx. λy. + y (+ 4 1)) [x→4] 

(λy. + y (+ 4 1)) 
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This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2
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This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2 
(λy. + y (+ 4 1)) [y→2]
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This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2 
(λy. + y (+ 4 1)) [y→2] 

(+ 2 (+ 4 1)) [y→2]
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This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2 
(λy. + y (+ 4 1)) [y→2] 

(+ 2 (+ 4 1)) [y→2] 
(+ 2 (+ 4 1)) 
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This is a lambda
RUINING JAVASCRIPT

(+ 2 (+ 4 1)) 
(+ 2 5) 

(7) 



100

!53

This is a lambda
RUINING JAVASCRIPT

x y z
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This is a lambda
RUINING JAVASCRIPT

x y z
How do we disambiguate?
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This is a lambda
RUINING JAVASCRIPT

x(y z) or (x y) z
?
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This is a lambda
RUINING JAVASCRIPT

(x y) z
applications are left associative
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This is a lambda
RUINING JAVASCRIPT

fn(first)(second)
just like when you write proper functional code
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This is a lambda
RUINING JAVASCRIPT

λ x. x y
How do we disambiguate?
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This is a lambda
RUINING JAVASCRIPT

(λ x. x) y or

?
(λ x. x y)
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This is a lambda
RUINING JAVASCRIPT

abstractions extend as much to 
the far-right as possible

(λ x. x y)
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This is a lambda
RUINING JAVASCRIPT

this is why you might need 
parenthesis to disambiguate
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Lambda Calculus 
is another way of 
representing 
computation
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Lambda Calculus 
is Turing Complete
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We can replace 
any programming 
language with 
Lambda Calculus
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In this talk I'm 
gonna write 
JavaScript 
with nothing 
but functions
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I'm not the first one.

Programming 
with nothing

By  Tom Stuart
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I'm not the first one.

Programming 
with nothing

By  Tom Stuart

But I want to take it one step further.



100

!68

Ruin 
JavaScript

Part 1
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Ruin 
JavaScript

Ruin 
JavaScript 
with birds

Part 1 Part 2
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Ruin 
JavaScript

Ruin 
JavaScript 
with birds

Ruin 
JavaScript 
and The 
Birds

Part 1 Part 2 Part 3
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Ruin 
JavaScript

Ruin 
JavaScript 
with birds

Ruin 
JavaScript 
and The 
Birds

Part 1 Part 2 Part 3

Apologise
Part 4
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Rewrite 
JavaScript
With nothing but functions
•All functions must take only one argument 
•Functions can return other functions 
•We will use assignments to make things easier to explain
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Ruining JavaScript
Part 1
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Replacing 
Booleans

P a r t  1
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Replacing 
Numbers

P a r t  2
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What is a number, anyway?
Replacing Numbers

2
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What is a number, anyway?
Replacing Numbers

2
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What is a number, anyway?
Replacing Numbers

2
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What is a number, anyway?
Replacing Numbers

2
Representation Meaning Meaning
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How can we represent quantities with functions?
Replacing Numbers
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How can we represent quantities with functions?
Replacing Numbers

Function applications!



100

!82

How can we represent quantities with functions?
Replacing Numbers

Function applications!



100

!83

How can we represent quantities with functions?
Replacing Numbers

Function applications!
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How can we represent quantities with functions?
Replacing Numbers

Function applications!
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Replacing 
Arithmetics

P a r t  3
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!86WRAPPERS
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!87PAIRS
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INCREMENTING 
PAIRS
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Replacing 
Arithmetics

P a r t  3

PREDECESSOR
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!90WRAPPERS
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Pairs
Replacing arithmetics
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Pairs
Replacing arithmetics

First we store something.
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Pairs
Replacing arithmetics

Then we apply whatever is stored to a function
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!94PAIRS
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Pairs
Replacing arithmetics
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Pairs
Replacing arithmetics

First we store two values.
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Pairs
Replacing arithmetics

Then we tell which one we want.
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Pairs
Replacing arithmetics
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Pairs
Replacing arithmetics
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INCREMENTING 
PAIRS
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Replacing arithmetics

Incrementing Pairs

{ 0, 1 }{ 0, 0 }
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Replacing arithmetics

{ 1, 2 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }
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Replacing arithmetics

{ 1, 2 } { 2, 3 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 }Five

Incrementing Pairs

{ 0, 1 }{ 0, 0 }
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 0, 1 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x1Five
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 1, 2 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x2Five
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 2, 3 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x3Five
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 3, 4 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x4Five
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Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 4, 5 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x5

Predecessor

Five
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Replacing 
Arithmetics

P a r t  3

PREDECESSOR
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Replacing arithmetics

The Predecessor Function

N x INCREMENT_PAIR(0, 0)First of
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Replacing arithmetics

The Subtraction Function

Predecessor of N K times
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Replacing 
Boolean 
Operators

P a r t  4
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Alpha Equivalence
RUINING JAVASCRIPT
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Renaming
RUINING JAVASCRIPT

λx. λy. x(y(z)) {a/x}

Renaming "x" to "a"
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Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z))
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Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z)) {b/y}

Renaming "y" to "b"
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Renaming
RUINING JAVASCRIPT

λa. λb. a(b(z))



100

!121

Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z)) {c/z}

Renaming "z" to "c"
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Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z))
Same thing! Z is not an argument!
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Ruining JavaScript With Birds
Part 2
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Combinators
Our Birds

Functions that don't 
have free variables.

const combinator  = a => b => a

const withContext = a => b(a)
a is bound and b is free

both a and b are bound
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Combinators
Our Birds
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Combinators
Our Birds
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Combinators
Our Birds



100

!128

Combinators
Our Birds
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To Mock a 
Mockingbird

C o m b i n a t o r s  a n d  B i r d s
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"Combinatory logic is a notation to 
eliminate the need for quantified variables 

in mathematical logic."

https://en.wikipedia.org/wiki/Quantifier_(logic)
https://en.wikipedia.org/wiki/Mathematical_logic
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Combinators

The Idiot Bird
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Combinators

The Kestrel
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Combinators

The Kite
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Combinators

The Cardinal
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Combinators

The Vireo
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Combinators

The Bluebird
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Combinators

The Thrush
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Combinators

The Starling
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One last combinator
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bit.ly/2PLFJkn - lucasfcosta.com

https://bit.ly/2PLFJkn
http://lucasfcosta.com


100

!143

Combinators

Replacing Functions (Successor)

const SUCCESSOR = n => f => x => f(n(f)(x))
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Combinators

const SUCCESSOR = n => f => B(f)(n(f))              

Replacing Functions (Successor)
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Combinators

const SUCCESSOR = n => f => B(f)(n(f))              

Replacing Functions (Successor)
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Combinators

const SUCCESSOR = n => f => B(f)(n(f))              
const SUCCESSOR = S(B)

Replacing Functions (Successor)
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Combinators

Replacing Functions (Addition)

const ADDITION = n => k => n(SUCESSOR)(k)              
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Combinators

Replacing Functions (Addition)

const ADDITION = n => k => n(S(B))(k)              
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Combinators

Replacing Functions (Addition)

const ADDITION = k => Th(S(B))(k)              
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Combinators

Replacing Functions (Addition)

const ADDITION = C(Th)(Th(S(B)))      
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Ruining JavaScript and the Birds
Part 3
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WHAT IF I TOLD YOU 
YOU ONLY NEED 
TWO COMBINATORS?
Yes, that's right. Two.



SK
SK Calculus

S K
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SK Calculus
Replacing Numbers

People also call it SKI Calculus
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SK Calculus
Replacing Numbers

People also call it SKI Calculus
Because it's more convenient to have I
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SK Calculus
Replacing Numbers

People also call it SKI Calculus

const I = S(K)(K)

Because it's more convenient to have I
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SK Calculus
Replacing Numbers

const KI = K(S(K)(K))
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SK Calculus
Replacing Numbers

const KI = K(I)
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SK Calculus
Replacing Numbers

const KI = K(I)
const B = S(K(S))(K)
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SK Calculus
Replacing Numbers

const KI = K(I)
const B = S(K(S))(K)

const C = 
((S((S(K((S(KS))K)))S))(KK)) 

Of course!
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SK Calculus
Replacing Numbers

http://www.angelfire.com/tx4/cus/combinator/birds.html



100

!162

What does this mean?
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What does this mean?

If we can replace all code by functions
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What does this mean?

If we can replace all code by functions
Replace all functions by combinators
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What does this mean?

If we can replace all code by functions
Replace all functions by combinators
And replace all combinators by S and K
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What does this mean?

If we can replace all code by functions
Replace all functions by combinators
And replace all combinators by S and K

Then we can replace all code by S and K
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What does this mean?

https://crypto.stanford.edu/~blynn/lambda/sk.html

http://xn--wxak1a.com/blog/Combinators.html

https://crypto.stanford.edu/~blynn/lambda/sk.html
http://xn--wxak1a.com/blog/Combinators.html
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Apologising
Part 4
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Apologising
Part 4

Functional Programming

Combinatory Logic

Computability Theory Maths™

Compiler Theory

Recursion

Wanting to frame  
Gödel pictures to 

hang in your room
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Thank you!

Shhh, no tears. Only lambdas now.

@THEWIZARDLUCAS (TWITTER)

@LUCASFCOSTA (GITHUB)
LUCASFCOSTA.COM

http://LUCASFCOSTA.COM

