
100

!1

There is a Bluebird in my
Talk that Wants to Get out

Rewriting JavaScript

THEWIZARDLUCAS

100

!2

THEWIZARDLUCAS

I'm Lucas

100

!3

THEWIZARDLUCAS

I'm Lucas, The Wizard

100

!4

@THEWIZARDLUCAS

L O N D O N

lucasfcosta.com

100

!5

@THEWIZARDLUCAS

L O N D O N

lucasfcosta.com

100

!6

100

!7

100

!8

Right, but will you
talk about birds?

100

!9

This is a talk about
Lambda Calculus

100

!10

Calculus !== Numbers

100

!11

Fun

100

!12

Fun

100

!13

Functions

100

!14

Lambda Calculus
is what is behind
Functional
Programming

100

!15

Is it useful?

100

!16

100

!17

100

!18

100

!19

100

!20

100

100

!22

Everything
is an

expression

In Lambda Calculus

λ

100

!23

Everything
evaluates
to a value

In Lambda Calculus

λ

100

!24

This is Lambda Calculus
RUINING JAVASCRIPT

0

E
Expression

100

!25

This is Lambda Calculus
RUINING JAVASCRIPT

1 2 3 4

Identifier

ID λID. E E E (E)

Abstraction Application Grouping
Function definitions Invocation

100

!26

This is a lambda
RUINING JAVASCRIPT

λa. a

100

!27

This is a lambda
RUINING JAVASCRIPT

λa. a
Metavariable Body

100

!28

This is a lambda
RUINING JAVASCRIPT

a arg
a(arg)

Applying arg to a

100

!29

This is a lambda
RUINING JAVASCRIPT

arg
We get back arg

λa. a

100

!30

This is a lambda
RUINING JAVASCRIPT

λa. a
It can only take a single argument!

100

!31

This is a lambda
RUINING JAVASCRIPT

λa. λb. b
Lambdas can return other lambdas

100

!32

This is a lambda
RUINING JAVASCRIPT

λa. λb. b
Currying

100

!33

This is a lambda
RUINING JAVASCRIPT

a => b => b
In JavaScript...

100

!34

This is a lambda
RUINING JAVASCRIPT

100

!35

This is a lambda
RUINING JAVASCRIPT

In Haskell...

DivideThreeNumbers :: Int -> Int -> Int -> Int

100

!36

This is a lambda
RUINING JAVASCRIPT

(λx. x b) [x→y]
evaluation or substitution

100

!37

This is a lambda
RUINING JAVASCRIPT

(y b)
evaluation or substitution

100

!38

This is a lambda
RUINING JAVASCRIPT

(λx. x b) [b→y]

100

!39

This is a lambda
RUINING JAVASCRIPT

(λx. x b) [b→y]
b is not an argument!

100

!40

This is a lambda
RUINING JAVASCRIPT

Each evaluation step is
called a beta-reduction

100

!41

This is a lambda
RUINING JAVASCRIPT

We can only do beta
reduction when expressions

have beta-reduxes

100

!42

This is a lambda
RUINING JAVASCRIPT

We can only do beta
reduction when expressions
contain an applicative form

100

!43

This is a lambda
RUINING JAVASCRIPT

When an expression cannot be
further evaluated it is said to be in

its beta-normal form

100

!44

This is a lambda
RUINING JAVASCRIPT

λx. λy. + y (+ x 1)

100

!45

This is a lambda
RUINING JAVASCRIPT

λx. λy. + y (+ x 1) 4 2

100

!46

This is a lambda
RUINING JAVASCRIPT

(λx. λy. + y (+ x 1)) 4 2
(λx. λy. + y (+ 4 1)) [x→4]

100

!47

This is a lambda
RUINING JAVASCRIPT

(λx. λy. + y (+ x 1)) 4 2
(λx. λy. + y (+ 4 1)) [x→4]

(λy. + y (+ 4 1))

100

!48

This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2

100

!49

This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2
(λy. + y (+ 4 1)) [y→2]

100

!50

This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2
(λy. + y (+ 4 1)) [y→2]

(+ 2 (+ 4 1)) [y→2]

100

!51

This is a lambda
RUINING JAVASCRIPT

(λy. + y (+ 4 1)) 2
(λy. + y (+ 4 1)) [y→2]

(+ 2 (+ 4 1)) [y→2]
(+ 2 (+ 4 1))

100

!52

This is a lambda
RUINING JAVASCRIPT

(+ 2 (+ 4 1))
(+ 2 5)

(7)

100

!53

This is a lambda
RUINING JAVASCRIPT

x y z

100

!54

This is a lambda
RUINING JAVASCRIPT

x y z
How do we disambiguate?

100

!55

This is a lambda
RUINING JAVASCRIPT

x(y z) or (x y) z
?

100

!56

This is a lambda
RUINING JAVASCRIPT

(x y) z
applications are left associative

100

!57

This is a lambda
RUINING JAVASCRIPT

fn(first)(second)
just like when you write proper functional code

100

!58

This is a lambda
RUINING JAVASCRIPT

λ x. x y
How do we disambiguate?

100

!59

This is a lambda
RUINING JAVASCRIPT

(λ x. x) y or

?
(λ x. x y)

100

!60

This is a lambda
RUINING JAVASCRIPT

abstractions extend as much to
the far-right as possible

(λ x. x y)

100

!61

This is a lambda
RUINING JAVASCRIPT

this is why you might need
parenthesis to disambiguate

100

!62

Lambda Calculus
is another way of
representing
computation

100

!63

Lambda Calculus
is Turing Complete

100

!64

We can replace
any programming
language with
Lambda Calculus

100

!65

In this talk I'm
gonna write
JavaScript
with nothing
but functions

100

!66

I'm not the first one.

Programming
with nothing

By Tom Stuart

100

!67

I'm not the first one.

Programming
with nothing

By Tom Stuart

But I want to take it one step further.

100

!68

Ruin
JavaScript

Part 1

100

!69

Ruin
JavaScript

Ruin
JavaScript
with birds

Part 1 Part 2

100

!70

Ruin
JavaScript

Ruin
JavaScript
with birds

Ruin
JavaScript
and The
Birds

Part 1 Part 2 Part 3

100

!71

Ruin
JavaScript

Ruin
JavaScript
with birds

Ruin
JavaScript
and The
Birds

Part 1 Part 2 Part 3

Apologise
Part 4

100

!72

Rewrite
JavaScript
With nothing but functions
•All functions must take only one argument
•Functions can return other functions
•We will use assignments to make things easier to explain

100

!73

Ruining JavaScript
Part 1

100

!74

Replacing
Booleans

P a r t 1

100

!75

Replacing
Numbers

P a r t 2

100

!76

What is a number, anyway?
Replacing Numbers

2

100

!77

What is a number, anyway?
Replacing Numbers

2

100

!78

What is a number, anyway?
Replacing Numbers

2

100

!79

What is a number, anyway?
Replacing Numbers

2
Representation Meaning Meaning

100

!80

How can we represent quantities with functions?
Replacing Numbers

100

!81

How can we represent quantities with functions?
Replacing Numbers

Function applications!

100

!82

How can we represent quantities with functions?
Replacing Numbers

Function applications!

100

!83

How can we represent quantities with functions?
Replacing Numbers

Function applications!

100

!84

How can we represent quantities with functions?
Replacing Numbers

Function applications!

100

!85

Replacing
Arithmetics

P a r t 3

100

!86WRAPPERS

100

!87PAIRS

100

!88

INCREMENTING
PAIRS

100

!89

Replacing
Arithmetics

P a r t 3

PREDECESSOR

100

!90WRAPPERS

100

!91

Pairs
Replacing arithmetics

100

!92

Pairs
Replacing arithmetics

First we store something.

100

!93

Pairs
Replacing arithmetics

Then we apply whatever is stored to a function

100

!94PAIRS

100

!95

Pairs
Replacing arithmetics

100

!96

Pairs
Replacing arithmetics

First we store two values.

100

!97

Pairs
Replacing arithmetics

Then we tell which one we want.

100

!98

Pairs
Replacing arithmetics

100

!99

Pairs
Replacing arithmetics

100

!100

INCREMENTING
PAIRS

100

!101

Replacing arithmetics

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

100

!102

Replacing arithmetics

{ 1, 2 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

100

!103

Replacing arithmetics

{ 1, 2 } { 2, 3 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

100

!104

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

100

!105

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

100

!106

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 }Five

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

100

!107

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 0, 1 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x1Five

100

!108

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 1, 2 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x2Five

100

!109

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 2, 3 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x3Five

100

!110

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 3, 4 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x4Five

100

!111

Replacing arithmetics

{ 1, 2 } { 2, 3 }
{ 4, 5 } { 5, 6 }
{ 0, 0 } { 4, 5 }

Incrementing Pairs

{ 0, 1 }{ 0, 0 }

x5

Predecessor

Five

100

!112

Replacing
Arithmetics

P a r t 3

PREDECESSOR

100

!113

Replacing arithmetics

The Predecessor Function

N x INCREMENT_PAIR(0, 0)First of

100

!114

Replacing arithmetics

The Subtraction Function

Predecessor of N K times

100

!115

Replacing
Boolean
Operators

P a r t 4

100

!116

Alpha Equivalence
RUINING JAVASCRIPT

100

!117

Renaming
RUINING JAVASCRIPT

λx. λy. x(y(z)) {a/x}

Renaming "x" to "a"

100

!118

Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z))

100

!119

Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z)) {b/y}

Renaming "y" to "b"

100

!120

Renaming
RUINING JAVASCRIPT

λa. λb. a(b(z))

100

!121

Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z)) {c/z}

Renaming "z" to "c"

100

!122

Renaming
RUINING JAVASCRIPT

λa. λy. a(y(z))
Same thing! Z is not an argument!

100

!123

Ruining JavaScript With Birds
Part 2

100

!124

Combinators
Our Birds

Functions that don't
have free variables.

const combinator = a => b => a

const withContext = a => b(a)
a is bound and b is free

both a and b are bound

100

!125

Combinators
Our Birds

100

!126

Combinators
Our Birds

100

!127

Combinators
Our Birds

100

!128

Combinators
Our Birds

100

!129

To Mock a
Mockingbird

C o m b i n a t o r s a n d B i r d s

100

!130

"Combinatory logic is a notation to
eliminate the need for quantified variables

in mathematical logic."

https://en.wikipedia.org/wiki/Quantifier_(logic)
https://en.wikipedia.org/wiki/Mathematical_logic

100

!131

Combinators

The Idiot Bird

100

!132

Combinators

The Kestrel

100

!133

Combinators

The Kite

100

!134

Combinators

The Cardinal

100

!135

Combinators

The Vireo

100

!136

Combinators

The Bluebird

100

!137

Combinators

The Thrush

100

!138

Combinators

The Starling

100

!139

One last combinator

100

!140

100

!141

100

!142

bit.ly/2PLFJkn - lucasfcosta.com

https://bit.ly/2PLFJkn
http://lucasfcosta.com

100

!143

Combinators

Replacing Functions (Successor)

const SUCCESSOR = n => f => x => f(n(f)(x))

100

!144

Combinators

const SUCCESSOR = n => f => B(f)(n(f))

Replacing Functions (Successor)

100

!145

Combinators

const SUCCESSOR = n => f => B(f)(n(f))

Replacing Functions (Successor)

100

!146

Combinators

const SUCCESSOR = n => f => B(f)(n(f))
const SUCCESSOR = S(B)

Replacing Functions (Successor)

100

!147

Combinators

Replacing Functions (Addition)

const ADDITION = n => k => n(SUCESSOR)(k)

100

!148

Combinators

Replacing Functions (Addition)

const ADDITION = n => k => n(S(B))(k)

100

!149

Combinators

Replacing Functions (Addition)

const ADDITION = k => Th(S(B))(k)

100

!150

Combinators

Replacing Functions (Addition)

const ADDITION = C(Th)(Th(S(B)))

100

!151

Ruining JavaScript and the Birds
Part 3

100

!152

WHAT IF I TOLD YOU
YOU ONLY NEED
TWO COMBINATORS?
Yes, that's right. Two.

SK
SK Calculus

S K

100

!154

SK Calculus
Replacing Numbers

People also call it SKI Calculus

100

!155

SK Calculus
Replacing Numbers

People also call it SKI Calculus
Because it's more convenient to have I

100

!156

SK Calculus
Replacing Numbers

People also call it SKI Calculus

const I = S(K)(K)

Because it's more convenient to have I

100

!157

SK Calculus
Replacing Numbers

const KI = K(S(K)(K))

100

!158

SK Calculus
Replacing Numbers

const KI = K(I)

100

!159

SK Calculus
Replacing Numbers

const KI = K(I)
const B = S(K(S))(K)

100

!160

SK Calculus
Replacing Numbers

const KI = K(I)
const B = S(K(S))(K)

const C =
((S((S(K((S(KS))K)))S))(KK))

Of course!

100

!161

SK Calculus
Replacing Numbers

http://www.angelfire.com/tx4/cus/combinator/birds.html

100

!162

What does this mean?

100

!163

What does this mean?

If we can replace all code by functions

100

!164

What does this mean?

If we can replace all code by functions
Replace all functions by combinators

100

!165

What does this mean?

If we can replace all code by functions
Replace all functions by combinators
And replace all combinators by S and K

100

!166

What does this mean?

If we can replace all code by functions
Replace all functions by combinators
And replace all combinators by S and K

Then we can replace all code by S and K

100

!167

What does this mean?

https://crypto.stanford.edu/~blynn/lambda/sk.html

http://xn--wxak1a.com/blog/Combinators.html

https://crypto.stanford.edu/~blynn/lambda/sk.html
http://xn--wxak1a.com/blog/Combinators.html

100

!168

Apologising
Part 4

100

!169

Apologising
Part 4

Functional Programming

Combinatory Logic

Computability Theory Maths™

Compiler Theory

Recursion

Wanting to frame  
Gödel pictures to

hang in your room

100

!170

References
http://codon.com/programming-with-nothing

http://www.angelfire.com/tx4/cus/combinator/birds.html

https://bit.ly/2xpcPKn A Flock of Functions - Gabriel Lebec

List of Notorious Combinators

The blog post for the talk I mentioned in the beginning

https://speakerdeck.com/tomstuart/programming-with-nothing Slides for the talk "Programming with Nothing"

https://amzn.to/2BVVsa1 To Mock a Mockingbird - Raymond Smullyan

http://computationbook.com Understanding Computation - Tom Stuart

https://www.youtube.com/watch?v=_kYGDJSm0gE - ASU Lectures - Lambda Calculus by Adam Doupé

100

!171

Thank you!

Shhh, no tears. Only lambdas now.

@THEWIZARDLUCAS (TWITTER)

@LUCASFCOSTA (GITHUB)
LUCASFCOSTA.COM

http://LUCASFCOSTA.COM

