There is a Bluebird in my

...................

THEWIZARDLUCAS

I'm Lucas

THEWIZARDLUCAS

I'm Lucas, The Wizard

THEWIZARDLUCAS

, /’/// =N
LONDON
\\ ///‘

—

@THEWIZARDLUCAS

lucasfcosta.com

»/>

~ LONDON

N

B 4

—

@THEWIZARDLUCAS

lucasfcosta.com

1. * Javascri

of Our Industry (\ucasfcosta.com)

| 99 comments

pt Fatigue: Realities
2 days ago | past | web

130 points by lucasfcosta

1. * JavaScript Fatigue
lucasfcosta 2

£ Our Industry (\ucasfcosta.com)

- Realities O
b | 99 comments

days ago | past | We

130 points by

A rv77ax 2 days ago [-]

I
bet the author use space instead of tab

reply

This is a talk about
Lambda Calculus

Calculus !== Numbers

11

12

Lambda Calculus
is what is behind

= stackoverflow

17

How helpful is knowing lambda calculus? [closed]

To all the people who know lambda calculus: What benefit has it bought you, regarding
programming? Would you recommend that people learn it?

69

math functional-programming computer-science lambda-calculus

18

it to know about Turing machines? Well, if you write C, the language paradigm is quite close to
Turing machines -- you have an instruction pointer and a current instruction, and the machine takes
some action in the current state, and then ambles along to the next instruction.

In a functional language, you simply can't think like that -- that's not the language paradigm. You

have to think back to lambda calculus, and how terms are evaluated there. It will be much harder for
you to be effective in a functional language if you don't know lambda calculus.

share improve this answer answered Sep 22 '08 at 12:55

EfForEffort
547k » 4 26

19

essential.

N i 3 ' 3
. Y -
- - . Y
\ . I. - =
. U - - -
’ . =
‘.) . ' .
' . ’ ¥ a = -
» -
. . . -
- 2 -
S . r ’ 3 A <
- v . = v .
. A ' & N .
| . -
. A 3
. \, . a - .
'
e . 1 - N = - Y z
+

In Lambda Calculus

Everything
IS an —
expression

iill-..:.:':.‘..:\: ' \
NS

o Lo pE

Iliiii—a

22

In Lambda Calculus

Everything
evaluates
to a value

23

\ !!..!!!iiié

24

RUINING JAVASCRIPT

This is Lambda Calculus

0

E

Expression

25

RUINING JAVASCRIPT

This is Lambda Calculus

1 2 3 4

ID AMD.E EE (E)

Identifier Abstraction Application Grouping

Function definitions Invocation

26

RUINING JAVASCRIPT

This is a lambda

Ad. a

27

RUINING JAVASCRIPT

This is a lambda

Ad. a

Metavariable Body

RUINING JAVASCRIPT

This is a lambda

a(arg)

a arg

Applying arg to o

RUINING JAVASCRIPT

This is a lambda

Aa. a

arg

We get back arg

RUINING JAVASCRIPT

This is a lambda

Ad. a

It can only take a single argument!

RUINING JAVASCRIPT

This is a lambda

Aa. Ab. b

Lambdas can return other lambdas

RUINING JAVASCRIPT

This is a lambda

Aa. Ab. b

Currying

G JAVASCR

RUINI.N _ 1=
This is a lambda

a=>0b=>0

In JavaScript...

34

RUINING JAVASCRIPT

This is a lambda

const add = (a) => (b) => a + b;
const addTwo = add(2);

console. log(addTwo(3));

35

RUINING JAVASCRIPT

This is a lambda

DivideThreeNumbers :: Int -> Int -> Int -> Int

In Haskell...

RUINING JAVASCRIPT

This is a lambda

(AX. X b) [x— V]

evaluation or substitution

RUINING JAVASCRIPT

This is a lambda

(y b)

evaluation or substitution

G JAVASCR

RUINI.N _ 1=
This is a lambda

(AX. X b) [bD— Y]

RUINING JAVASCRIPT

This is a lambda

(AX. X b) [bD— Y]

b Is not an argument!

This is a lambda

Each evaluation IS
called a

This is a lambda

We can only do beta
reduction when expressions
have

This is a lambda

We can only do beta
reduction when expressions
contain an

RUINING JAVASCRIPT

This is a lambda

When an expression cannot be
further evaluated It i1s said to be In
its beta-normal form

RUINING JAVASCRIPT

This is a lambda

AX. AV, +V (+x 1)

RUINING JAVASCRIPT

This is a lambda

AX.AY. +V (+Xx1) 42

RUINING JAVASCRIPT

This is a lambda

(AX.AV. +V (+x 1)) 4 2
(AX. Ay. + v (+ 4 1)) [x—4]

RUINING JAVASCRIPT

This is a lambda

(AX.AV. +V (+x 1)) 4 2
(AX. Ay. + v (+ 4 1)) [x—4]
(Ay. + v (+ 4 1))

RUINING JAVASCRIPT

This is a lambda

(Ay. +v (+4 1)) 2

RUINING JAVASCRIPT

This is a lambda

(Ay. +v (+4 1)) 2
(Ay. +v (+ 4 1)) [y—2]

RUINING JAVASCRIPT

This is a lambda

(Ay. +v (+4 1)) 2
(Ay. +v (+ 4 1)) [y—2]
(+2(+41)) [y—2]

UINING JAVASCRIPT

RTlﬁis IS @ Ilambdu
(Ay. + v (+4 1)) 2

(Ay. +v (+ 4 1)) [y—2]

(+2(+4 1)) [y—2]
(+ 2 (+ 4 1))

RUINING JAVASCRIPT

This is a lambda

(+ 2 (+ 4 1))
(+ 2 5)

v

53

RUINING JAVASCRIPT

This is a lambda

XVYZ

RUINING JAVASCRIPT

This is a lambda

XVYZ

How do we disambiguate?

RUINI.NG J_A\/ASCRIPT
This is a lambda

X(y Z); (Xy)z

56

RUINING JAVASCRIPT

This is a lambda

(XYy)z

applications are

associative

RUINING JAVASCRIPT

This is a lambda

fn(first)(second)

just like when you write proper functional code

RUINING JAVASCRIPT

This is a lambda

AX. XY

How do we disambiguate?

RUINI.NG J_A\/ASCRIPT
This is a lambda

AX.X)V oo (AX.XY)
?

RUINING JAVASCRIPT

This is a lambda

(A X. X V)

abstractions as much to
the as possible

RUINING JAVASCRIPT

This is a lambda

this is why you might need
parenthesis to disambiguate

Lambda Calculus
is another way of
representing

Lambda Calculus
is Turing Complete

We can replace
any programming
language with
Lambda Calculus

65

PROGRAMMING |
WITH Wit fothing

NOTHING

Tomstvort « RUSY MANOR - 20111025

PROGRAMMING

WITH "With nothing

NOTHING

-~ RUIY MANOR -

67

Part 1

68

69

Part 2

70

Part 2

Part 1 Part 2

prasn s
.lA

,.li S N "’1/

(@ £
"s.g gg. AQ!gélh A\'I...

72

 All functions must take only one argument
e Functions can return other functions
e We will use assignments to make things easier to explain

Ruining JavaScript

74

Part 1

Replacing
Booleans

75

Part 2

Replacing
Numbers

. 5ol

W, *
. !
. € \D |

US

Replacing Numbers

What is a number, anyway?

77

Replacing Numbers

What is a number, anyway?

78

Replacing Numbers

What is a number, anyway?

79

Replacing Numbers

What is a number, anyway?

Representation

Meaning

Meaning

80

Replacing Numbers

How can we represent quantities with functions?

81

Replacing Numbers

How can we represent quantities with functions?
Function applications!

const ZERO = f => x => X

82

Replacing Numbers

How can we represent quantities with functions?
Function applications!

00
const ZERO = f => x => X
const ONE = f => x => f(x)

83

Replacing Numbers

How can we represent quantities with functions?
Function applications!

const ZERO f => X => X
const ONE = f => x => f(x)
const TWO f =>x=> f(f(x))

Replacing Numbers

How can we represent quantities with functions?
Function applications!

00

const ZERO = f => x => X

const ONE = f => x => f(x)

const TWQ = f => x => f(f(x))

const THREE = f => x => f(f(f(x)))

const FOUR = f => x => f(f(f(f(x))))

const FIVE = f == x => f(f(f(f(f(x)))))
const SIX = f => x => f(f(f(f(f(f(x))))))

85

Part 3

Replacing
Arithmetics

- -
0%

iy pra
ck ot wsa .;.,
; wanyah CPETAL of
1) B, - qranice plastycang
— wytrzymalose ae
Wy ". 26 my s ;

91

Replacing arithmetics

Pairs

const WRAP = (a) => (f) => f(a)

Replacing arithmetics

const WRAP = (a) => (f) => f(a)

First we store something.

93

Replacing arithmetics

Pairs

const WRAP = (a) => (f) =>@

Then we apply whatever is stored to a function

95

Replacing arithmetics

Pairs

const PAIR = x =>y => f => f(x)(y)

96

Replacing arithmetics

const PAIR =®=>@=> f = f(x)(y)

First we store two values.

97

Replacing arithmetics

Pairs

const PAIR = x => y =>(f)=> f(x)(y)

Then we tell which one we want.

98

Replacing arithmetics

Pairs

const TRUE = a => b => a
const FALSE = a == b => Db

const PAIR = x => y => f => f(x)(y)

99

Replacing arithmetics

Pairs

const FIRST = a == b => a
const SECOND = a => b == b

const PAIR = x => y => f => f(x)(y)

Replacing arithmetics

Incrementing Pairs

{0,0} {0,1}

Replacing arithmetics

Incrementing Pairs

{0,0} {0,171}
11,2}

Replacing arithmetics

Replacing arithmetics

Replacing arithmetics

Incrementing Pairs

{0,0} {0,1}
11,2} {23}
14,5} {5,6}

I

Replacing arithmetics

Incrementing Pairs

{0,0}
{1,2}
{4,5}
Five {0,0}

N AN

U1 N O
(@) U U
— N

Replacing arithmetics

Incrementing Pairs

{0,0}
{1,2}
{4,5}
Five {0,0}

Replacing arithmetics

Incrementing Pairs

{0,0}
{1,2}
{4,5}
Five {0,0}

Replacing arithmetics

Incrementing Pairs

{0,0}
{1,2}
{4,5}
Five {0,0}

Replacing arithmetics

Incrementing Pairs

{0,0}
{1,2}
{4,5}
Five {0,0}

Replacing arithmetics

Incrementing Pairs

{0,0}
{1,2}
{4,5}
Five {0,0}

Predecessor

Replacing arithmetics

The Predecessor Function

const PREDECESSOR = n => n{INCREMENT_ PAIR)(PAIR(ZERO)(ZERO))}(TRUE)

First ()f N x INCREMENT _PAIR(0, O)

113

Replacing arithmetics

The Subtraction Function

const SUBTRACTION = n => k => K(PREDECESSOR)(n)

Predecessor of N K times

114

Replacing
Boolean
Operators

115

RUINING JAVASCRIPT

Alpha Equivalence

const FALSE = a => b => b
const ZERO = f => x => X

116

RUINING JAVASCRIPT

Renaming

AxX. Ay. x(y(z)) {a/x}

Renaming "x" to "a”

RUINING JAVASCRIPT

Renaming

ANa. Ay. a(v(z))

RUINING JAVASCRIPT

Renaming

Aa. Ay. a(y(z)) {b/y}

Renaming "y" to "b"

RUINING JAVASCRIPT

Renaming

ANa. Ab. a(b(z))

RUINING JAVASCRIPT

Renaming

ANa. Ay. a(y(z)) {c/z}

Renaming "z" to "c”

RUINING JAVASCRIPT

Renaming

ANa. Ay. a(y(z))

Same thing! Z is not an argument!

Ruining JavaScript With Birds

™
. A

const withContext = a => b(a)

Functions that don't ais bound and b is free
have free variables.

const combinator = a => b => a

both a and b are bound

- =

const one = X => X - X

- =

const two = X => X + Yy

- =

const three = x =>y + Z

. A

const four = (x) => (y) => X + VY

Combinators and Birds

To Mock a
Mockingbird

129

"Combinatory logic is a notation to
eliminate the need ror quantified variables
in mathematical logic

https://en.wikipedia.org/wiki/Quantifier_(logic)
https://en.wikipedia.org/wiki/Mathematical_logic

Combinators

The Idiot Bird

const 1. = X => X const IF = x => Xx

131

132

Combinators

The Kestrel

const K=a =>0b

const TRUE = a => b

=> a

=> a

Combinators

The Kite

const KI = a=>Db=>0

const FALSE = a => b => b

133

Combinators

The Cardinal

const C = f =>a == Db => f(b)(a)

const NOT = f => a == b == f(b)(a)

134

Combinators

The Vireo

const V=f == a =>Db => f(a)(b)

const PAIR = f == a => b => f(a)(b)

135

Combinators

The Bluebird

const B=f => g =>a = f(g(a))

const MULTIPLICATION

n =>KkK=>°F => n(k(f))

136

Combinators

The Thrush

const Th = a == f => f(a)

137

Combinators

The Starling

const S =f == g =>x => f(x)(g(x))

138

One last combinator

Why did you choose the name “Y Combinator?”

The Y combinator is one of the coolest ideas in computer science. It's also a

metaphor for what we do. It's a program that runs programs; we're a company that
helps start companies.

141

Y: The Most Beautiful Idea in Computer
Science explained in JavaScript

20th of May, 2018 Lucos Fernandes da Costa at London, United Kingdom =

bit.ly/2PLFJkn - lucasfcosta.com

142

https://bit.ly/2PLFJkn
http://lucasfcosta.com

Combinators

Replacing Functions (Successor)

const B=f == ¢g =>a => f(g(a))

const SUCCESSOR = n => f => x => f(n(f)(x))

143

Combinators

Replacing Functions (Successor)

const B=f =>¢g => a => f(g(a))

const SUCCESSOR = n => f => B(f)(n(f))

144

Combinators

Replacing Functions (Successor)

const S =°Ff =>9g => x => f(x)(g(x))

const SUCCESSOR = n => f => B(f)(n(f))

145

Combinators

Replacing Functions (Successor)

const S =f == ¢g =>x = f(x)(g(x))

const SUCCESSOR = n => f => B(f)(n(f))
const SUCCESSOR = S(B)

146

Combinators

Replacing Functions (Addition)

const SUCCESSOR = 5(B)

const ADDITION = n => k => n(SUCESSOR) (k)

Ly

Combinators

Replacing Functions (Addition)

const SUCCESSOR = 5(B)

const ADDITION

n => k => n(S(B))(k)

148

Combinators

Replacing Functions (Addition)

const Th = a == f => f(a)

const ADDITION = k => Th(S(B))(k)

149

Combinators

Replacing Functions (Addition)

const C =f =>a =>Db => f(b)(a) const Th = a =>f => f(a)

const ADDITION = C(Th)(Th(S(B)))

150

Ruining JavaScript and the Birds

LTAHES A

2

|

W const S=Ff=>qg=>x=>f(x)(g(x))

i
' ’

SK

: ‘E:Iculwi |

s

Replacing Numbers

SK Calculus

People also call it SKI Calculus

154

Replacing Numbers

SK Calculus

People also call it SKI Calculus

Because it's more convenient to have |

155

eeeeeeeeeeeeeeee

SK Calculus

People also call it SKI Calculus

Because it's more convenient to have |

const I = S(K)(K)

eeeeeeeeeeeeeeee

SK Calculus

const KI = K(S(K)(K))

eeeeeeeeeeeeeeee

SK Calculus

const KI = K(I)

eeeeeeeeeeeeeeee

SK Calculus

const KI = K(I)
const B = S(K(S))(K)

eeeeeeeeeeeeeeee

SK Calculus

const KI = K(I)
const B = S(K(S))(K)

const C =
((SCCSCKC(S(KS))K)))S))(KK))

Of course!

Replacing Numbers

SK Calculus http://www.angelfire.com/tx4/cus/combinator/birds.html

Combinator Birds
Faan diwnr Absds ot um R K Condriominn
hc) Y (35 S ULY
vt o) Hhwebhond i (SIS ES) KK soE D
bl alaede . Bumting BB38 B FUE RCE(RSNEN) SR DN (GIKS
XX abDod) Hecand 'l':l$1 E (MNGS AL SRS D ISASI RODXIMKSIAD
b ach Cerdind £(3BE)EER) (SN (K SHENENRR)
Mabnal i) ' Duve BB AKAIRI)
G abo e Dot MBS NRCSRONSINE DD
bbads Al W) 2 Davebias TR OUO S K)o LSkl
bl atyad: Eagic MIssn SRUSCSICHRI R0 MRS ok 00
bl sibeCe ¢ Bald Lagle (IS4 (BRI IO RCMASIR DN ISIKNKINY M KN IS KMKINIMESDRDN
T P Fivh FTTEY (SIS GE K EASISOSKIE DD DMXIKOSIEOSIXSDEDNSIR S KBS KOOSR N OL M
kbad ad(><) : Collfzch EBC (EUE BE) K) W ECSRA MRS DS IS ERD)
b atxl Maruw BWIE) RS VAR AR TR SR TR LS YIRS TS AR N SO TR S TR TS LS NYOLTNR IS = S EL TS = SRS S N SR ST S ST
ha Moty Bard (aka LoD DEK (AKX
"/ BT CAMROE RER)) SRS S S K S R0 (a0 S OSIEMSOSKE R M SE RO DS KON TSR) (SRSOSKX DIE OMKUS ROSUS ECSESDE DS R K)
SR URTENETL S TN S5 SO
bha Aesirel | (ne) S
bb abh) Lart 4 s KOS GE) (SO om
has) Movldrgrec { DASKE)
Tobs al (it M. Dwilre Now g !
b Nad) N f NSO ¥
b Bawr Q Quoer Bix (SRUSCE(RSNENER)
kb a{ch i‘; Quicctc Dhrd I
B Meay 2 uieacs Ky K ENISUSIRHSONENSIKSDX DN ILL DI NEADE NN K)
bbco{eb Q0 Duicky [Nad SRASRIEOSRE)
BOC.O b Dscty By RS SEATES SIS T AT SR LS STIERY] AN IMENN OIISHSIERRDINISISSINGD
b bea ¥ [OIS RS) KO NSO SO ok
b ite) . - 0
b re T K (SIS0 SRS JOK)
161 b Moy] g CSAKSOSEOKCY W SCSKIK WSE KON

bbccab ; "Vreo (alos Pars [OIS GASIAS) K S O x e

-

!

¥

l

%

; 4

_.uu -
i {...!mu..) Pnn' =

.
———

7 =

!

)

an

w

\What does this me

- ——

/

N
-

162

163

\

- |
What does

If we can replace all code by functions

this mean?

164

\

) 4
A
i

- ﬁl
What does

If we can replace all code by functions
Replace all functions by combinators

this mean?

-~ ﬂ l

\)j‘
!

What does this mean?.

If we can replace a

Replace all functio
And replace all com

165

| code by functions
ns by combinators

vinators by S and K

166

LR l
- BB

What does

If we can replace a

Replace all functio
And replace all com

\
P

|

this mean?

| code by functions
ns by combinators

vinators by S and K

Then we can replace all code by S and K

167

What does this mean?

https://crypto.stanford.edu/~blynn/lambda/sk.html

http://xn--wxak1a.com/blog/Combinators.html

https://crypto.stanford.edu/~blynn/lambda/sk.html
http://xn--wxak1a.com/blog/Combinators.html

Apologising

Recursio =
n Unct;
("ctional prog,
ity T heo!y Mathg 4 m

omPUtab‘“
APOIog/Slng

Combip, ator Wanting to frame
y LOg; Godel pictures to
hang in your room

Compiler Theory

Min
C g

References

http://codon.com/programming-with-nothing = The blog post for the talk | mentioned in the beginning
https://speakerdeck.com/tomstuart/programming-with-nothing Slides for the talk "Programming with Nothing"
http://www.angelfire.com/tx4/cus/combinator/birds.html List of Notorious Combinators
https://bit.ly/2xpcPKn A Flock of Functions - Gabriel Lebec

https://amzn.to/2BVVsal To Mock a Mockingbird - Raymond Smullyan
http://computationbook.com Understanding Computation - Tom Stuart

https://www.youtube.com/watch?v=_kYGDJSmOZE - ASU Lectures - Lambda Calculus by Adam Doupé

170

Thank you!

@THEWIZARDLUCAS (TWITTER)

@LUCASFCOSTA (GITHUB)
LUCASFCOSTA.COM

171

Shhh, no tears. Only lambdas now.

http://LUCASFCOSTA.COM

