
State Management
beyond the libraries

@mweststrate - Mendix
HolyJS 2018

1

2

3

Rebranding of this conference
State management design

Introduction to MobX
Patterns are beautiful!

Conclusion

4

Rebranding of this conference

State management design
Introduction to MobX

Patterns are beautiful!
Conclusion

5

Getting information from A to B

And keeping all consumers up to date after mutation

Σ
State

Aggregates Lookup
tables

Server Storage UI
6

State management essentials

What are the moving parts?
How are changes propagated?

Where does state live?
How to deal with references?

7

The State Management Paradox

Amount of moving parts

Ease of reading, writing and optimization

Immutability

Object Oriented

8

“You wanted a banana but what you got was a gorilla holding
the banana and the entire jungle.”

Joe Armstrong

9

Let’s peel a banana

a.k.a. how hard is it to flip a boolean?

GIF

10

class Banana {
 peeled = false

 setPeeled(value) {
 this.peeled = value
 }
}

forest.trees[18].gorillas[“Joe”].banana.setPeeled(true)

11

function peelBanana(forest, treeIdx, gorillaName, peeled) {
 return {
 ...forest,
 trees: forest.trees.map((tree, idx) =>
 idx !== treeIdx ? tree : {
 ...tree,
 gorillas: {
 ...tree.gorillas,
 [gorillaName] : {
 ...tree.gorillas[gorillaName],
 banana: {
 ..tree.gorillas[gorillaName].banana,
 peeled: peeled
 }
 }
 }
 }
)
 }
}

store.setState(peelBanana(store.getState(), 18, “Joe”, true)) 12

Let’s not dismiss ideas with clever one liners

In JavaScript, nothing should be considered holy

Getting information from A to B

And keeping all consumers up to
date after mutation

13

Example: React setState

14

user = {...}

setState

imperative render()

no subscribers

Example: React setState

15

user = {}

user = {}

{user.name}

{user.name}

setState

update entire subtree

requires optimization

touches unrelated
components

Example: React setState

16

State management essentials

What are the moving parts?

How are changes propagated?
Where does state live?

How to deal with references?

17

user = {}

user = {}

{user.name}

{user.name}

subscribe to data higher
in tree

re-render on change

Example: React context

18

What should we subscribe to?

“Something changed”

“Some user changed”

“User 5423 changed ”

“User 5423.profile.address changed”

19

Context
Single event per context

Redux
Global event, but select relevant parts

MobX
Event per property, selection is automatic

20

MobX Demo

21

State management essentials

What are the moving parts?
How are changes propagated?

Where does state live?
How to deal with references?

22

Side effects can only live outside components, if state can

Σ
State

Aggregates Lookup
tables

Server Storage UI
23

React state
Component

Redux
Single store

MobX
User defined objects / classes

Decouple state
from UI layer

24

State management essentials

What are the moving parts?
How are changes propagated?

Where does state live?

How to deal with references?

25

class Person {

 constructor(father, mother, firstName) {
 this.father = father
 this.mother = mother
 this.firstName = firstName
 this.lastName = parent.lastName
 this.address = parent.address
 }

} Should change with parent!
(Unless..)

Should change with parent?

26

class Person {

 constructor(father, mother, firstName) {
 this.father = father
 this.mother = mother
 this.firstName = firstName
 this.lastName = parent.lastName
 }

 get address() {
 return this.stillLivingWithParents ?
 this.mother.address : this.ownAddress
 }

}

27

class Person {

 constructor(father, mother, firstName) {
 this.fatherID = father.id
 this.motherID = mother.id
 this.firstName = firstName
 this.lastName = parent.lastName
 }

 get address() {
 return this.stillLivingWithParents ?
 this.mother.address : this.ownAddress
 }

 get mother() {
 return citizenStore.get(this.motherID)
 }
}

28

Reference: Identity or Value?

function printPrice(book: Book) {
 setTimeout(
 () => console.log(book.price),
 1000
)
}

Price might have changed Price might be staleVS

29

State management essentials

What are the moving parts?
How are changes propagated?

Where does state live?
How to deal with references?

30

Rebranding of this conference
State management design

Introduction to MobX
Patterns are beautiful!

Conclusion

31

Everything that can be derived from state
should be derived. Automatically

Σ
State

Aggregates Lookup
tables

Server Storage UI
32

Observable values
state that can be change over time

Actions
interactions that change state

Computed values
values that can be derived

Reactions
side effects that should respond to state changes

33

Actions State Computed,
Reactions

Modify Updates

Σ
34

Demo

35

Store design

const store = observable({
 cities: {
 MSC: new City({ name: "Moscow", x: 17, y: 12 })
 AMS: new City({ name: "Amsterdam", x: 25, y: 7 })
 },
 arrows: [],
 selection: "MSC"
})

store.arrows.push(
 new Arrow({ from: store.cities. AMS, to: store.cities. MSC })
)

36

The Arrow Component

const ArrowView = ({ arrow }) => {
 const {from, to} = arrow;
 const [x1, y1, x2, y2] = [
 from.x + from.width/ 2,
 from.y + 30,
 to.x + to.width / 2,
 to.y + 30
]
 return <path className="arrow"
 d={`M${x1} ${y1} L${x2} ${y2}`}
 />
}

arrow.to
arrow.from

from.x
from.y
from.name

to.x
to.y
to.name

37

How MobX works

1. Wrap properties with getter /
setter

2. Store running function in a
stack

3. Getters register observers
4. Setters notify observers
5. MobX optimizes dependency graph

autorun

Function Stack

x * 2

get x

x

x

set x

38

Transparant Reactive Programming

Decoupling of producers & consumers of information

Straightforward to write

Optimized, minimal dependency tree

39

Rebranding of this conference
State management design

Introduction to MobX

Patterns are beautiful!
Conclusion

40

MobX or Redux?

Immutable or Mutable

41

42

43

Don’t 💩 on other ideas

44

New project...

React

Vue

Angular

Svelte

Ember

Webpack

Parcel

Browserify

ES5

ES6

TypeScript

Flow

Reason

Vanilla

Redux

RxJS

Apollo

MobX

Freestyler

Emotion

Fela

Styled JSS

React jSS

Rocky

Styled Components

Aphrodite

Glamour

Glamourus

x x x x

45

Gazillion of options

We can’t justify them all

We don’t want to be seen as ignorant either

46

Things I never used for real

Angular / Ember / Vue

Redux

RxJS

Immer

MobX-state-tree

47

Stop defending all the choices you don’t make

“Didn’t try” can be fine

48

but, you don’t have to use to be able learn!

You have to learn to be able to use

49

Software Engineering is about Patterns

50

MobX

Price 17

Amount 3

Total = Price * Amount
51

observe notify

51

Redux - Immutable Tree

52

Redux - Action

Action stream

Balance
Service

Analytics
Service

Debug Logging
Service

Payment
Action

53

The State Management Paradox

Amount of moving parts

Ease of reading, writing and optimization

Sweet spot

54

Can we apply Redux patterns to MobX ?

55

Snapshots

class Todo {
 @observable title
 @observable done

 @computed get snapshot() {
 return {
 title: this.title,
 done: this.done
 }
 }
}

56

Snapshots

class Todos {
 @observable todos = []

 @computed get snapshot() {
 return {
 todos: this.todos.map(todo => todo.snapshot)
 }
 }
}

57

Structural sharing with snapshots

Snapshot changes bubble up

Reuse unrelated snapshots

58

MobX-state-tree

59

 Redux MobX MST

60

Can we apply MobX patterns to Redux?

61

Demo

62

A reducer...

const byId = (state, action) => {
 switch (action.type) {
 case RECEIVE_PRODUCTS:
 return {
 ...state,
 ...action.products .reduce((obj, product) => {
 obj[product.id] = product
 return obj
 }, {})
 }
 default:
 return state
 }
}

63

Immer

const byId = produce((draft, action) => {
 switch (action.type) {
 case RECEIVE_PRODUCTS:
 action.products.forEach(product => {
 draft[product.id] = product
 })
 break
 }
})

64

 current draft next

65

import produce from “immer”

const peelBanana = produce((forest, treeIdx, gorillaIdx, peeled) => {
 forest.trees[treeIdx].gorillas[gorillaName].banana.peeled = peeled
}

store.setState(peelBanana(store.getState(), 18, “Joe”, true))

66

The Remmi experiment

Combining cursors, streams and value transformations

67

Cursors

cities

AMS

Read / Write / Subscribe

Cursor “cities” “AMS”

MSC

68

Store design

const store = createStore({
 cities: {
 MSC: { name: "Moscow", x: 17, y: 12 }
 AMS: { name: "Amsterdam", x: 25, y: 7 }
 },
 arrows: {
 a1: { from: "AMS", to: "MSC" }
 },
 selection: "MSC"
})

69

Store

store.value()

store.update(draft => { })

store.subscribe(value => { })

store.do(transformations)

70

Cursors

const amsterdamCursor = store. do(
 select("cities"),
 select("AMS")
)

amsterdamCursor.value()
> { name: "Amsterdam", x: 25, y: 7 }

amsterdamCursor.subscribe(value => {
 console.log(value.name)
})

amsterdamCursor.update(draft => {
 draft.name = "A’Dam"
})

amsterdamCursor.do(select("name"))
71

Cursors

const amsterdamCursor = store. do(select(s => s.cities.AMS))

72

Materialized Views
ID PRICE AMOUNT

1 10 4

2 20 5

3 10 5
ID PRICE AMOUNT TOTAL

1 10 4 40

2 20 5 100

3 10 5 50

CREATE VIEW totals AS SELECT ...

SELECT FROM totals ...

73

“Materialized” Views

const cityNamesCursor = store. do(select(
 s => Object
 .values(s. cities)
 .map(city => city.name)
))

Change one city, and all of them need to be mapped!

74

Map Reduce

ID PRICE AMOUNT

1 10 4

2 20 5

3 10 5

TOTAL

40

100

50

190

map

reduce

75

Map Reduce

const cityNamesCursor = store. do(
 select(s => s.cities),
 map(city => city.name)
))

Only re-evalutes changed cities

76

Transforming to React

function Sidebar({ selectionCursor }) {
 return selectionCursor.do(
 render(selection => <div>{selection.name}</div>)
)
}

77

...using hooks!

function Sidebar({ selectionCursor }) {
 const selection = useCursor(selectionCursor)
 return <div>{selection.name}</div>
}

78

...using hooks!

function useCursor(cursor) {
 const [value, setValue] = useState(() => cursor.value())
 useEffect(() => cursor.subscribe(setValue), [cursor])
 return value
}

79

MobX - Transparent Reactivity

const ArrowView = observer(({ arrow }) => {
 const {from, to} = arrow;
 const [x1, y1, x2, y2] = [
 from.x + from.width/ 2,
 from.y + 30,
 to.x + to.width / 2,
 to.y + 30
]
 return <path className="arrow"
 d={`M${x1} ${y1} L${x2} ${y2}`}
 />
})

80

Remmi - Cursors

const ArrowView = memo(({arrowCursor, citiesCursor}) => {
 const arrow = useCursor(arrowCursor)
 const from = useCursor(citiesCursor.select(arrow.from))
 const to = useCursor(citiesCursor.select(arrow.to))
 const [x1, y1, x2, y2] = [
 from.x + boxWidth(from) / 2,
 from.y + 30,
 to.x + boxWidth(to) / 2,
 to.y + 30
]
 return <path className="arrow"
 d={`M${x1} ${y1} L${x2} ${y2}`}
 />
})

81

Demo

https://github.com/mweststrate/remmi

82

Rebranding of this conference
State management design

Introduction to MobX
Patterns are beautiful!

Conclusion

83

State management

Identify the moving parts?

How are changes propagated?

Where is state owned?

What is the meaning of a reference?

84

MobX

Everything that can be derived, should be derived, automatically

85

There is nothing holy about JS

Don’t swear by anything

 Learn from everything

State Management beyond the libraries - @mweststrate - Mendix - HolyJS 2018
86

