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What we will look at

<html>

  <body>

    <h1>Hello HolyJS</h1>

    <p>Lorem ipsum...</p>

  </body>

</html>
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Loading a website

1. HTML is fetched from the network
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Loading a website

1. HTML is fetched from the network
2. HTML text is parsed into tokens as it arrives
3. Tokens are parsed into objects (DOM / CSSOM)
4. Objects are laid out on the page
5. Objects are being painted & composited
6. JS or CSS can change the content
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(2) & (3): Parsing
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Parsing

<h1>Hello HolyJS!</h1> ● H1 element
● Text node
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Parsing

<h1>Hello HolyJS!</h1>

<p>Lorem ipsum…</p>
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Parsing

<h1>Hello HolyJS!</h1>

<p>Lorem ipsum…</p>

<p><img ...></p>

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element
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DOM Tree building
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● Text node
● Paragraph element
● Text node
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● Image element
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CSSOM building

<link rel=”stylesheet” href=”style.css”>

<style>

   body { color: red; }

   h1 { color: blue; }

</style>

<p style=”color: green”>...</p>
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CSSOM building
<link rel=”stylesheet” href=”style.css”>

<style>

   body { color: red; }

   h1 { color: blue; }

</style>

<p style=”color: green”>...</p>

h1

body

p p

imgtxttxt
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CSSOM + DOM

h1

body

p p

imgtxttxt
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Lessons to learn

● Inline critical CSS
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Lessons to learn

● Inline critical CSS
● HTML source order matters during parsing
● Minimise forcing repeated tree building
● Static HTML for initial render Ƿ
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(4) Layout process
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Layouting

● Where do things go & how large are they?
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Layouting

● Where do things go & how large are they?
● Based on CSSOM + DOM
● Determines the actual size of each element
● Expensive algorithm
● Change may require repaint
● Animations may cause relayout
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5. Painting pixels
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Let’s paint

1 pixel = (red, green, blue)
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Let’s paint

  3x3 pixels screen     =        3*3*3 values
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Painting is...

@g33konaut



Painting is...

● Not happening sequentially ;-)

@g33konaut



Painting is...

● Not happening sequentially ;-)
● Still expensive...

@g33konaut



Painting is...

● Not happening sequentially ;-)
● Still expensive…
● Basically writing into memory

@g33konaut



Painting is...

● Not happening sequentially ;-)
● Still expensive…
● Basically writing into memory
● e.g. 500x500 pixel * 3 bytes = 750 kb to write
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Compositing

+
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Compositing

1
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Compositing

1 2
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Compositing

1 2

3
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Compositing

1 2

3 4
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Compositing in detail

& ?
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Compositing in detail

Layer

Layer
Shader

@g33konaut



Shader?

let shader = (x, y, layers, blend, filter) => {

  return filter(

    blend(x, y, layers) // returns colour

  ) // returns final colour

}
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● Takes a pixel of all layers and combines them
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Blending?

● Takes a pixel of all layers and combines them
● Different functions available
● Example: “screen” blending:

color(x,y) = 1 - (1 - cat(x,y)) * (1 - sky(x,y))
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Blending?

● Takes a pixel of all layers and combines them
● Different functions available
● Example: “multiply” blending:

color(x,y) = cat(x,y) * sky(x,y)
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Filter?

● Runs a function on the blended colour
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Filter?
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● opacity
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Filter?

● Runs a function on the blended colour
● A bunch of filter functions are available

● grayscale: (r, g, b) => (r + g + b) / 3

● opacity
● saturate
● sepia
● drop-shadow

● grayscale
● blur
● contrast
● hue-rotate
● invert
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A real shader

varying highp vec2 coord;

uniform sampler2D layer;

void main(void) {

  vec4 color = texture2D(layer, vec2(coord.s, coord.t));

  float grayScale = (color.r + color.g + color.b) / 3.0;

  gl_FragColor = vec4(grayScale, grayScale, grayScale, 1.0);

}   
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Compositing

● Keeping individual images separate (layers)
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Compositing

● Keeping individual images separate (layers)
● Fast operation (memory copy)
● Can do some transformations without paint

○ translate (move)
○ scale
○ rotate
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Layers...

● Layers are expensive
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Layers...

● Layers are expensive
● The browser will be conservative

○ <video>, <canvas>
○ 3D transforms (“translateZ hack”)
○ composite-only animations
○ will-change
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Let’s play a game...

#transform { 

  transform: translateX(150px); 

}

setTimeout(() => { 

  el.style.transform = 'translateX(0)' 

}, 2000)

@g33konaut



Will it paint?
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Yes.
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Round 2:

#transform { transform: translate3d(150px, 0,0); }

setTimeout(() => { 

  el.style.transform = 'translate3d(0, 0, 0)' 

}, 2000)
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Will it paint?
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3D transform = layer!
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Round 3:
@keyframes move {

  0% { left: 0; }

  100% { left: 200px; } }

#transform { 

  will-change: left;

  animation: move 2s infinite; }
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Will it paint?
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will-change = layer
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Will-change & layout

This only works if the element 
isn’t in the layout flow

(e.g. position: absolute)
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Lessons learned

● Avoid relayout & repaint
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Lessons learned
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Lessons learned

● Avoid relayout & repaint
● Layers can help, but be careful
● 3D transforms are composite-only
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Putting it together

HTML
CSS

DOMTextureTextureTextureLayer

DOM
CSSOM

Parsing

Painting
Layer 1

Layer 2

Layer 3

Layer 4

Compositing

Layout
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Summary

● Make critical content static & inline
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Summary

● Make critical content static & inline
● Minimise relayout & repaint
● Use layers reasonably
● Measure first, then optimise 
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“Performance is the art of avoiding work”
- Paul Lewis
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спасибо
Slides: bit.ly/holyjs17-renderperf

Twitter: @g33konaut

Web: spaces.archilogic.com


