
Rendering
performance

From the ground up

$ whoami
Head of Engineering @ Archilogic

Всем привет!
Head of Engineering @ Archilogic

@g33konaut

Всем привет!
Head of Engineering @ Archilogic

@g33konaut

spaces.archilogic.com

What we will look at

<html>

 <body>

 <h1>Hello HolyJS</h1>

 <p>Lorem ipsum...</p>

 </body>

</html>

@g33konaut

Loading a website

1. HTML is fetched from the network

@g33konaut

Loading a website

1. HTML is fetched from the network
2. HTML text is parsed into tokens as it arrives

@g33konaut

Loading a website

1. HTML is fetched from the network
2. HTML text is parsed into tokens as it arrives
3. Tokens are parsed into objects (DOM / CSSOM)

@g33konaut

Loading a website

1. HTML is fetched from the network
2. HTML text is parsed into tokens as it arrives
3. Tokens are parsed into objects (DOM / CSSOM)
4. Objects are laid out on the page

@g33konaut

Loading a website

1. HTML is fetched from the network
2. HTML text is parsed into tokens as it arrives
3. Tokens are parsed into objects (DOM / CSSOM)
4. Objects are laid out on the page
5. Objects are being painted & composited

@g33konaut

Loading a website

1. HTML is fetched from the network
2. HTML text is parsed into tokens as it arrives
3. Tokens are parsed into objects (DOM / CSSOM)
4. Objects are laid out on the page
5. Objects are being painted & composited
6. JS or CSS can change the content

@g33konaut

(2) & (3): Parsing

@g33konaut

Parsing

<h1>Hello HolyJS!</h1> ● H1 element
● Text node

@g33konaut

Parsing

<h1>Hello HolyJS!</h1>

<p>Lorem ipsum…</p>

● H1 element
● Text node
● Paragraph element
● Text node

@g33konaut

Parsing

<h1>Hello HolyJS!</h1>

<p>Lorem ipsum…</p>

<p></p>

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

body

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

h1

body

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

h1

body

txt

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

h1

body

p

txt

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

h1

body

p

txttxt

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

h1

body

p p

txttxt

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

h1

body

p p

imgtxttxt

@g33konaut

DOM Tree building

● H1 element
● Text node
● Paragraph element
● Text node
● Paragraph element
● Image element

h1

body

p p

imgtxttxt

@g33konaut

CSSOM building

<link rel=”stylesheet” href=”style.css”>

<style>

 body { color: red; }

 h1 { color: blue; }

</style>

<p style=”color: green”>...</p>
@g33konaut

CSSOM building
<link rel=”stylesheet” href=”style.css”>

<style>

 body { color: red; }

 h1 { color: blue; }

</style>

<p style=”color: green”>...</p>

@g33konaut

CSSOM building
<link rel=”stylesheet” href=”style.css”>

<style>

 body { color: red; }

 h1 { color: blue; }

</style>

<p style=”color: green”>...</p>

h1

body

p p

imgtxttxt

@g33konaut

CSSOM building
<link rel=”stylesheet” href=”style.css”>

<style>

 body { color: red; }

 h1 { color: blue; }

</style>

<p style=”color: green”>...</p>

h1

body

p p

imgtxttxt

@g33konaut

CSSOM building
<link rel=”stylesheet” href=”style.css”>

<style>

 body { color: red; }

 h1 { color: blue; }

</style>

<p style=”color: green”>...</p>

h1

body

p p

imgtxttxt

@g33konaut

CSSOM + DOM

h1

body

p p

imgtxttxt

@g33konaut

Lessons to learn

● Inline critical CSS

@g33konaut

Lessons to learn

● Inline critical CSS
● HTML source order matters during parsing

@g33konaut

Lessons to learn

● Inline critical CSS
● HTML source order matters during parsing
● Minimise forcing repeated tree building

@g33konaut

Lessons to learn

● Inline critical CSS
● HTML source order matters during parsing
● Minimise forcing repeated tree building
● Static HTML for initial render Ƿ

@g33konaut

(4) Layout process

@g33konaut

Layouting

● Where do things go & how large are they?

@g33konaut

Layouting

● Where do things go & how large are they?
● Based on CSSOM + DOM

@g33konaut

Layouting

● Where do things go & how large are they?
● Based on CSSOM + DOM
● Determines the actual size of each element

@g33konaut

Layouting

● Where do things go & how large are they?
● Based on CSSOM + DOM
● Determines the actual size of each element
● Expensive algorithm

@g33konaut

Layouting

● Where do things go & how large are they?
● Based on CSSOM + DOM
● Determines the actual size of each element
● Expensive algorithm
● Change may require repaint

@g33konaut

Layouting

● Where do things go & how large are they?
● Based on CSSOM + DOM
● Determines the actual size of each element
● Expensive algorithm
● Change may require repaint
● Animations may cause relayout

@g33konaut

5. Painting pixels

@g33konaut

Let’s paint

1 pixel = (red, green, blue)

@g33konaut

Let’s paint

 3x3 pixels screen = 3*3*3 values
255

0
0

255
255

0

0
255
255

0
255
255

0
255

0

255
255

0

255
255

0

0
255
255

0
0

255

@g33konaut

Painting is...

@g33konaut

Painting is...

● Not happening sequentially ;-)

@g33konaut

Painting is...

● Not happening sequentially ;-)
● Still expensive...

@g33konaut

Painting is...

● Not happening sequentially ;-)
● Still expensive…
● Basically writing into memory

@g33konaut

Painting is...

● Not happening sequentially ;-)
● Still expensive…
● Basically writing into memory
● e.g. 500x500 pixel * 3 bytes = 750 kb to write

@g33konaut

Compositing

+
@g33konaut

Compositing

1

@g33konaut

Compositing

1 2

@g33konaut

Compositing

1 2

3

@g33konaut

Compositing

1 2

3 4

@g33konaut

Compositing in detail

& ?

@g33konaut

Compositing in detail

Layer

Layer
Shader

@g33konaut

Shader?

let shader = (x, y, layers, blend, filter) => {

 return filter(

 blend(x, y, layers) // returns colour

) // returns final colour

}

@g33konaut

Blending?

● Takes a pixel of all layers and combines them

@g33konaut

Blending?

● Takes a pixel of all layers and combines them
● Different functions available

@g33konaut

Blending?

● Takes a pixel of all layers and combines them
● Different functions available
● Example: “screen” blending:

color(x,y) = 1 - (1 - cat(x,y)) * (1 - sky(x,y))

@g33konaut

Blending?

● Takes a pixel of all layers and combines them
● Different functions available
● Example: “multiply” blending:

color(x,y) = cat(x,y) * sky(x,y)

@g33konaut

Filter?

● Runs a function on the blended colour

@g33konaut

Filter?

● Runs a function on the blended colour
● A bunch of filter functions are available

@g33konaut

Filter?

● Runs a function on the blended colour
● A bunch of filter functions are available

● opacity
● saturate
● sepia
● drop-shadow

● grayscale
● blur
● contrast
● hue-rotate
● invert

@g33konaut

Filter?

● Runs a function on the blended colour
● A bunch of filter functions are available

● grayscale: (r, g, b) => (r + g + b) / 3

● opacity
● saturate
● sepia
● drop-shadow

● grayscale
● blur
● contrast
● hue-rotate
● invert

@g33konaut

A real shader

varying highp vec2 coord;

uniform sampler2D layer;

void main(void) {

 vec4 color = texture2D(layer, vec2(coord.s, coord.t));

 float grayScale = (color.r + color.g + color.b) / 3.0;

 gl_FragColor = vec4(grayScale, grayScale, grayScale, 1.0);

}

@g33konaut

Compositing

● Keeping individual images separate (layers)

@g33konaut

Compositing

● Keeping individual images separate (layers)
● Fast operation (memory copy)

@g33konaut

Compositing

● Keeping individual images separate (layers)
● Fast operation (memory copy)
● Can do some transformations without paint

@g33konaut

Compositing

● Keeping individual images separate (layers)
● Fast operation (memory copy)
● Can do some transformations without paint

○ translate (move)

@g33konaut

Compositing

● Keeping individual images separate (layers)
● Fast operation (memory copy)
● Can do some transformations without paint

○ translate (move)
○ scale

@g33konaut

Compositing

● Keeping individual images separate (layers)
● Fast operation (memory copy)
● Can do some transformations without paint

○ translate (move)
○ scale
○ rotate

@g33konaut

Layers...

● Layers are expensive

@g33konaut

Layers...

● Layers are expensive
● The browser will be conservative

@g33konaut

Layers...

● Layers are expensive
● The browser will be conservative

○ <video>, <canvas>

@g33konaut

Layers...

● Layers are expensive
● The browser will be conservative

○ <video>, <canvas>
○ 3D transforms (“translateZ hack”)

@g33konaut

Layers...

● Layers are expensive
● The browser will be conservative

○ <video>, <canvas>
○ 3D transforms (“translateZ hack”)
○ composite-only animations

@g33konaut

Layers...

● Layers are expensive
● The browser will be conservative

○ <video>, <canvas>
○ 3D transforms (“translateZ hack”)
○ composite-only animations
○ will-change

@g33konaut

Let’s play a game...

#transform {

 transform: translateX(150px);

}

setTimeout(() => {

 el.style.transform = 'translateX(0)'

}, 2000)

@g33konaut

Will it paint?

@g33konaut

Yes.

@g33konaut

Round 2:

#transform { transform: translate3d(150px, 0,0); }

setTimeout(() => {

 el.style.transform = 'translate3d(0, 0, 0)'

}, 2000)

@g33konaut

Will it paint?

@g33konaut

3D transform = layer!

@g33konaut

Round 3:
@keyframes move {

 0% { left: 0; }

 100% { left: 200px; } }

#transform {

 will-change: left;

 animation: move 2s infinite; }

@g33konaut

Will it paint?

@g33konaut

will-change = layer

@g33konaut

Will-change & layout

This only works if the element
isn’t in the layout flow

(e.g. position: absolute)

@g33konaut

Lessons learned

● Avoid relayout & repaint

@g33konaut

Lessons learned

● Avoid relayout & repaint
● Layers can help, but be careful

@g33konaut

Lessons learned

● Avoid relayout & repaint
● Layers can help, but be careful
● 3D transforms are composite-only

@g33konaut

Putting it together

HTML
CSS

DOMTextureTextureTextureLayer

DOM
CSSOM

Parsing

Painting
Layer 1

Layer 2

Layer 3

Layer 4

Compositing

Layout

@g33konaut

Summary

● Make critical content static & inline

@g33konaut

Summary

● Make critical content static & inline
● Minimise relayout & repaint

@g33konaut

Summary

● Make critical content static & inline
● Minimise relayout & repaint
● Use layers reasonably

@g33konaut

Summary

● Make critical content static & inline
● Minimise relayout & repaint
● Use layers reasonably
● Measure first, then optimise

@g33konaut

“Performance is the art of avoiding work”
- Paul Lewis

@g33konaut

спасибо
Slides: bit.ly/holyjs17-renderperf

Twitter: @g33konaut

Web: spaces.archilogic.com

