Elevation Contours (m AHD)

Hydrogeology & Groundwater

290-308 Aldington Road, Kemps Creek, NSW 2178

Hydrogeology

Description of aquifers on-site:

Description

Porous, extensive aquifers of low to moderate productivity

Description of aquifers within the dataset buffer:

Description

Porous, extensive aquifers of low to moderate productivity

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Botany Groundwater Management Zones

Groundwater management zones relating to the Botany Sand Beds aquifer within the dataset buffer:

Management Zone No.	Restriction	Distance	Direction
N/A	No records in buffer		

Botany Groundwater Management Zones Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

290-308 Aldington Road, Kemps Creek, NSW 2178

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW114 295	10BL604 605	Bore	Private	Monitoring Bore	Monitoring Bore		28/04/2011	6.00	6.00					1385m	South
GW114 294	10BL604 605	Bore	Private	Monitoring Bore	Monitoring Bore		28/04/2011	6.00	6.00					1385m	South
GW110 570	10BL603 558	Bore	Private	Monitoring Bore	Monitoring Bore		25/08/2009	12.00	6.00		4.40			1386m	South
GW110 569	10BL603 558	Bore	Private	Monitoring Bore	Monitoring Bore		25/08/2009	6.00	12.00		4.40			1390m	South
GW114 296	10BL604 605	Bore	Private	Monitoring Bore	Monitoring Bore		28/04/2011	6.00	6.00					1417m	South
GW110 571	10BL603 558	Bore	Private	Monitoring Bore	Monitoring Bore		25/08/2009	12.00	6.00		4.40			1428m	South
GW114 298	10BL604 605	Bore	Private	Monitoring Bore	Monitoring Bore		28/04/2011	7.00	7.00					1454m	South
GW114 297	10BL604 605	Bore	Private	Monitoring Bore	Monitoring Bore		28/04/2011	8.00	8.00					1490m	South

Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

290-308 Aldington Road, Kemps Creek, NSW 2178

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW110570	0.00m-1.00m FILL,SILTY CLAY,BROWN 1.00m-6.00m CLAY SILTY,BROWN	1386m	South
GW110569	0.00m-1.00m FILL, SILTY CLAY BROWN 1.00m-6.00m CLAY SILTY, BROWN	1390m	South
GW110571	0.00m-1.00m FILL,SILTY CLAY,BROWN 1.00m-6.00m CLAY SILTY,BROWN	1428m	South

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:100,000 290-308 Aldington Road, Kemps Creek, NSW 2178

Geology

290-308 Aldington Road, Kemps Creek, NSW 2178

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Rwb	Shale, carbonaceous claystone,claystone, laminate, fine to medium- grained lithic sandstone, rare coal and tuff	Bringelly Shale	Wianamatta Group (undifferenti ated)		Middle Triassic		Penrith	1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Qal	Fine-grained sand, silt and clay				Quaternary		Penrith	1:100,000
Rwb	Shale, carbonaceous claystone,claystone, laminate, fine to medium- grained lithic sandstone, rare coal and tuff	Bringelly Shale	Wianamatta Group (undifferenti ated)		Middle Triassic		Penrith	1:100,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

Geological Data Source : NSW Department of Industry, Resources & Energy

© State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

290-308 Aldington Road, Kemps Creek, NSW 2178

Naturally Occurring Asbestos Potential

Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Soil Landscapes

Soils

290-308 Aldington Road, Kemps Creek, NSW 2178

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
ERlu	LUDDENHAM		EROSIONAL	Penrith	1:100,000
REbt	BLACKTOWN		RESIDUAL	Penrith	1:100,000

What are the Soil Landscapes within the dataset buffer?

Soil Code	Name	Group	Process	Map Sheet	Scale
ALsc	SOUTH CREEK		ALLUVIAL	Penrith	1:100,000
ERlu	LUDDENHAM		EROSIONAL	Penrith	1:100,000
REbt	BLACKTOWN		RESIDUAL	Penrith	1:100,000
WATER	WATER		WATER	Penrith	1:100,000

Soils Landscapes Data Source : NSW Office of Environment and Heritage

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Atlas of Australian Soils

Soils

290-308 Aldington Road, Kemps Creek, NSW 2178

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:

Map Unit Code	Soil Order	Map Unit Description	Distance
Pb12	Kurosol	Gently rolling to rounded hilly country with some steep slopes and broad valleys: chief soils are hard acidic red soils (Dr2.21) with hard neutral and acidic yellow mottled soils (Dy3.42 and Dy3.41) on lower slopes and in valleys. Associated are small areas of various soils including (Gn3.54) on some ridges, (Dr3.31) on some slopes; (Dr2.23) in saddles and some mid-slope positions, and some low- lying swampy areas of (Uf6) soils and (Uc1.2) soils with peaty surfaces. Small areas of other soils such as (Db1.2) are likely throughout.	0m
Pb13	Kurosol	Ridge and valley country of gently undulating ridge tops and steep side slopes often with slumping, also rounded hilly to steep hilly areas and relatively narrow valleys: chief soils are hard acidic red soils (Dr2.21) with hard acidic yellow mottled soils (Dy3.41); in places some ironstone gravels occur in both these soils. Associated are hard neutral and alkaline red soils (Dr2.22 and Dr2.23) in saddles and some mid-slope positions; (Dy3.42 and Dy3.43) soils, usually in depressions; and small areas of undescribed soils in wet soaks and valley areas. Small areas of other soils are likely throughout.	974m

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

290-308 Aldington Road, Kemps Creek, NSW 2178

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
N/A		

If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

Acid Sulfate Data Source Accessed 23/10/2018: NSW Crown Copyright - Planning and Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

290-308 Aldington Road, Kemps Creek, NSW 2178

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Dryland Salinity

290-308 Aldington Road, Kemps Creek, NSW 2178

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

Yes

Is there Dryland Salinity - National Assessment data within the dataset buffer?

Yes

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
High hazard or risk	High hazard or risk	High hazard or risk	0m	Onsite

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney

Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
274	MODERATE	Area of Moderate Salinity Potential	0m	Onsite
321	HIGH	Area of High Salinity Potential	161m	North
417	SALT	Area of Known Salinity	867m	North East

Dryland Salinity Potential of Western Sydney Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining Subsidence Districts

290-308 Aldington Road, Kemps Creek, NSW 2178

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy

290-308 Aldington Road, Kemps Creek, NSW 2178

State Significant Precincts

What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No Records in Buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones 290-308 Aldington Road, Kemps Creek, NSW 2178

Environmental Planning Instrument

290-308 Aldington Road, Kemps Creek, NSW 2178

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RU2	Rural Landscape		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019		0m	Onsite
E4	Environmental Living		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019		0m	South East
SP2	Infrastructure	Classified Road	Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019		391m	West
RU2	Rural Landscape		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019		453m	North West
E2	Environmental Conservation		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019		598m	West
RU2	Rural Landscape		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019		699m	South West
RU4	Primary Production Small Lots		Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019		793m	South

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

290-308 Aldington Road, Kemps Creek, NSW 2178

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
106	Farmhouse	Item - General	Local	Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019	0m	North West
105	Gateposts to Colesbrook	Item - General	Local	Penrith Local Environmental Plan 2010	22/09/2010	22/09/2010	27/09/2019	20m	West

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

290-308 Aldington Road, Kemps Creek, NSW 2178

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Category 2	0m	Onsite
Vegetation Buffer	308m	South West
Vegetation Category 1	616m	South West

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Remnant Vegetation of the Cumberland Plain

Ecological Constraints

290-308 Aldington Road, Kemps Creek, NSW 2178

Remnant Vegetation of the Cumberland Plain

What remnant vegetation of the Cumberland Plain exists within the dataset buffer?

Description	Crown Cover	Distance	Direction
10 - Shale Plains Woodland	Crown cover less than 10%	170m	East
9 - Shale Hills Woodland	Crown cover less than 10%	192m	North East
10 - Shale Plains Woodland	Crown cover less than 10% (urban areas)	601m	East
11 - Alluvial Woodland	Crown cover less than 10%	610m	South West
11 - Alluvial Woodland	Crown cover greater than 10%	684m	South West

Remnant Vegetation of the Cumberland Plain : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

290-308 Aldington Road, Kemps Creek, NSW 2178

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	High potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Unconsolidated sedimentary	680m

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

290-308 Aldington Road, Kemps Creek, NSW 2178

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	10	Undulating to low hilly country, mainly on shale.	Vegetation	Unconsolidated sedimentary	680m
Terrestrial	9	Undulating to low hilly country, mainly on shale.	Vegetation	Unconsolidated sedimentary	775m

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

290-308 Aldington Road, Kemps Creek, NSW 2178

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardea ibis	Cattle Egret	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Certhionyx variegatus	Pied Honeyeater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Melithreptus gularis gularis	Black-chinned Honeyeater (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Merops ornatus	Rainbow Bee- eater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Neophema splendida	Scarlet-chested Parrot	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Plegadis falcinellus	Glossy Ibis	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Todiramphus chloris	Collared Kingfisher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Gastropoda	Meridolum corneovirens	Cumberland Plain Land Snail	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Lucasium stenodactylum	Crowned Gecko	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia pubescens	Downy Wattle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Argyrotegium nitidulum	Shining Cudweed	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Cynanchum elegans	White-flowered Wax Plant	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Dillwynia tenuifolia		Endangered Population, Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Dillwynia tenuifolia		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea juniperina subsp. juniperina	Juniper-leaved Grevillea	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Isotoma fluviatilis subsp. fluviatilis		Not Listed	Not Sensitive	Extinct	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Marsdenia viridiflora subsp. viridiflora	Native Pear	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Persoonia nutans	Nodding Geebung	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Pimelea curviflora var. curviflora		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Pimelea spicata	Spiked Rice- flower	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Pterostylis saxicola	Sydney Plains Greenhood	Endangered	Category 2	Endangered	
Plantae	Flora	Pultenaea parviflora		Endangered	Not Sensitive	Vulnerable	

Data does not include NSW category 1 sensitive species.

NSW BioNet: $\ensuremath{\mathbb{C}}$ State of NSW and Office of Environment and Heritage Data obtained 04/10/2019

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.
APPENDIX E

PLANNING CERTIFICATE

 Telephone:
 02 4732 7777

 Facsimile:
 02 4732 7958

Email: pencit@penrithcity.nsw.gov.au

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

Property No: 104899 Your Reference: Contact No:

Issue Date:02 October 2019Certificate No:19/03963

Issued to: Alliance Geotechnical 10 Welder Road SEVEN HILLS

PRECINCT 2010

DESCRIPTION OF LAND

County: CUMBERLAND Parish: MELVILLE

Location:290-308 Aldington Road KEMPS CREEK NSW 2178Land Description:Lot 13 DP 253503

- PART 1 PRESCRIBED MATTERS -

In accordance with the provisions of Section 10.7(2) of the Act the following information is furnished in respect of the abovementioned land:

1 NAMES OF RELEVANT PLANNING INSTRUMENTS AND DCPs

1(1) The name of each environmental planning instrument that applies to the carrying out of development on the land:

Penrith Local Environmental Plan 2010, published 22nd September 2010, as amended, applies to the land.

Sydney Regional Environmental Plan No.9 - Extractive Industry (No.2), gazetted 15 September 1995, as amended, applies to the local government area of Penrith.

Sydney Regional Environmental Plan No. 20 - Hawkesbury-Nepean River (No. 2 - 1997), gazetted 7 November 1997, as amended, applies to the local government area of Penrith (except land to which State Environmental Planning Policy (Penrith Lakes Scheme) 1989 applies).

The following State environmental planning policies apply to the land (subject to the exclusions noted below):

State Environmental Planning Policy No.1 - Development Standards. (Note: This policy does not apply to the land to which Penrith Local Environmental Plan 2010 or State Environmental Planning Policy (Western Sydney Employment Area) 2009 apply.) State Environmental Planning Policy No.19 - Bushland in Urban Areas. (Note: This policy does not apply to certain land referred to in the National Parks and Wildlife Act 1974 and the Forestry Act 1916.) State Environmental Planning Policy No.21 - Caravan Parks. State Environmental Planning Policy No.33 - Hazardous and Offensive Development. Civic Centre 1 601 High Street, Penrith

PENRITH

CITY COUNCIL

Email: pencit@penrithcity.nsw.gov.au

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

State Environmental Planning Policy No.50 - Canal Estate Development. (Note: This policy does not apply to the land to which State Environmental Planning Policy (Penrith Lakes Scheme) 1989 applies. State Environmental Planning Policy No.55 - Remediation of Land. State Environmental Planning Policy No.64 - Advertising and Signage. State Environmental Planning Policy No.65 - Design Quality of Residential Apartment Development. State Environmental Planning Policy No.70 - Affordable Housing (Revised Schemes). State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 (Note: This policy applies to land within New South Wales that is land zoned primarily for urban purposes or land that adjoins land zoned primarily for urban purposes, but only as detailed in clause 4 of the policy.) State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004. State Environmental Planning Policy (State Significant Precincts) 2005. State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2013. State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007. State Environmental Planning Policy (Infrastructure) 2007. State Environmental Planning Policy (Exempt and Complying Development Codes) 2008. State Environmental Planning Policy (Affordable Rental Housing) 2009. State Environmental Planning Policy (State and Regional Development) 2011. State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017. State Environmental Planning Policy (Education Establishments and Child Care Centre Facilities) 2017. State Environmental Planning Policy (Primary Production and Rural Development) 2019.

State Environmental Planning Policy (Western Sydney Employment Area) 2009 applies to the land.

1(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act:

An Annual Update Amendment Planning Proposal applies to this land.

The Planning Proposal seeks to resolve several policy changes, contemporise certain elements and undertake "housekeeping" changes which are minor in nature. (See <u>www.penrithcity.nsw.gov.au</u> for details).

Draft State Environmental Planning Policy (Western Sydney Corridors) may apply to the land. Further information is available here: <u>https://www.transport.nsw.gov.au/corridors</u>.

On 22 June 2018, the NSW Government announced changes to the recommended alignments for the Western Sydney corridors, including continuing with the previously gazetted 1951 corridor for the Bells Line of Road Castlereagh Connection.

Draft State Environmental Planning Policy (Primary Production & Rural Development) applies to the land.

Draft State Environmental Planning Policy (Environment) applies to the land.

Draft State Environmental Planning Policy (Remediation of Land) applies to the land.

Draft Standard Instrument (Local Environmental Plans) Order 2006 applies to the land.

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

Draft State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 applies to the land.

1(3) The name of each development control plan that applies to the carrying out of development on the land:

Penrith Development Control Plan 2014 applies to the land.

2 **ZONING AND LAND USE UNDER RELEVANT LEPs**

Civic Centre

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

2(a)-(d) the identity of the zone; the purposes that may be carried out without development consent; the purposes that may not be carried out except with development consent; and the purposes that are prohibited within the zone. Any zone(s) applying to the land is/are listed below and/or in annexures.

(Note: If no zoning appears in this section see section 1(1) for zoning and land use details (under the Sydney Regional Environmental Plan or State Environmental Planning Policy that zones this property).)

Zone RU2 Rural Landscape (Penrith Local Environmental Plan 2010)

Objectives of zone 1

- To encourage sustainable primary industry production by maintaining and enhancing the natural resource base.
- To maintain the rural landscape character of the land.
- To provide for a range of compatible land uses, including extensive agriculture.
- To minimise conflict between land uses within the zone and land uses within adjoining zones.
- To preserve and improve natural resources through appropriate land management practices.
- To ensure development is compatible with the environmental capabilities of the land and does not unreasonably increase the demand for public services or public facilities.

2 Permitted without consent

Extensive agriculture; Home occupations

3 Permitted with consent

Agricultural produce industries; Agriculture; Animal boarding or training establishments; Aquaculture; Building identification signs; Business identification signs; Cellar door premises; Cemeteries; Community facilities; Crematoria; Dual occupancies; Dwelling houses; Environmental facilities; Environmental protection works; Farm buildings; Flood mitigation works; Forestry; Funeral homes; Helipads; Home-based child care; Home businesses; Home industries; Information and education facilities; Places of public worship; Public administration buildings; Recreation areas; Recreation facilities (outdoor); Roads; Roadside stalls; Rural supplies; Schools; Secondary dwellings; Stock and sale yards; Tourist and visitor accommodation; Veterinary hospitals

Prohibited 4

Hotel or motel accommodation; Serviced apartments; Any other development not specified in item 2 or 3

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

Flood planning

All or part of the subject land is identified in Penrith Local Environmental Plan 2010 (PLEP 2010) Clause 7.2 Flood Planning. Development consent is required for any development on land to which Clause 7.2 of PLEP 2010 applies.

Rural subdivision

Under the terms of Clause 4.2 of Penrith Local Environmental Plan 2010 land in Zone RU1 Primary Production, Zone RU2 Rural Landscape, Zone RU4 Primary Production Small Lots or Zone RU6 Transition may, with development consent, be subdivided for the purpose of primary production to create a lot of a size that is less than the minimum size shown on the Penrith Local Environmental Plan 2010 Lot Size Map in relation to that land. Such a lot cannot be created if an existing dwelling would, as a result of the subdivision, be situated on the lot; and a dwelling cannot be erected on such a lot.

<u>Residential development and subdivision prohibited in certain rural, residential and</u> <u>environment protection zones</u>

Under the terms of Clause 4.2A of Penrith Local Environmental Plan 2010 (PLEP 2010) on land within Zone RU1 Primary Production, Zone RU2 Rural Landscape, Zone RU4 Primary Production Small Lots, Zone RU5 Village, Zone R5 Large Lot Residential, Zone E3 Environmental Management or Zone E4 Environmental Living development consent must not be granted for the erection of a dwelling house on a lot resulting from the closure of part or all of a road, whether before or after the commencement of this Plan. This requirement does not apply to a lot created by the consolidation of a lot resulting from a road closure with an adjoining lot that did not result from a road closure.

Additional information relating to Penrith Local Environmental Plan 2010

Note 1: Under the terms of Clause 2.4 of Penrith Local Environmental Plan 2010 development may be carried out on unzoned land only with development consent.

Note 2: Under the terms of Clause 2.6 of Penrith Local Environmental Plan 2010 land may be subdivided but only with development consent, except for the exclusions detailed in the clause.

Note 3: Under the terms of Clause 2.7 of Penrith Local Environmental Plan 2010 the demolition of a building or work may be carried out only with development consent.

Note 4: A temporary use may be permitted with development consent subject to the requirements of Clause 2.8 of Penrith Local Environmental Plan 2010.

Note 5: Under the terms of Clause 4.1A of Penrith Local Environmental Plan 2010, despite any other provision of this plan, development consent must not be granted for dual occupancy on an internal lot in Zone R2 Low Density Residential.

Note 6: Under the terms of Clause 5.1 of Penrith Local Environmental Plan 2010 development on land acquired by an authority of the State under the owner-initiated acquisition provisions may, before it is used for the purpose for which it is reserved, be carried out, with development consent, for any purpose.

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

Note 7: Under the terms of Clause 5.3 of Penrith Local Environmental Plan 2010 development consent may be granted to development of certain land for any purpose that may be carried out in an adjoining zone.

Note 8: Clause 5.10 of Penrith Local Environmental Plan 2010 details when development consent is required/not required in relation to heritage conservation.

Note 9: Under the terms of Clause 5.11 of Penrith Local Environmental Plan 2010 bush fire hazard reduction work authorised by the *Rural Fires Act 1997* may be carried out on any land without development consent.

Note 10: Under the terms of Clause 7.1 of Penrith Local Environmental Plan 2010 (PLEP 2010) development consent is required for earthworks unless the work is exempt development under PLEP 2010 or another applicable environmental planning instrument, or the work is ancillary to other development for which development consent has been given.

Note 11: Sex services premises and restricted premises may only be permitted subject to the requirements of Clause 7.23 of Penrith Local Environmental Plan 2010.

2(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed:

(Information is provided in this section only if any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.)

2(f) whether the land includes or comprises critical habitat:

(Information is provided in this section only if the land includes or comprises critical habitat.)

2(g) whether the land is in a conservation area (however described):

(Information is provided in this section only if the land is in a conservation area (however described).)

2(h) whether an item of environmental heritage (however described) is situated on the land:

(Information is provided in this section only if an item of environmental heritage (however described) is situated on the land.)

2A ZONING AND LAND USE UNDER STATE ENVIRONMENTAL PLANNING POLICY (SYDNEY REGION GROWTH CENTRES) 2006

(Information is provided in this section only if the land is within any zone under State Environmental Planning Policy (Sydney Region Growth Centres) 2006.)

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

3 COMPLYING DEVELOPMENT

HOUSING CODE

(The Housing Code only applies if the land is within Zones R1, R2, R3, R4 or RU5 under Penrith Local Environmental Plan 2010 or an equivalent zone in a non standard template planning instrument.)

Complying development under the Housing Code **may** be carried out on the land if the land is within one of the abovementioned zones.

RURAL HOUSING CODE

(The Rural Housing Code only applies if the land is within Zones RU1, RU2, RU3, RU4, RU6 or R5 under Penrith Local Environmental Plan 2010 or an equivalent zone in a non standard template planning instrument.)

Complying development under the Rural Housing Code **may** be carried out on the land if the land is within one of the abovementioned zones.

LOW RISE MEDIUM DENSITY HOUSING CODE

(The Low Rise Medium Density Housing Code only applies if the land is within Zones R1, R2, R3 or RU5 under Penrith Local Environmental Plan 2010 or an equivalent zone in a non standard template planning instrument.)

Complying development under the Low Rise Medium Density Housing Code **may** be carried out on the land if the land is within one of the abovementioned zones.

Please note that Council has been deferred from the application of Part 3B of the Low Rise Medium Density Housing Code until 1 July 2020. That Part will not apply to Penrith Local Government Area during this time.

GREENFIELD HOUSING CODE

(The Greenfield Housing Code only applies if the land is within Zones R1, R2, R3, R4 or RU5 under Penrith Local Environmental Plan 2010 or an equivalent zone in a non standard template planning instrument, and if the land is identified as a Greenfield Housing Code Area by the Greenfield Housing Code Area Map.)

Complying development under the Greenfield Housing Code **may** be carried out on the land if the land is within one of the abovementioned zones, and if the land is identified as a Greenfield Housing Code Area by the Greenfield Housing Code Area Map.

HOUSING ALTERATIONS CODE

Complying development under the Housing Alterations Code **may** be carried out on the land.

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

GENERAL DEVELOPMENT CODE

Complying development under the General Development Code **may** be carried out on the land.

COMMERCIAL AND INDUSTRIAL ALTERATIONS CODE

Complying development under the Commercial and Industrial Alterations Code **may** be carried out on the land.

SUBDIVISIONS CODE

Complying development under the Subdivisions Code may be carried out on the land.

DEMOLITION CODE

Complying development under the Demolition Code **may** be carried out on the land.

COMMERCIAL AND INDUSTRIAL (NEW BUILDINGS AND ADDITIONS) CODE

(The Commercial and Industrial (New Buildings and Additions) Code only applies if the land is within Zones B1, B2, B3, B4, B5, B6, B7, B8, IN1, IN2, IN3, IN4 or SP3 under Penrith Local Environmental Plan 2010 or an equivalent zone in a non standard template planning instrument.)

Complying development under the Commercial and Industrial (New Buildings and Alterations) Code **may** be carried out on the land if the land is within one of the abovementioned zones.

FIRE SAFETY CODE

Complying development under the Fire Safety Code **may** be carried out on the land.

(NOTE: (1) Council has relied on Planning and Infrastructure Circulars and Fact Sheets in the preparation of this information. Applicants should seek their own legal advice in relation to this matter with particular reference to State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

(2) Penrith Local Environmental Plan 2010 (if it applies to the land) contains additional complying development not specified in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.)

4 COASTAL PROTECTION

The land is not affected by the operation of sections 38 or 39 of the Coastal Protection Act 1979, to the extent that council has been so notified by the Department of Public Works.

5 MINE SUBSIDENCE

The land is not proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

6 ROAD WIDENING AND ROAD REALIGNMENT

The land is not affected by any road widening or road realignment under: (a) Division 2 of Part 3 of the Roads Act 1993, or

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

(b) an environmental planning instrument, or (c) a resolution of council.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS

(a) Council Policies

The land is affected by the Asbestos Policy adopted by Council.

Civic Centre

The land is not affected by any other policy adopted by the council that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

(b) Other Public Authority Policies

The Bush Fire Co-ordinating Committee has adopted a Bush Fire Risk Management Plan that covers the local government area of Penrith City Council, and includes public, private and Commonwealth lands.

The land is not affected by a policy adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council, that restricts the development of the land because of the likelihood of land slip, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

(1) Development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) (if such uses are permissible on the land) is subject to flood related development controls.

(2) Development on the land or part of the land for industrial or commercial purposes (if such uses are permissible on the land) is subject to flood related development controls.

Development on the land or part of the land for purposes other than industrial or commercial, or for purposes other than those referred to in (1) above, will be considered on a merits based approach and flood related development controls may apply.

Note: The land is subject to Penrith Development Control Plan 2014 Section C3.5 Flood Planning. On application and payment of the prescribed fee Council may be able to provide in writing a range of advice in regard to the extent of flooding affecting the property.

8 LAND RESERVED FOR ACQUISITION

No environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 3.15 of the Act.

9 **CONTRIBUTIONS PLANS**

The Cultural Facilities Development Contributions Plan applies anywhere residential development is permitted within the City of Penrith.

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

The Penrith City Local Open Space Development Contributions Plan applies anywhere residential development is permitted within the City of Penrith, excluding industrial areas and the release areas identified in Appendix B of the Plan (Penrith Lakes, Cranebrook, Sydney Regional Environmental Plan No. 30 - St Marys, Waterside, Thornton, the WELL Precinct, Glenmore Park and Erskine Park).

The Penrith City District Open Space Facilities Development Contributions Plan applies anywhere residential development is permitted within the City of Penrith, with the exclusion of industrial lands and the Penrith Lakes development site.

9A BIODIVERSITY CERTIFIED LAND

(Information is provided in this section only if the land is biodiversity certified land under Part 8 of the *Biodiversity Conservation Act 2016*. (Note. biodiversity certified land includes land certified under Part 7AA of the *Threatened Species Conservation Act 1995* that is taken to be certified under Part 8 of the *Biodiversity Conservation Act 2016*.))

10 BIODIVERSITY STEWARDSHIP SITES

(Information is provided in this section only if Council has been notified by the Chief Executive of the Office of Environment and Heritage that the land is land to which a biobanking stewardship agreement under Part 5 of the *Biodiversity Conservation Act 2016* relates. Note. Biodiversity stewardship agreements include biobanking agreements under Part 7A of the *Threatened Species Conservation Act 1995* that are taken to be biodiversity stewardships agreements under Part 5 of the *Biodiversity Conservation Act 2016*.

10A NATIVE VEGETATION CLEARING SET ASIDES

(Information is provided in this section only if Council has been notified of the existence of a set aside area by Local Land Services or it is registered in the public register under which section 60ZC of the *Local Land Services Act 2013* relates).

11 BUSH FIRE PRONE LAND

All of the land is identified as bush fire prone land according to Council records. Guidance as to restrictions that may be placed on the land as a result of the land being bush fire prone can be obtained by contacting Council. Such advice would be subject to further requirements of the NSW Rural Fire Services.

12 **PROPERTY VEGETATION PLANS**

(Information is provided in this section only if Council has been notified that the land is land to which a property vegetation plan approved under the *Native Vegetation Act 2003* applies and continues in force.)

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

13 ORDERS UNDER TREES (DISPUTES BETWEEN NEIGHBOURS) ACT 2006

(Information is provided in this section only if Council has been notified that an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land.)

14 DIRECTIONS UNDER PART 3A

(Information is provided in this section only if there is a direction by the Minister in force under section 75P(2)(c1) of the Act (repealed on 1st October 2011) that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.)

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS AFFECTING SENIORS HOUSING

(Information is provided in this section only if:

- (a) there is a current site compatibility certificate (seniors housing), of which the council is aware, issued under State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land; and/or
- (b) any terms of a kind referred to in clause 18(2) of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.)

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

(Information is provided in this section only if there is a valid site compatibility certificate (infrastructure), of which council is aware, in respect of proposed development on the land.)

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

(Information is provided in this section only if:

- (a) there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land; and/or
- (b) any terms of a kind referred to in clause 17(1) or 37(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 have been imposed as a condition of consent to a development application in respect of the land.)

18 PAPER SUBDIVISION INFORMATION

(Information is provided in this section only if a development plan adopted by a relevant authority applies to the land or is proposed to be subject to a consent ballot, or a subdivision order applies to the land.)

19 SITE VERIFICATION CERTIFICATES

(Information is provided in this section only if there is a current site verification certificate, of which council is aware, in respect of the land.)

PENRITH

CITY COUNCIL

Email: pencit@penrithcity.nsw.gov.au

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

NOTE: The following matters are prescribed by section 59(2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate

(a) (Information is provided in this section only if, as at the date of this certificate, the land (or part of the land) is significantly contaminated land within the meaning of the Contaminated Land Management Act 1997.)

(b) (Information is provided in this section only if, as at the date of this certificate, the land is subject to a management order within the meaning of the Contaminated Land Management Act 1997.)

(c) (Information is provided in this section only if, as at the date of this certificate, the land is the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997.)

(d) (Information is provided in this section only if, at the date of this certificate, the land subject to an ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997.)

(e) (Information is provided in this section only if the land is the subject of a site audit statement within the meaning of the Contaminated Land Management Act 1997 - a copy of which has been provided to Council.)

Note: Section 10.7(5) information for this property may contain additional information regarding contamination issues.

20 LOOSE FILL ASBESTOS INSULATION

(Information is provided in this section only if there is a residential premises listed on the register of residential premises that contain or have contained loose-fill asbestos insulation (as required by Division 1A of Part 8 of the Home Building Act 1989))

21 AFFECTED BUILDING NOTICES AND BUILDING PRODUCT RECTIFICATION ORDERS

(Information is provided in this section only if Council is aware of any "affected building notice" and/or a "building product rectification order" in force for the land).

Note: The Environmental Planning and Assessment Amendment Act 2017 commenced operation on the 1 March 2018. As a consequence of this Act the information contained in this certificate needs to be read in conjunction with the provisions of the Environmental Planning and Assessment (Savings, Transitional and Other Provisions) Regulation 2017, and Environmental Planning and Assessment Regulation 2000.

Information is provided only to the extent that Council has been notified by relevant government departments.

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

10.7(5) Certificate This Certificate is directed to the following relevant matters affecting the land

When information pursuant to section 10.7(5) is requested the Council is under no obligation to furnish any of the information supplied herein pursuant to that section. Council draws your attention to section 10.7(6) which states that a council shall not incur any liability in respect of any advice provided in good faith pursuant to sub-section (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this certificate.

Note:

- Council's 10.7(5) information does not include development consent or easement information. Details of development consents may be obtained by making enquiries with Council's Development Services Department pursuant to section 12 of the Local Government Act 1993 or (for development applications lodged after January 2007) by viewing the Online Services area at www.penrithcity.nsw.gov.au . Details of any easements may be obtained from a Title Search at Land and Property Information New South Wales.
- This certificate does not contain information relating to Complying Development Certificates.
- This certificate may not provide full details of development rights over the land.

* Threatened Species Conservation Act 1995

When considering any development application Council must have regard to the Threatened Species Conservation Act 1995. Please note that this legislation may have application to any land throughout the city. Interested persons should make their own enquiries in regard to the impact that this legislation could have on this land.

* Agricultural Activities Within Rural Areas

This property is located in a rural area and there may be certain agricultural activities occurring that some people may find offensive (for example noise, dust and odours). This should be considered if you purchase the subject property or build a dwelling thereon.

If you do purchase the subject property or build a dwelling, the potential impact that your activities (for example pets, inadequate fencing, drainage, litter and poor weed control) might have on the agricultural activities in the area should also be considered.

* Scenic and Landscape Values

The land is identified as "Land with Scenic and Landscape Values" on the Penrith Local Environmental Plan 2010 Scenic and Landscape Values Map. See Clause 7.5 of Penrith Local Environmental Plan 2010 and Chapter C1 Site Planning and Design of Penrith Development Control Plan 2014.

* Preservation of Trees and Vegetation

See Chapter C2 of Penrith Development Control Plan 2014 for specific controls relating to the preservation of trees and vegetation.

* Dual Occupancy and Secondary Dwellings Controls

See Clause 7.10 of Penrith Local Environmental Plan 2010 for specific controls relating to dual occupancy and secondary dwellings in Zones RU1, RU2, RU4, E3 and E4.

Civic Centre 601 High Street, Penrith

PENRITH CITY COUNCIL

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

* Development Control Plan General Information

Penrith Development Control Plan 2014 which applies to the land, sets out requirements for a range of issues that apply across the Penrith Local Government Area, including:

- Site Planning and Design Principles
- Vegetation Management
- Water Management
- Land Management
- Waste Management
- Landscape Design
- Culture and Heritage
- Public Domain
- Advertising and Signage
- Transport, Access and Parking
- Subdivision
- Noise and Vibration, and
- Infrastructure and Services.

The Development Control Plan also specifies requirements relating to various types of land uses including:

- Rural Land Uses
- Residential Development
- Commercial and Retail Development, and
- Industrial Development

as well as for a number of specific activities, including child care centres; health consulting rooms; educational establishments; parent friendly amenities; places of public worship; vehicle repair stations; cemeteries, crematoria and funeral homes; extractive industries; and telecommunication facilities.

The Development Control Plan also details requirements relating to key precincts within the Penrith Local Government Area, including:

- Caddens
- Claremont Meadows Stage 2
- Cranebrook
- Emu Heights
- Emu Plains
- Erskine Business Park
- Glenmore Park
- Kingswood
- Mulgoa Valley
- Orchard Hills
- Penrith
- Penrith Health and Education Precinct
- Riverlink Precinct
- St Clair,
- St Marys / St Marys North, and
- Sydney Science Park.

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

Penrith Development Control Plan 2014 may be accessed at

https://www.penrithcity.nsw.gov.au/Building-and-Development/Planning-and-Zoning/Planning-Controls/Development-Control-Plans/

* <u>Western Sydney Airport</u>

The land the subject of this certificate is in the vicinity of the proposed Badgery's Creek airport site and is located within the Australian Noise Exposure Forecast (ANEF) shown on the map in Appendix U of the 1985 draft environmental impact statement for the second Sydney Airport.

The land is affected by the 20 - 25 ANEF.

In regard to land affected by the ANEF Clause 7.9 of Penrith Local Environmental Plan No.2010 states:

"7.9 Development of land in the flight paths of the site reserved for the proposed Second Sydney Airport

- (1) The objective of this clause is to ensure that development in the vicinity of the proposed Badgery's Creek airport site:
 - (a) has regard to the use or potential future use of the site as an airport, and
 - (b) does not hinder or have any other adverse impact on the development or operation of an airport on that site.
- (2) This clause applies to development that:
 - (a) is on land that:
 - (i) is near the proposed Badgery's Creek airport site, and
 - (ii) is in an ANEF contour of 20 or greater, and
 - (b) the consent authority considers is likely to be adversely affected by aircraft noise.
- (3) Before determining a development application for development to which this clause applies, the consent authority:
 - (a) must consider whether the development will result in an increase in the number of dwellings or people affected by aircraft noise, and
 - (b) must consider the location of the development in relation to the criteria set out in Table 2.1 (Building Site Acceptability Based on ANEF Zones) in AS 2021-2000, and
 - (c) must be satisfied that the development will meet AS 2021-2000 with respect to interior noise levels for the purposes of:
 - (i) if the development will be in an ANEF contour or 20 or greater child care centres, educational establishments, entertainment facilities, hospitals, places of public worship, public administration buildings or residential accommodation, and
 - (ii) if the development will be in an ANEF contour of 25 or greater commercial premises, hostels or hotel or motel accommodation.
- (4) In this clause:

ANEF contour means a noise exposure contour shown as an ANEF contour on the map in Appendix U of the draft environmental impact statement for the Second Sydney Airport, copies of which are deposited in the Office of the Council and of the Commonwealth Department of Infrastructure, Transport, Regional Development and Local Government.

AS 2021-2000 means AS 2021-2000, Acoustics-Aircraft noise intrusion-Building siting and construction."

(Note: The Australian Government announced on 15 April 2014 that Badgerys Creek will be the site for a new airport for Western Sydney. On 12 December 2016, the Government announced the approval of the Airport Plan, authorising Stage 1 of the Western Sydney Airport. Stage 1 comprises a single runway and facilities to cater for up to 10 million passengers a year. This approval follows an assessment of the Airport Plan and its Environmental Impact Statement by the Environment Minister. Enquiries regarding the Western Sydney

 Telephone:
 02 4732 7777

 Facsimile:
 02 4732 7958

Email: pencit@penrithcity.nsw.gov.au

PLANNING CERTIFICATE UNDER SECTION 10.7

Environmental Planning and Assessment Act, 1979

Airport should be made with the Department of Infrastructure and Regional Development. (Website: <<u>http://westernsydneyairport.gov.au></u>)).

Warwick Winn General Manager

PER

Please note:

Certain amendments to the Environmental Planning and Assessment Act 1979 No 203 (Act) commenced on 1 March 2018.

The Environmental Planning and Assessment (Amendment) Act 2017 No 60 makes structural changes to the Act and, as a consequence, the Act has been renumbered in a decimal format. For example, Section 149 Planning Certificates have become Section 10.7 Certificates. Some of the information in this certificate may refer to the previous version of the Act.

Council is committed to updating all relevant documents in a timely manner. This will include planning instruments, applications, approvals, orders, certificates, forms and other associated documents in both printed and electronic versions. Council is required to implement these changes and regrets any inconvenience caused to the local business, industry and the community.

APPENDIX F

BOREHOLE LOGS

Alliance Geotechnical

Manage the earth, eliminate the risk

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au

BH No: BH 01 Sheet: 1 of 1 Job No: 9687

Started:

Finished: 4/10/19

4/10/19

Logged: MS

Checked: LM

FILL

BEDROCK

Additional Observations

W: www.allgeo.com.au **Borehole Log** Client: ESR Group Project: Proposed Industrial Subdivision Location: 290-308 Allington Road, Kemps Creek NSW 2178 Rig Type: Hanjin 8D Hole Location: Refer Drawing 9687-GR-1-A RL Surface: Contractor: BG Drilling Pty Ltd Classification Symbol Graphic Log Material Description Method Water Depth (m) RI (m) FILL: Clay, medium to high plasticity, MC<PL, brown-grey, with silt (Appears ADT moderately compacted). CH CLAY, high plasticity, orange-brown mottled grey, MC<PL, trace silt, trace fine gravel Groundwater Not Encountered 1 SHALE, extremely to highly weathered, very low strength, brown, with frequent clay layers. --ი

Borehole BH 01 terminated at 3m

Borehole Size 110mm Driller: CB Bearing: ---Consistency/ Density Index Samples Conditior Tests Remarks М DS М St RESIDUAL VSt

DS

18/10/	
GINT STD AUSTRALIA.GDT	
BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON BOAD, KEMPS CREEK LOGS GPJ	

3

4

5

6

Alliance Geotechnical

Manage the earth, eliminate the risk

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH 02 Sheet: 1 of 1 Job No: 9687

Borehole Log Client: ESR Group Started: 4/10/19 Project: Proposed Industrial Subdivision Finished: 4/10/19 Location: 290-308 Allington Road, Kemps Creek NSW 2178 Borehole Size 110mm Rig Type: Hanjin 8D Hole Location: Refer Drawing 9687-GR-1-A Driller: CB Logged: MS Bearing: ---RL Surface: Contractor: BG Drilling Pty Ltd Checked: LM Classification Symbol Consistency/ Density Index Samples Graphic Log Conditior Material Description Tests Additional Observations Method Water Remarks Depth (m) RI (m) TOPSOIL/FILL: Silty Clay, low to medium plasticity, MC~PL, grey-brown, with TOPSOIL/FILL Μ ADT rootlets I DS CI-CH RESIDUAL CLAY, medium to high plasticity, MC>PL, red-brown mottled grey, trace fine Μ F gravel. w DS 1 Groundwater Not Encountered - As above, but MC<PL М St SPT 4, 5, 7 N=12 2 CI-CH Silty CLAY, medium to high plasticity, MC<PL, orange-grey, with shale layers. M H. 3 SPT 7, 15, 15 N=30 Borehole BH 02 terminated at 3.5m 4 5 6

BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LOGS GPJ GINT STD AUSTRALIA (GDT 18/10/19

Manage the earth, eliminate the risk

Alliance Geotechnical Pty Ltd

T: 1800 288 188 E: office@allgeo.com.au

W: www.allgeo.com.au

BH No: BH 03 Sheet: 1 of 1 Job No: 9687

В	or	eh	ole	e Lo	Ŋg	с С			110. 0		
Cli Pro	ent: oject	ESR : Pro	Grou posec	p d Indu: 3 Allin	strial S	aubdivision		Star Fini Bor	ted: shed:	4/1 4/1 Sizo	0/19 0/19
Ric	n Tvr	и. 20 ре: Н	aniin a		gioniti	Hole Location: Refer Drawing 9687-GR-1-4	Driller	- CB	enoie	JIZE	and MS
RL	Sur	face:	anjin			Contractor: BG Drilling Pty Ltd	Bearin	ng:			Checked: LM
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Ы			. ,			TOPSOIL/FILL: Silty Clay, low plasticity, grey, trace fine gravel.			D		TOPSOIL/FILL
V	p		- - - 1		CI-CH	Silty CLAY, medium to high plasticity, MC~PL, orange-brown mottled grey.		DS	M	St	RESIDUAL
	undwater Not Encountere		-			- As above, but MC <pl, layers.<="" shale="" td="" with=""><td></td><td>SPT 7, 25/120mm</td><td>1</td><td>Н</td><td></td></pl,>		SPT 7, 25/120mm	1	Н	
	Gro		2 - 3			SHALE, extremely to highly weathered, very low strength, grey-brown, with frequent clay layers.					BEDROCK
הוויד הכרי היה ההיה היה היה היה היה היה היה היה						Borehole BH 03 terminated at 3.1m					TC Bit Refusal

Manage the earth, eliminate the risk

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH 04 Sheet: 1 of 1 Job No: 9687

Borehole Log Client: ESR Group Started: 4/10/19 Project: Proposed Industrial Subdivision Finished: 4/10/19 Location: 290-308 Allington Road, Kemps Creek NSW 2178 Borehole Size 110mm Rig Type: Hanjin 8D Hole Location: Refer Drawing 9687-GR-1-A Driller: CB Logged: MS Bearing: ---RL Surface: Contractor: BG Drilling Pty Ltd Checked: LM Classification Symbol Consistency/ Density Index Samples Graphic Log Conditior Additional Observations Material Description Tests Method Water Remarks Depth (m) RI (m) FILL: Sandy Gravel, medium to coarse grained, well graded, fine to medium FILL ADT grained sand, grey-brown, with clay (Appears well compacted). DS Silty CLAY, medium plasticity, orange-brown-grey, MC<PL, with shale gravel. RESIDUAL CI D Н DS Silty CLAY, medium plasticity, orange-brown, MC<PL, with shale layers. D CI ŤΗ Groundwater Not Encountered 1 2 SHALE, extremely weathered, very low strength, grey-brown, with clay layers. D BEDROCK 3 Borehole BH 04 terminated at 3m 4 5

BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LOGS GPJ GINT STD AUSTRALIA,GDT 18/10/19

6

Alliance Geotechnical

Manage the earth, eliminate the risk

Borehole Log

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH 05 Sheet: 1 of 2 Job No: 9687

Client: ESR Group Started: 4/10/19 Project: Proposed Industrial Subdivision Finished: 4/10/19 Location: 290-308 Allington Road, Kemps Creek NSW 2178 Borehole Size 110mm Rig Type: Hanjin 8D Hole Location: Refer Drawing 9687-GR-1-A Driller: CB Logged: MS Bearing: ---RL Surface: Contractor: BG Drilling Pty Ltd Checked: LM Classification Symbol Consistency/ Density Index Samples Graphic Log Conditior Material Description Tests Additional Observations Method Water Remarks RI Depth (m) (m) TOPSOIL/FILL: Silty Clay, low plasticity, trace fine sand, trace roots. TOPSOIL/FILL ADT DS CI-CH Silty CLAY, medium plasticity, MC>PL, orange-brown mottled grey. М St RESIDUAL - As above but dry, hard. D Н 1 - As above with shale layers. D SPT Н 10, 12, 18 N=30 2 SHALE, highly weathered, very low to low strength, grey, with clay bands. D BEDROCK ---BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LOGS GPJ GINT STD AUSTRALIA GDT 18/10/19 Groundwater Not Encountered 3 SPT 17, 25/5mm Hammer Bounce 4 5 SHALE, highly weathered, low strength, dark grey. D Γ-----

Alliance Geotechnical

Manage the earth, eliminate the risk

12

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH 05 Sheet: 2 of 2 Job No: 9687

Borehole Log Client: ESR Group Started: 4/10/19 Project: Proposed Industrial Subdivision Finished: 4/10/19 Location: 290-308 Allington Road, Kemps Creek NSW 2178 Borehole Size 110mm Rig Type: Hanjin 8D Hole Location: Refer Drawing 9687-GR-1-A Driller: CB Logged: MS Bearing: ---RL Surface: Contractor: BG Drilling Pty Ltd Checked: LM Classification Symbol Consistency/ Density Index Samples Moisture Condition Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) RL (m) SHALE, highly weathered, low strength, dark grey. (continued) ADT TC bit refusal Borehole BH 05 terminated at 6.7m 7 8 BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LOGS GPJ GINT STD AUSTRALIA (GDT 18/10/19 9 10 11

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH 06 Sheet: 1 of 1 Job No: 9687

Borehole Log Client: ESR Group Started: 4/10/19 Project: Proposed Industrial Subdivision Finished: 4/10/19 Location: 290-308 Allington Road, Kemps Creek NSW 2178 Borehole Size 110mm Rig Type: Hanjin 8D Hole Location: Refer Drawing 9687-GR-1-A Driller: CB Logged: MS RL Surface: Contractor: BG Drilling Pty Ltd Bearing: ---Checked: LM Classification Symbol Consistency/ Density Index Samples Graphic Log Conditior Material Description Tests Additional Observations Method Water Remarks RI Depth (m) (m) TOPSOIL/FILL: Silty Clay, low plasticity, MC>PL, dark grey, trace fine sand, trace TOPSOIL/FILL Μ ADT rootlets. DS CLAY, high plasticity, MC~PL, orange-brown mottled grey. М RESIDUAL CH St SHALE, extremely to highly weathered, very low to low strength, grey-brown, with D BEDROCK clay bands. 1 SPT 4, 12, 23 N=35 2 BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LOGS GPJ GINT STD AUSTRALIA GDT 18/10/19 Groundwater Not Encountered 3 SHALE, highly weathered, very low to low strength, dark grey. D 5 Borehole BH 06 terminated at 5.7m TC bit refusal 6

Borehole Log

Alliance Geotechnical Pty Ltd

T: 1800 288 188 E: office@allgeo.com.au

W: www.allgeo.com.au

BH No: BH 07 Sheet: 1 of 1 Job No: 9687

	Clie	ent:	ESR	Grou	p Lindus	strial S	ubdivision		Starte	ed:	4/1 4/1	0/19
	Loc	atio	n: 29	90-308	3 Alling	gton R	oad, Kemps Creek NSW 2178		Boreh	ieu. iole	Size	110mm
	Rig	Тур	e: H	anjin 8	3D		Hole Location: Refer Drawing 9687-GR-1-A	Drill	er: CB		L	ogged: MS
	RL	Surf	face:		1		Contractor: BG Drilling Pty Ltd	Bear	ring:	-	C	Checked: LM
	Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
Ī	ADT				\mathbb{X}	 CH	TOPSOIL/FILL: Silty Clay, low plasticity, grey, with rootlets.			M	 St	TOPSOIL/FILL RESIDUAL
				-		CI	Silty CLAY, medium plasticity, MC <pl, grey.<="" mottled="" orange-brown="" td=""><td></td><td>DS DS</td><td></td><td>St -</td><td></td></pl,>		DS DS		St -	
		ot Encountered		<u>1</u> - -			SHALE extremely to highly weathered, year low strength gray brown with cl		SPT 3, 25/140mm			REDDOCK
ALIA.GDT 18/10/19		Groundwater No		_ 		-	bands.	ay I	Hammer Bounce			BEDROCK
CS.GPJ GINT STD AUSTR				<u>3</u>			SHALE, highly weathered, very low to low strength, dark grey.					
BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LO				 5 			borenole BH 07 terminated at 3.5m					TC DIL FETUSAL

Alliance Geotechnical

Manage the earth, eliminate the risk

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH 08 Sheet: 1 of 1 Job No: 9687

Borehole Log Client: ESR Group Started: 4/10/19 Project: Proposed Industrial Subdivision Finished: 4/10/19 Location: 290-308 Allington Road, Kemps Creek NSW 2178 Borehole Size 60mm Rig Type: Hand Held Push Tube Hole Location: Refer Drawing 9687-GR-1-A Driller: JW Logged: JW Bearing: ---RL Surface: Contractor: Alliance Geotechnical Pty Ltd Checked: LM Classification Symbol Consistency/ Density Index Samples Moisture Condition Graphic Log Additional Observations Material Description Tests Method Water Remarks Depth (m) RI (m) FILL: Silty CLAY, brown. FILL ٩A М DS Groundwater Not Encountered St RESIDUAL CLAY, pale brown and orange. М CH 0.5 DS BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LOGS GPJ GINT STD AUSTRALIA (GDT 18/10/19 1.0 Borehole BH 08 terminated at 1.1m 1.5 2.0

Alliance Geotechnical

Manage the earth, eliminate the risk

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH 09 Sheet: 1 of 1 Job No: 9687

Borehole Log Client: ESR Group Started: 4/10/19 Project: Proposed Industrial Subdivision Finished: 4/10/19 Location: 290-308 Allington Road, Kemps Creek NSW 2178 Borehole Size 60mm Rig Type: Hand Held Push Tube Hole Location: Refer Drawing 9687-GR-1-A Driller: JW Logged: JW Bearing: ---RL Surface: Contractor: Alliance Geotechnical Pty Ltd Checked: LM Classification Symbol Consistency/ Density Index Samples Graphic Log Conditior Additional Observations Material Description Tests Method Water Remarks Depth (m) RI (m) FILL: Silty CLAY, brown. FILL ٩A М DS St RESIDUAL CH CLAY, brown and orange. М Groundwater Not Encountered DS 0.5 BOREHOLE (NO COORD/RL) 9687 - 290-308 ALDINGTON ROAD, KEMPS CREEK LOGS GPJ GINT STD AUSTRALIA (GDT 18/10/19 1.0 Borehole BH 09 terminated at 1.1m 1.5 2.0

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH 10 Sheet: 1 of 1 Job No: 9687

Bo	or	eh	ole Lo	Ŋg			JUD 140.	300	,
Clie	ent:	ESR	Group				Started	: 4/	10/19
Proj	ject:	Pro	posed Indu	strial S	ubdivision		Finishe	d: 4/*	10/19
Dia		n: 28	and Held P		be Hole Legation: Pofer Drawing 0687 GP 1 A	Drillor: 1\/	Boreno	le Siz	
RL S	Surf	face:		usii iu	Contractor: Alliance Geotechnical Ptv Ltd	Bearing:	-		Checked: LM
Method	Water	RL (m)	Depth (m) O	Classification Symbol	Material Description	Sa T Re	mples g ests 5 marks ¥	Condition Consistency/	Additional Observations
HA	sountered		-	-	FILL: Silty CLAY, brown, friable.		DS) St	FILL
	Groundwater Not Enc			CH	CLAY, brown.		DS	Λ St	RESIDUAL
			- - 1. <u>5</u> -		Borehole BH 10 terminated at 1.1m				

Alliance Geotechnical Pty Ltd

T: 1800 288 188 E: office@allgeo.com.au

W: www.allgeo.com.au

BH No: SS01 Sheet: 1 of 1 Job No: 9687

B	or	eh	ole	L	og						
Clie	ent:	ESR	Group)				Star	ted:	4/1	0/19
Pro	oject	: Pro	posed	Indu	ustrial S	ubdivision		Finis	shed:	4/1	0/19
Loc	atic	n: 29	90-308	8 Allir	ngton R	oad, Kemps Creek NSW 2178		Bore	ehole	Size	9 500mm
Rig	Тур	be: H	and E	xcava	ated	Hole Location: Refer Drawing 9687-GR-1-A	Driller: JV	V		I	Logged: JW
RL	Sur	face:				Contractor: Alliance Geotechnical Pty Ltd	Bearing: -			(Checked: LM
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Sa Re	amples Tests emarks	Moisture Condition	Consistency/ Density Index	Additional Observatior
HA	Not Encountered		(m) - 0. <u>5</u>		ML	SILT, brown, trace organics. Borehole SS01 terminated at 0.3m		DS	w	S	ALLUVIUM
			- - 1 <u>.0</u> -								
			- 1. <u>5</u> -								
			20								
			2.0								

Alliance Geotechnical Pty Ltd

T: 1800 288 188 E: office@allgeo.com.au

W: www.allgeo.com.au

BH No: SS02 Sheet: 1 of 1 Job No: 9687

ted: shed: ehole	4/2 : 4/1 e Siz e	10/19 10/19 e 500mm Logged: JW
shed: ehole	: 4/1 • Sizo	10/19 e 500mm Logged: JW
sture dition	Siz	e 500mm Logged: JW
sture dition		Logged: JW
sture dition		
sture dition		Checked: LM
Con	Consistency/ Density Index	Additional Observatio
M	S	FILL

APPENDIX G

LABORATORY CERTIFICATES

N
а

mgt	
urofins	
as E	
td trading	
Phy Li	
Australia	
Testing	
Environment	
Eurofins	

JWC	overby	r Invoice Enviro@allgeo.com.au	r Results Enviro@allgeo.com.au	Containers Turnaround Time (TAT) Requirements pakan with a sty of mericant	Coemight (Bam)*	. Plastic Mark Care VOX Visi VIDA Visi VIDA VAX VAX VAX VAX VAX VAX VAX VAX VAX VA	125mL Nr 40mL Nr 40	2 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.																						Jate Time	
IEY Samp	Handed	Email fo	Email fo			oltasiid Ditasiid	10092 d 11																							d	-
AIDAN ROON				(028	وهدهمریزی agressivity) efind search	n Exch	IOI		×		×	×			×		×	×			×		×		×		×		8	Signature	TANK I WART
Project Manager	DD Format Sdat, EQuIS, Custom)				HOLD	s				×						×				×		×		×		×		×	7	lker	And in the same state
	шЩ		1.2		X3T8		18		4.15									1550												Jacob Wa	
	X		25	(%100.0) SOTS	ASBE			×		×		×		×		×		×		×		×		×		×		10		
37	CREE				(8) SJATE	W			×		×		×		×		×		×		×		×		×		×	27	10	e	
96	MPS				(Aera) Stnais	нти			×		×		×		×		×		×		×		×		×	1	×		10	Na	and a second
	KEI				OCP/OPP)			×		×		×		×		×		×		×		×		×		×		10	stal	
					НАЧ				×		×		×		×		×		×		×		×	1910	×		×		10	0 0	
ct Ne	Name	5.1			хэта / ня	ш			×		×		×		×		×		×		×		×	50.5	×		×		10	pered	1
Proje	Project	etos: 3/31	n i porez, i		ozylanA ogrady pakieto ou pomoto pakieto ou	nni ku kana	a sedt,	ttrix (Solid Water (W))	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s		and Delive	
HNICAL	VEN HILLS							Sampled Date/Time Ma (dd/mm/yy (S) hh.mm)	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	4/10/19	Total Counts) D H	
ICE GEOTEC	ER ROAD, SE			0424066612					S	4	2	9	2		ŋ	9	2	.6	2	.6	ë.	1	.2	9:	2	S	0.2	2.0			
ALLIAN	10 WELDE							Client Sample	BH1-0.4-0.	BH1-1.3-1.	BH2-0.1-0.	BH2-0.5-0	BH3-0.1-0.		BH4-0.2-0	BH4-0.5-0	BH5-0.1-0	BH5-1.5-1	BH6-0.1-0	BH6-1.5-1	BH7-0.1-0	BH7-0.3-0	BH8-0.0-0	BH8-0.4-0	BH9-0.0-0	BH9-0.3-0	BH10-0.0-(BH10-0.5-(Ea Courier (#	And a second sec
Company	Adress		ontact Name	Phone Ne	cial Directions	rchase Order	Duote ID Ne																							od of Shipment	

	VBN 50 000 088 521			12 9900 84	00 Envis	oSampleNS	W@eurofins	mon mon	ano 96 10	02 4600 E	nviroSampleC	DLD@eurofin	s.com 08.9251.96	00 EnviroS	ampleWA@	suralins com 0	3 8564 5000	EnviroSampleVic@	ourofins.com	
Company	ALLIANCE GEOTE	ECHNICAL	Project	t Na			968	1		4 2	hoject anager	AIDA	N ROONEY	Sar	npier(s)			Mſ		
Address	10 WELDER ROAD, S	SEVEN HILLS	Project	ame		KEN	APS C	REE	¥	EDC (ESd	D Format at, EQuIS, ustom)			Hand	ad over by			M		1.
			ellos 371			-			-		- 10.0			Email	for Invoic		Enviro	o@allgeo.co	om.au	
Contact Name)s (,really,						-		-			Email	for Result		Enviro	o@aligeo.co	om.au	
Phone Ne	04240666	12	funna 11169 20 (110), Ales 86			1915	ų		(B20)						Turnaroun Requirements pe	d Time (TAT) art without appretion to and	and the owner where the
Special Directions			azylenA equina urbeu editum tumm urbeu editum	XJT8 / HI	HAq	ось/оьь	(A618) STN3I	(8) SJATE	%100.0) SO18	НОГД	lgressivity	SOTSERS					niqeauee)	 Overnight (9a 1 Day* 	n)* Day*	
Purchase Order			a sayay area	aT		0	ятии	IW	SERE		βA	Exch:		Dites IG	Plastic Plastic		ar HDPE AW, MA G	Day*	a 5 Day	
Quote ID Na			ey. 1929.)						3.74			uol		ii nuose iid 11			2261D) 16 (Class	D Other (* Surcharges apply)	
	Citent Sample ID	Sampled Date/Time (dd/mm/yy hh.mm)	Matrix (Solid (S) Water (W))															Sample Comm Goods Har	ants / Dangerous ard Warning	Concession of the local division of the loca
-	SS01	4/10/19	s/w			1	×	×												
2	SS02	4/10/19	s	×	×	×	×	×	×	1000										1000
	TRIP SPIKE								^	~		1927		1.12						-
4	TRIP BLANK							3-225	^	~										The second
us.	FRAG-1	4/10/19	FRAG						100			×								
9				0.47	1000					1										
1				1																
8																				The second
0																				
10										1.2.5				5						1
E									1					13158	1719.6					
12				265																Contraction of the
t;												10.33		00.98			1			1
=																				NO DE D
15					N USA		12123		Prese Section								3			
t6						-														ALC: NOT
17									16.29		-									
=																				Don Street
19												2355								1
20													2							
		Total Cou	nts	-	-	-	2	2	1						12.76					-
lethod of Shipment	E Courier (#	• (Hand Delivere	p	D Poi	ttal	Nam		Ja	ob Walke		Signatur	Å		Date			Time		15
Eurofins mgt Laboratory Use Onl	Received By Gra	e Tura	eu .	B Jos	R ME	- FER	UI INI	DRW	Signature		furer	T	Date	2	Time	N	23	Temperature	18.8	
utimission of samples to	Heckwed by	intence of Eurofins	wet Clanderd Tel	a Lars	NE MEA	PEA I	AL T NA	UNIT OF	orghatture of Funding	V mot Stand	ard Tarms ar	nd Condition	Letter 7-	minist		1	-	aut tindey.	11000	5

commercial and another and account were accommented and account rug. Account of the second account of the seco

Page 2412 QS3005.RT Modified by Dr.R. Symons Approved by T.Likeland Approved on

Environment Testing

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention:

Aidan Rooney

Report	
Project name	
Project ID	
Received Date	

680974-S KEMPS CREEK 9687 Oct 04, 2019

Client Sample ID			BH1-0.4-0.5	BH2-0.1-0.2	BH3-0.1-0.2	BH4-0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc08933	S19-Oc08934	S19-Oc08935	S19-Oc08936
Date Sampled			Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	Oct 04, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	51	< 50	55
TRH C29-C36	50	mg/kg	< 50	51	< 50	57
TRH C10-C36 (Total)	50	mg/kg	< 50	102	< 50	112
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	99	77	135	95
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/ational standards.

Date Reported: Oct 14, 2019

Environment Testing

Client Sample ID			BH1-0.4-0.5	BH2-0.1-0.2	BH3-0.1-0.2	BH4-0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc08933	S19-Oc08934	S19-Oc08935	S19-Oc08936
Date Sampled			Oct 04 2019	Oct 04 2019	Oct 04 2019	Oct 04 2019
Test/Poference		Linit	000004, 2010	00004, 2010	00004, 2010	000 04, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Unit				
	0.5		0.5	0.5	0.5	0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalana	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Depentrone	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyropo	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Eluorohinhenyl (surr.)	1	0/2	~ 0.5	82	< 0.5 81	71
p-Terphenyl-d14 (surr.)	1	70 9/	104	126	102	118
Organochlorine Pesticides		70	104	120	102	110
Chlordanos Total	0.1	ma/ka	< 0.1	< 0.1	- 0.1	< 0.1
	0.1	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4-DDL	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
9-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
h-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	82	110	87	99
Tetrachloro-m-xylene (surr.)	1	%	99	114	101	103
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	82	110	87	99
Tetrachloro-m-xylene (surr.)	1	%	99	114	101	103

Environment Testing

Client Sample ID			BH1-0.4-0.5	BH2-0.1-0.2	BH3-0.1-0.2	BH4-0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc08933	S19-Oc08934	S19-Oc08935	S19-Oc08936
Date Sampled			Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	Oct 04, 2019
Test/Reference	IOP	Unit	00101,2010		00001,2010	00001,2010
	LOIN	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	45	33	-	240
Nitrate & Nitrite (as N)	5	ma/ka	< 5	< 5	< 5	< 5
Total Kieldahl Nitrogen (as N)	10	ma/ka	710	1300	930	1500
Total Nitrogen (as N)	10	mg/kg	710	1300	930	1500
Exchangeable Sodium Percentage (ESP)	0.1	%	2.2	4.5	-	7.0
Magnesium (exchangeable)	0.1	meq/100g	12	12	-	7.0
Phosphorus	5	mg/kg	340	320	340	1700
Potassium (exchangeable)	0.1	meq/100g	0.4	0.5	-	1.5
Sodium (exchangeable)	0.1	meq/100g	0.6	1.4	-	2.9
% Moisture	1	%	16	23	18	9.3
Heavy Metals						
Arsenic	2	mg/kg	11	7.3	10	9.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	17	16	27	21
Copper	5	mg/kg	27	21	44	61
Lead	5	mg/kg	21	20	28	18
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	24	13	24	27
Zinc	5	mg/kg	75	40	77	110
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g	13	16	-	29
Cation Exchange Capacity	0.05	meq/100g	26	30	-	41

Client Sample ID			BH5-0.1-0.2	BH6-0.1-0.2	BH7-0.1-0.3	BH8-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc08937	S19-Oc08938	S19-Oc08939	S19-Oc08940
Date Sampled			Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	Oct 04, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	122	111	117	115
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH5-0.1-0.2	BH6-0.1-0.2	BH7-0.1-0.3	BH8-0.0-0.2	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S19-Oc08937	S19-Oc08938	S19-Oc08939	S19-Oc08940	
Date Sampled			Oct 04 2019	Oct 04 2019	Oct 04 2019	Oct 04 2019	
Test/Poforonoo		Linit	00004,2010	00004, 2010	00104,2010	00004,2010	
Total Recoverable Hydrocarbons - 2013 NEPM Fract		Unit					
Total Recoverable Hydrocarbons - 2013 NEFM Fract	100	mallea	. 100	. 100	- 100	. 100	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100	
RH >C10-C40 (Iolal)	100	під/кд	< 100	< 100	< 100	< 100	
	0.5		0.5	0.5	0.5	0.5	
Benzo(a)pyrene TEQ (lower bound)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound)	0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound)	0.5	mg/kg	1.2	1.2	1.2	1.2	
Acenaphthelese	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Actenaphtnylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Antifiacene Banz(a)anthropping	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.n.i)perviene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysono	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dihanz(a h)anthracana	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorance	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalana	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phononthrono	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2-Eluorobinhenyl (surr.)	1	111g/kg	59	< 0.5 59	< 0.5 56	59	
n-Ternhenyl-d14 (surr.)	1	/0 %	107	100	105	100	
Organochlorine Pesticides	•	70	107	100	100	100	
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1	
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
4 4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
a-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
b-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
d-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Dieldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Endosulfan I	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Endosulfan II	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Endosulfan sulphate	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin aldehvde	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin ketone	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
g-BHC (Lindane)	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Heptachlor	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Heptachlor epoxide	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05	
Hexachlorobenzene	0.05 mg/kg			< 0.05	< 0.05	< 0.05	
Methoxychlor	0.2	mg/ka	< 0.2	< 0.2	< 0.2	< 0.2	
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1	
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	

Client Sample ID			BH5-0.1-0.2	BH6-0.1-0.2	BH7-0.1-0.3	BH8-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Oc08937	S19-Oc08938	S19-Oc08939	S19-Oc08940
Date Sampled			Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	Oct 04, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	94	85	83	80
Tetrachloro-m-xylene (surr.)	1	%	89	89	92	93
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	94	85	83	80
Tetrachloro-m-xylene (surr.)	1	%	89	89	92	93
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	63	-	55	45
Nitrate & Nitrite (as N)	5	mg/kg	7.6	6.5	< 5	< 5
Total Kjeldahl Nitrogen (as N)	10	mg/kg	3500	2400	980	2200
Total Nitrogen (as N)	10	mg/kg	3507.6	2406.5	980	2200
Exchangeable Sodium Percentage (ESP)	0.1	%	1.4	-	11	3.6
Magnesium (exchangeable)	0.1	meq/100g	6.6	-	16	6.1
Phosphorus	5	mg/kg	1000	610	340	920
Potassium (exchangeable)	0.1	meq/100g	3.1	-	0.6	2.9
Sodium (exchangeable)	0.1	meq/100g	0.3	-	2.5	0.7
% Moisture	1	%	17	15	18	14
Heavy Metals		1				
Arsenic	2	mg/kg	10	9.2	17	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	20	17	23	21
Copper	5	mg/kg	37	28	39	26
Lead	5	mg/kg	26	18	16	35
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	23	21	11	15
Zinc	5	mg/kg	100	63	50	70
Cation Exchange Capacity		1				
Calcium (exchangeable)	0.1	meq/100g	10	-	3.5	9.4
Cation Exchange Capacity	0.05	meq/100g	20	-	23	19

Client Sample ID			BH9-0.0-0.2	BH10-0.0-0.2	SS01	SS02	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S19-Oc08941	S19-Oc08942	S19-Oc08943	S19-Oc08944	
Date Sampled			Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit					
TRH C6-C9	20	ma/ka	< 20	< 20	_	< 20	
TBH C10-C14	20	ma/ka	< 20	< 20	-	27	
TRH C15-C28	50	ma/ka	< 50	< 50	-	82	
TRH C29-C36	50	ma/ka	< 50	< 50	-	140	
TRH C10-C36 (Total)	50	ma/ka	< 50	< 50	-	249	
BTEX		55					
Benzene	0.1	ma/ka	< 0.1	< 0.1	-	< 0.1	
Toluene	0.1	ma/ka	< 0.1	< 0.1	-	< 0.1	
Ethylbenzene	0.1	ma/ka	< 0.1	< 0.1	-	< 0.1	
m&p-Xylenes	0.1	ma/ka	0.4	< 0.2	_	< 0.2	
o-Xylene	0.1	ma/ka	< 0.1	< 0.1	_	< 0.1	
Xylenes - Total	0.3	ma/ka	0.4	< 0.3	_	< 0.3	
4-Bromofluorobenzene (surr.)	1	<u>%</u>	127	112	_	122	
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions	70	121			122	
Naphthalene ^{N02}	0.5	ma/ka	< 0.5	< 0.5	_	< 0.5	
TRH C6-C10	20	ma/ka	< 20	< 20	_	< 20	
TRH C6-C10 less BTEX (E1) ^{N04}	20	ma/ka	< 20	< 20	_	< 20	
TRH >C10-C16	50	ma/ka	< 50	< 50	_	< 50	
TRH >C10-C16 less Naphthalene (E2) ^{N01}	50	ma/ka	< 50	< 50	_	< 50	
TRH >C16-C34	100	ma/ka	< 100	< 100	_	180	
TRH >C34-C40	100	ma/ka	< 100	< 100	_	< 100	
TRH >C10-C40 (total)*	100	ma/ka	< 100	< 100	_	180	
Polycyclic Aromatic Hydrocarbons	100	ing/kg				100	
Benzo(a)pyrene TEO (lower bound) *	0.5	ma/ka	< 0.5	< 0.5	_	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	ma/ka	0.6	0.6	_	0.6	
Benzo(a)pyrene TEQ (incertain bound) *	0.5	ma/ka	12	12	-	1.2	
Acenaphthene	0.5	ma/ka	< 0.5	< 0.5	-	< 0.5	
Acenaphthylene	0.5	ma/ka	< 0.5	< 0.5	-	< 0.5	
Anthracene	0.5	ma/ka	< 0.5	< 0.5	-	< 0.5	
Benz(a)anthracene	0.5	ma/ka	< 0.5	< 0.5	-	< 0.5	
Benzo(a)pyrene	0.5	ma/ka	< 0.5	< 0.5	-	< 0.5	
Benzo(b&i)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5	
Total PAH*	0.5 mg/kg		g < 0.5 < 0.5		-	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	69	74	-	56	
p-Terphenyl-d14 (surr.)	1	%	106	106	-	106	

Client Sample ID			BH9-0.0-0.2	BH10-0.0-0.2	SS01	SS02		
Sample Matrix			Soil	Soil	Soil	Soil		
Eurofins Sample No.			S19-Oc08941	S19-Oc08942	S19-Oc08943	S19-Oc08944		
Date Sampled			Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	Oct 04, 2019		
	LOR	Linit						
Organochlorine Pesticides	LOIN	Onic						
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1		< 0.1		
	0.1	mg/kg	< 0.05	< 0.05		< 0.05		
4.4-DDE	0.05	mg/kg	< 0.05	< 0.05		< 0.05		
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	_	< 0.05		
a-BHC	0.05	ma/ka	< 0.05	< 0.05	_	< 0.05		
Aldrin	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
b-BHC	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
d-BHC	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
Dieldrin	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
Endosulfan I	0.05	ma/ka	< 0.05	< 0.05	_	< 0.05		
Endosulfan II	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
Endosulfan sulphate	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
Endrin	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
Endrin aldehvde	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
Endrin ketone	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
g-BHC (Lindane)	0.05	ma/ka	< 0.05	< 0.05	-	< 0.05		
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05		
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05		
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05		
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2		
Toxaphene	1	mg/kg	< 1	< 1	-	< 1		
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05		
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05		
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	< 0.2		
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	< 0.2		
Dibutylchlorendate (surr.)	1	%	77	75	-	93		
Tetrachloro-m-xylene (surr.)	1	%	91	96	-	91		
Polychlorinated Biphenyls								
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5		
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1		
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5		
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5		
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5		
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5		
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5		
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5		
Dibutylchlorendate (surr.)	1	%	77	75	-	93		
Tetrachloro-m-xylene (surr.)	1	%	91	96	-	91		
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	13	970	-	-		
Nitrate & Nitrite (as N)	5	mg/kg	< 5	270	< 5	56		
Total Kjeldahl Nitrogen (as N)	10	mg/kg	1100	1800	2400	5900		
Total Nitrogen (as N)	10	mg/kg	1100	2070	2400	5956		
Exchangeable Sodium Percentage (ESP)	0.1	%	5.0	5.4	-	-		
Magnesium (exchangeable)	0.1	meq/100g	6.6	2.7	-	-		
Phosphorus	5	mg/kg	460	580	890	1600		
Potassium (exchangeable)	0.1	meq/100g	0.4	2.7	-	-		
Sodium (exchangeable)	0.1	meq/100g	0.7	0.4	-	-		
% Moisture	1	%	15	13	35	26		

Client Sample ID Sample Matrix Eurofins Sample No. Data Sampled			BH9-0.0-0.2 Soil S19-Oc08941	BH10-0.0-0.2 Soil S19-Oc08942	SS01 Soil S19-Oc08943	SS02 Soil S19-Oc08944
Test/Reference	LOR	Unit	001 04, 2013	001 04, 2013	001 04, 2013	000 04, 2013
Heavy Metals	_					
Arsenic	2	mg/kg	12	13	6.7	15
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	25	21	25
Copper	5	mg/kg	26	66	36	41
Lead	5	mg/kg	35	56	20	28
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	16	36	12	23
Zinc	5	mg/kg	68	150	61	140
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g	5.4	0.9	-	-
Cation Exchange Capacity	0.05	meq/100g	13	6.7	-	-

Client Sample ID Sample Matrix			TRIP SPIKE Soil	TRIP BLANK Soil	BH2-0.5-0.6 Soil	BH5-1.5-1.6 Soil
Eurofins Sample No.			519-0008945	519-0008946	519-0008949	519-0008950
Date Sampled			Oct 04, 2019	Oct 04, 2019	Oct 04, 2019	Oct 04, 2019
Test/Reference	LOR	Unit				
BTEX		-				
Benzene	0.1	mg/kg	97	< 0.1	-	-
Toluene	0.1	mg/kg	97	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	130	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	96	< 0.2	-	-
o-Xylene	0.1	mg/kg	96	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	96	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	105	95	-	-
Chloride	10	mg/kg	-	-	230	490
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	90	130
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	7.1	5.6
Resistivity*	0.5	ohm.m	-	-	560	380
Sulphate (as SO4)	10	mg/kg	-	-	43	< 10
% Moisture	1	%	-	-	17	9.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 10, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 10, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 10, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 10, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 10, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Oct 10, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Oct 10, 2019	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Oct 10, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Chloride	Sydney	Oct 10, 2019	28 Days
- Method: E045 /E047 Chloride			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Oct 10, 2019	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	Oct 10, 2019	28 Days
- Method: E045 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Oct 10, 2019	7 Days
- Method: LTM-INO-4030 Conductivity			
Magnesium (exchangeable)	Melbourne	Oct 09, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			
Potassium (exchangeable)	Melbourne	Oct 09, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			
Sodium (exchangeable)	Melbourne	Oct 09, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			
Cation Exchange Capacity	Melbourne	Oct 09, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Oct 09, 2019	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Oct 09, 2019	28 Days
- Method: LTM-INO-4310 TKN in Waters & Soils by FIA			
Exchangeable Sodium Percentage (ESP)	Melbourne	Oct 09, 2019	28 Days
- Method: LTM-MET-3060 - Cation Exchange Capacity (CEC) & Exchangeable Sodium Percentage (ESP)			
Eurofins mgt Suite B19A: Total N (TKN, NOx), Total P			
Phosphorus	Melbourne	Oct 09, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Oct 04, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			

Envi	ronme	ent T	esting
------	-------	-------	--------

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ao Pr	ompany Name: Idress: oject Name:	pany Name: Alliance Geotechnical ess: 10 Welder Road Seven Hills NSW 2147 ect Name: KEMPS CREEK ect ID: 9687					Or Re Ph Fa	der N port i one: x:	o.: #:	68 18 02	30974 300 23 2 9673	88 188 5 1888	8 8					Received Due: Priority: Contact	l: Name:	Oct Oct 5 D Aid	4, 2019 5:2 14, 2019 ay an Rooney	3 PM	
Pr	oject ID:	9687															Eur	ofins An	alytical	Service	s Manager :	Andrew	v Black
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Metals M8	BTEX	Eurofins mgt Suite B13	Aggressivity Soil Set	Eurofins mgt Suite B20	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B19A: Total N (TKN, NOx), Total P							
Mel	oourne Laborate	ory - NATA Site	# 1254 & 142	271		X	X	X		X	X	X	Х	X	X	X							
Sya	hane Laboratory	- NATA Site # 1	8217 20794			~	×	~		~	~	×		~	~								
Peri	h Laboratory - N	NATA Site # 237	/36																				
Exte	ernal Laboratory	1																					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																		
1	BH1-0.4-0.5	Oct 04, 2019		Soil	S19-Oc08933	Х					Х		х	Х	Х	Х							
2	BH2-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08934	Х					Х		х	Х	х	Х							
3	BH3-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08935	Х			$\mid _ \mid$		Х			Х	Х	X							
4	BH4-0.2-0.3	Oct 04, 2019		Soil	S19-Oc08936	X			└──┤		Х		Х	Х	Х	X							
5	BH5-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08937	X					Х		X	Х	Х	X							
6	BH6-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08938	X			┟───┦		X			X	X	X							
7	BH7-0.1-0.3	Oct 04, 2019		Soil	S19-Oc08939	X			┟──┤		X		X	X	X	X							
ð 0		Oct 04, 2019		Soil	S19-0008940				┝──┦				×		X								
9	DH9-0.0-0.2	10ct 04, 2019		501	1319-0c08941	X					X		X	X	X	X							

Env	ironmo	ent T	esting

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

C	Company Name: Alliance Geotechnical Address: 10 Welder Road Seven Hills NSW 2147 Project Name: KEMPS CREEK					Or Re Ph Fa	der N port ; one: x:	o.: #:	6 1 0	80974 800 2 2 967	l 88 18 5 188	8 8					Receive Due: Priority Contact	ed: : t Name:		Oct 4, 2019 5 Oct 14, 2019 5 Day Aidan Roone	5:23 PM		
Pi Pi	roject Name: roject ID:	KEMPS CRE 9687	EK														Eu	rofins A	nalytica	al Serv	ices Manage	er : Andro	ew Black
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	ногр	Metals M8	BTEX	Eurofins mgt Suite B13	Aggressivity Soil Set	Eurofins mgt Suite B20	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B19A: Total N (TKN, NOx), Total P							
Mel	bourne Laborate	ory - NATA Site	# 1254 & 14	271								Х	Х	Х		Х							
Syd	Iney Laboratory	- NATA Site # 1	8217			X	Х	X	Х	X	Х	Х		Х	Х								
Bris	sbane Laborator	y - NATA Site #	20794																				
Per	th Laboratory - I	NATA Site # 237	36	Co.il	640.0-00040						v			v	v								
11	SS01	Oct 04, 2019		Soil	S19-Oc08942	^			x		^			x	^	X							
12	SS02	Oct 04, 2019		Soil	S19-Oc08944	x					x			X	x	X							
13	TRIP SPIKE	Oct 04, 2019		Soil	S19-Oc08945					х													
14	TRIP BLANK	Oct 04, 2019		Soil	S19-Oc08946					Х													
15	TRIP SPIKE LAB	Oct 04, 2019		Soil	S19-Oc08947					х													
16	FRAG-1	Oct 04, 2019		Building Materials	S19-Oc08948		x																
17	BH2-0.5-0.6	Oct 04, 2019		Soil	S19-Oc08949							х		х									
18	BH5-1.5-1.6	Oct 04, 2019		Soil	S19-Oc08950							х		Х									
19	BH1-1.3-1.4	Oct 04, 2019		Soil	S19-Oc08951			Х															
20	BH4-0.5-0.6	Oct 04, 2019		Soil	S19-Oc08952			Х															

Environme	ent Testing
-----------	-------------

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company N Address:	l ame: Alliar 10 W Seve NSW	nce Geotechnica /elder Road n Hills / 2147	al			Or Re Ph Fa	der N eport a ione: x:	o.: #:	68 18 02	80974 800 23 2 967	l 88 188 5 1888	8 8					Received Due: Priority: Contact I	l: Name:	Oct Oct 5 D Aid	: 4, 2019 5:: : 14, 2019 ay an Rooney	23 PM	
Project Nan	ne: KEM	PS CREEK																				
Floject ID.	9007															Eu	rofins An	alytical	Service	s Manager	: Andrew	w Black
		Sample D	etail		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Metals M8	BTEX	Eurofins mgt Suite B13	Aggressivity Soil Set	Eurofins mgt Suite B20	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B19A: Total N (TKN, NOx), Total P							
Melbourne La	aboratory - NA	TA Site # 1254	& 14271								х	Х	х		х							
Sydney Labo	ratory - NATA	Site # 18217			Х	Х	Х	х	х	х	х		Х	Х								
Brisbane Lab	oratory - NATA	A Site # 20794																				
Perth Laborat	tory - NATA Sit	te # 23736																				
21 BH6-1.5-	-1.6 Oct 04,	2019	Soil	S19-Oc08953			X															
22 BH7-0.3-	-0.7 Oct 04,	2019	Soil	S19-Oc08954			Х															
23 BH8-0.4-	-0.6 Oct 04,	2019	Soil	S19-Oc08955			Х															
24 BH9-0.3-	-0.5 Oct 04,	2019	Soil	S19-Oc08956			Х															
25 BH10-0.	5-0.7 Oct 04,	2019	Soil	S19-Oc08957			Х															
Test Counts					11	1	7	1	3	11	2	8	14	11	12							

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1	1	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			1 1	1		
BTEX	1					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank			I I			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank				1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank				1		
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
а-ВНС	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Endsuitan sulphate mg/kg < 0.05	Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin mg/kg < 0.05 0.05 Pass Endrin aldehyde mg/kg < 0.05	Endosulfan sulphate	ma/ka	< 0.05		0.05	Pass	
Endin aldehyde mg/kg < 0.05 0.05 Pass Endrin katone mg/kg < 0.05	Endrin	ma/ka	< 0.05		0.05	Pass	
Endin katone mg/kg < 0.05 Pass g-BHC (Lindane) mg/kg < 0.05	Endrin aldehyde	ma/ka	< 0.05		0.05	Pass	
g-BHC (Lindane) mg/kg < 0.05 Pass Heptachlor opoxide mg/kg < 0.05	Endrin ketone	mg/kg	< 0.05		0.05	Pass	
Instruction mg/kg < 0.05 Mass Mass Heptachlor epoxide mg/kg < 0.05	g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor opoxide mgkg < 0.05 Pass Hexachlor opoxide mgkg < 0.05	Heptachlor	mg/kg	< 0.05		0.05	Pass	
Herachlorobenzene mgkg < 0.05 Pass Methoxychlor mgkg < 0.2	Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Methoxychlor mg/kg < 0.2 Pass Toxaphene mg/kg < 1	Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Toxaphene mg/kg < 1 Pass Method Biank Polycholniated Biphenyis mg/kg < 0.5	Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Method Blank Image	Toxaphene	mg/kg	< 1		1	Pass	
Polychlorinated Biphenyls m	Method Blank						
Arcolor-1016 mg/kg <0.5 0.5 Pass Arcolor-1221 mg/kg <0.1	Polychlorinated Biphenyls						
Arcolor-1221 mg/kg < 0.1 0.1 Pass Arcolor-1232 mg/kg < 0.5	Aroclor-1016	mg/kg	< 0.5		0.5	Pass	
Aroclor-1232 mg/kg < 0.5 0.5 Pass Aroclor-1242 mg/kg < 0.5	Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1242 mg/kg < 0.5 Pass Aroclor-1248 mg/kg < 0.5	Aroclor-1232	mg/kg	< 0.5		0.5	Pass	
Arcolor-1248 mg/kg < 0.5 Pass Arcolor-1260 mg/kg < 0.5	Aroclor-1242	mg/kg	< 0.5		0.5	Pass	
Arcolor-1254 mg/kg < 0.5 Pass Arcolor-1260 mg/kg < 0.5	Aroclor-1248	mg/kg	< 0.5		0.5	Pass	
Arocio-1260 mg/kg < 0.5 Pass Total PCB* mg/kg < 0.5	Aroclor-1254	mg/kg	< 0.5		0.5	Pass	
Total PCB* mg/kg < 0.5 Pass Method Blank	Aroclor-1260	mg/kg	< 0.5		0.5	Pass	
Method Blank uS(cm < 10 10 Pass Nitrate & Nitrite (as N) mg/kg < 5	Total PCB*	mg/kg	< 0.5		0.5	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.) uS/cm < 10 Pass Nitrate & Nitrite (as N) mg/kg < 5	Method Blank						
Nitrate & Nitrite (as N) mg/kg < 5 5 Pass Total Kjeldahl Nitrogen (as N) mg/kg < 10	Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10		10	Pass	
Total Kjeldahl Nitrogen (as N) mg/kg < 10 Pass Exchangeable Sodium Percentage (ESP) % <0.1	Nitrate & Nitrite (as N)	mg/kg	< 5		5	Pass	
Exchangeable Sodium Percentage (ESP) % < 0.1 Pass Magnesium (exchangeable) meq/100g < 0.1	Total Kjeldahl Nitrogen (as N)	mg/kg	< 10		10	Pass	
Magnesium (exchangeable) meq/100g < 0.1 Pass Potassium (exchangeable) meq/100g < 0.1	Exchangeable Sodium Percentage (ESP)	%	< 0.1		0.1	Pass	
Potassium (exchangeable) meq/100g < 0.1 Pass Sodium (exchangeable) meq/100g < 0.1	Magnesium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Sodium (exchangeable) meq/100g < 0.1 Pass Method Blank meq/100g < 0.1 Pass Heavy Metals mg/kg < 2 2 Pass Arsenic mg/kg < 0.4 0.4 Pass Cadmium mg/kg < 0.4 0.4 Pass Chromium mg/kg < 5 5 Pass Copper mg/kg < 5 5 Pass Lead mg/kg < 5 5 Pass Mercury mg/kg < 5 5 Pass Nickel mg/kg < 5 5 Pass Zinc mg/kg < 5 5 Pass Method Blank mg/kg < 5 5 Pass Catiom Exchange Capacity meq/100g < 0.1 Pass Cation Exchange Capacity meq/100g < 0.1 Pass Cation Exchange Capacity meq/100g < 0.05 Pass Cation Exchange Capacity meq/100g < 0.05<	Potassium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Method Blank Image: Second Secon	Sodium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Heavy Metals Imag/kg < 2 Imag/kg < 2 Pass Arsenic mg/kg < 0.4	Method Blank			r	I		
Arsenic mg/kg < 2 2 Pass Cadmium mg/kg < 0.4	Heavy Metals						
Cadmium mg/kg < 0.4 Pass Chromium mg/kg < 5	Arsenic	mg/kg	< 2		2	Pass	
Chromium mg/kg < 5 5 Pass Copper mg/kg < 5	Cadmium	mg/kg	< 0.4		0.4	Pass	
Copper mg/kg < 5 5 Pass Lead mg/kg < 5	Chromium	mg/kg	< 5		5	Pass	
Lead mg/kg < 5 5 Pass Mercury mg/kg < 0.1	Copper	mg/kg	< 5		5	Pass	
Mercury mg/kg < 0.1 Pass Nickel mg/kg < 5	Lead	mg/kg	< 5		5	Pass	
Nickel mg/kg < 5 5 Pass Zinc mg/kg < 5	Mercury	mg/kg	< 0.1		0.1	Pass	
Zinc mg/kg < 5 5 Pass Method Blank Cation Exchange Capacity Image (100g) < 0.1 Pass Image (100g) < 0.05 Pass Image	Nickel	mg/kg	< 5		5	Pass	
Method Blank Cation Exchange Capacity Image Network Image Network <t< td=""><td>Zinc</td><td>mg/kg</td><td>< 5</td><td></td><td>5</td><td>Pass</td><td></td></t<>	Zinc	mg/kg	< 5		5	Pass	
Cation Exchange Capacity meq/100g < 0.1 Pass Cation Exchange Capacity meq/100g < 0.1	Method Blank			I I			
Calcium (exchangeable) meq/100g < 0.1 Pass Cation Exchange Capacity meq/100g < 0.05	Cation Exchange Capacity					_	
Cation Exchange Capacity meq/100g < 0.05 Pass LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions <td>Calcium (exchangeable)</td> <td>meq/100g</td> <td>< 0.1</td> <td></td> <td>0.1</td> <td>Pass</td> <td></td>	Calcium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Cation Exchange Capacity	meq/100g	< 0.05		0.05	Pass	
Instance Image: Constraint of the image: Constraint of t	LCS - % Recovery					[
IKH Co-C9 % 80 70-130 Pass TRH C10-C14 % 72 70-130 Pass LCS - % Recovery 8 6 6 6 BTEX % 101 70-130 Pass	TOTAL RECOVERABLE HYDROCARDONS - 1999 NEPM Fractions	0/		<u> </u>	70.400	D	
IRH C10-C14 % 72 70-130 Pass LCS - % Recovery </td <td>TRH C6-C9</td> <td>%</td> <td>80</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	TRH C6-C9	%	80		70-130	Pass	
BTEX % 101 70-130 Pass		70	12		10-130	rass	
Bitch % 101 70-130 Pass					1		
Denzene 70 101 10-130 Pass	Bonzono	0/	101		70 120	Baaa	
		-70 0/.	00		70 120	F dSS Doco	
Totuene 70 90 70-130 Pass Ethylhenzene 0/ 00 70-120 Pass	Ethylbenzene	70 0/.	90		70 120	F dSS Doco	
Lutypenzene /0 90 70-130 Pass m&n_Xvlenes 0/ 00 70.120 Pass		/0	90		70-130	Pace	
0-Xvlene 0/ 01 70-130 Pass		/0	Q1		70-130	Pace	
Xylenes - Total % 90 70-130 Pass	Xvlenes - Total	%	90		70-130	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery			1	1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	98		70-130	Pass	
TRH C6-C10	%	73		70-130	Pass	
TRH >C10-C16	%	70		70-130	Pass	
LCS - % Recovery				-		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	73		70-130	Pass	
Acenaphthylene	%	72		70-130	Pass	
Anthracene	%	72		70-130	Pass	
Benz(a)anthracene	%	73		70-130	Pass	
Benzo(a)pyrene	%	75		70-130	Pass	
Benzo(b&j)fluoranthene	%	72		70-130	Pass	
Benzo(g.h.i)perylene	%	71		70-130	Pass	
Benzo(k)fluoranthene	%	80		70-130	Pass	
Chrysene	%	73		70-130	Pass	
Dibenz(a.h)anthracene	%	77		70-130	Pass	
Fluoranthene	%	74		70-130	Pass	
Fluorene	%	73		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	74		70-130	Pass	
Naphthalene	%	74		70-130	Pass	
Phenanthrene	%	74		70-130	Pass	
Pyrene	%	76		70-130	Pass	
LCS - % Recovery		1				
Organochlorine Pesticides						
Chlordanes - Total	%	102		70-130	Pass	
4.4'-DDD	%	88		70-130	Pass	
4.4'-DDE	%	110		70-130	Pass	
4.4'-DDT	%	100		70-130	Pass	
a-BHC	%	87		70-130	Pass	
Aldrin	%	103		70-130	Pass	
b-BHC	%	93		70-130	Pass	
d-BHC	%	105		70-130	Pass	
Dieldrin	%	110		70-130	Pass	
Endosulfan I	%	101		70-130	Pass	
Endosulfan II	%	107		70-130	Pass	
Endosulfan sulphate	%	103		70-130	Pass	
Endrin	%	122		70-130	Pass	
Endrin aldehyde	%	91		70-130	Pass	
Endrin ketone	%	116		70-130	Pass	
g-BHC (Lindane)	%	102		70-130	Pass	
Heptachlor	%	108		70-130	Pass	
Heptachlor epoxide	%	95		70-130	Pass	
Hexachlorobenzene	%	101		70-130	Pass	
Methoxychlor	%	87		70-130	Pass	
LCS - % Recovery						
Polychiorinated Biphenyls	~ /	446		70.400	-	
Arocior-1260	%	116		/0-130	Pass	
LUS - % Recovery		0.5		70.400	D	
Conductivity (1:5 aqueous extract at 25°C as rec.)	%	95		70-130	Pass	
	%	95		/0-130	Pass	
I otal Kjeldahl Nitrogen (as N)	%	85		/0-130	Pass	
LCS - % Recovery						
Heavy Metals						

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Arsenic			%	92	70-130	Pass	
Cadmium			%	91	70-130	Pass	
Chromium			%	91	70-130	Pass	
Copper			%	94	70-130	Pass	
Lead			%	94	70-130	Pass	
Mercury			%	99	70-130	Pass	
Nickel			%	99	70-130	Pass	
Zinc			%	94	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery						1	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions	0/	Result 1	70.400		
TRH C6-C9	S19-Oc08933		%	/1	70-130	Pass	
1RH C10-C14	S19-Oc06522	NCP	%	97	70-130	Pass	
Spike - % Recovery				Desited	1		
BIEX	040.0.00000	0.0	0/	Result 1	70.400	Dese	
Benzene	S19-Oc08933		%	80	70-130	Pass	
Toluene	S19-Oc08933		%		70-130	Pass	
	S19-0008933		%	75	70-130	Pass	
m&p-Xylenes	S19-0008933		%	79	70-130	Pass	
0-Aylene	S19-0008933		% 0/	70	70-130	Pass	
Spike % Pessyery	519-0008933	CP	70	/0	70-130	Pass	
Spike - % Recovery	2012 NEDM Erect	iona		Booult 1			
Norphtholono			0/		70.120	Dooo	
	S19-0006955		-70 0/	70	70-130	Pass	
	S19-0010930		/0 0/.	19	70-130	Pass	
Spike - % Recovery	313-0000322	NCI	70		70-130	1 855	
Polycyclic Aromatic Hydrocarbons	:			Result 1			
Acenaphthene	S19-Oc08960	NCP	%	77	70-130	Pass	
Acenaphthylene	S19-Oc08960	NCP	%	77	70-130	Pass	
Anthracene	S19-Oc08960	NCP	%	78	70-130	Pass	
Benz(a)anthracene	S19-Oc08960	NCP	%	75	70-130	Pass	
Benzo(a)pyrene	S19-Oc08960	NCP	%	83	70-130	Pass	
Benzo(b&i)fluoranthene	S19-Oc08960	NCP	%	75	70-130	Pass	
Benzo(q.h.i)perylene	S19-Oc08960	NCP	%	88	70-130	Pass	
Benzo(k)fluoranthene	S19-Oc08960	NCP	%	78	70-130	Pass	
Chrysene	S19-Oc08960	NCP	%	76	70-130	Pass	
Dibenz(a.h)anthracene	S19-Oc08960	NCP	%	88	70-130	Pass	
Fluoranthene	S19-Oc08960	NCP	%	78	70-130	Pass	
Fluorene	S19-Oc08960	NCP	%	77	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Oc08960	NCP	%	90	70-130	Pass	
Naphthalene	S19-Oc08960	NCP	%	78	70-130	Pass	
Phenanthrene	S19-Oc08960	NCP	%	79	70-130	Pass	
Pyrene	S19-Oc08960	NCP	%	79	70-130	Pass	
Spike - % Recovery				-			
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S19-Oc08960	NCP	%	105	70-130	Pass	
4.4'-DDD	S19-Oc08960	NCP	%	115	70-130	Pass	
4.4'-DDE	S19-Oc08960	NCP	%	110	70-130	Pass	
4.4'-DDT	S19-Oc08960	NCP	%	72	70-130	Pass	
a-BHC	S19-Oc08960	NCP	%	93	70-130	Pass	
Aldrin	S19-Oc08960	NCP	%	98	70-130	Pass	
b-BHC	S19-Oc08960	NCP	%	97	70-130	Pass	
d-BHC	S19-Oc08960	NCP	%	104	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Dieldrin	S19-Oc08960	NCP	%	111			70-130	Pass	
Endosulfan I	S19-Oc08960	NCP	%	105			70-130	Pass	
Endosulfan II	S19-Oc08960	NCP	%	111			70-130	Pass	
Endosulfan sulphate	S19-Oc08960	NCP	%	115			70-130	Pass	
Endrin	S19-Oc08865	NCP	%	101			70-130	Pass	
Endrin aldehyde	S19-Oc08960	NCP	%	105			70-130	Pass	
Endrin ketone	S19-Oc08960	NCP	%	109			70-130	Pass	
g-BHC (Lindane)	S19-Oc08960	NCP	%	104			70-130	Pass	
Heptachlor	S19-Oc08960	NCP	%	102			70-130	Pass	
Heptachlor epoxide	S19-Oc08960	NCP	%	99			70-130	Pass	
Hexachlorobenzene	S19-Oc08960	NCP	%	99			70-130	Pass	
Methoxychlor	S19-Oc08960	NCP	%	70			70-130	Pass	
Spike - % Recovery				1					
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S19-Oc08960	NCP	%	96			70-130	Pass	
Spike - % Recovery				1					
Heavy Metals				Result 1					
Zinc	S19-Oc08865	NCP	%	105			70-130	Pass	
Spike - % Recovery				1					
Heavy Metals				Result 1					
Arsenic	S19-Oc08942	CP	%	90			70-130	Pass	
Cadmium	S19-Oc08942	CP	%	115			70-130	Pass	
Chromium	S19-Oc08942	CP	%	107			70-130	Pass	
Copper	S19-Oc08942	CP	%	123			70-130	Pass	
Lead	S19-Oc08942	CP	%	81			70-130	Pass	
Mercury	S19-Oc08942	CP	%	121			70-130	Pass	
Niekol	040 0.00040		0/	447			70 400	Deee	
INICKEI	S19-0c08942	CP	%	117			70-130	Pass	
Test	Lab Sample ID	QA Source	% Units	Result 1			Acceptance Limits	Pass Pass Limits	Qualifying Code
Test Duplicate	Lab Sample ID	QA Source	% Units	Result 1			Acceptance Limits	Pass Pass Limits	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons -	Lab Sample ID	QA Source ions	% Units	Result 1	Result 2	RPD	Acceptance Limits	Pass Pass Limits	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309	QA Source ions NCP	% Units mg/kg	Result 1 Result 1 < 20	Result 2 < 20	RPD <1	Acceptance Limits	Pass Pass Limits Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309	QA Source ions NCP NCP	% Units mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51	RPD <1 15	Acceptance Limits 30% 30%	Pass Limits Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309	QA Source ions NCP NCP NCP	% Units mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110	RPD <1 15 13	Acceptance Limits 30% 30% 30%	Pass Limits Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309	QA Source ions NCP NCP NCP	% Units mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110	RPD <1 15 13	70-130 Acceptance Limits 30% 30% 30%	Pass Limits Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons -	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309	QA Source ions NCP NCP NCP ions	% Units mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2	RPD <1 15 13 RPD	70-130 Acceptance Limits 30% 30% 30%	Pass Pass Limits Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309	QA Source ions NCP NCP ions NCP	% Units mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1 15 13 RPD <1	70-130 Acceptance Limits 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C34	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309	QA Source ions NCP NCP ions NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1 15 13 RPD <1 14	70-130 Acceptance Limits 30% 30% 30% 30%	Pass Pass Limits Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309	QA Source ions NCP NCP NCP ions NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1 15 13 RPD <1 14 23	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C16-C34 TRH >C34-C40 Duplicate	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309	QA Source ions NCP NCP NCP ions NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1 15 13 RPD <1 14 23	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309	QA Source ions NCP NCP ions NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2	RPD <1 15 13 RPD <1 14 23 RPD	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 2013 NEPM Fract S19-Oc14309	QA Source ions NCP NCP ions NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5	RPD <1 15 13 RPD <1 14 23 RPD <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Acenaphthylene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 2013 NEPM Fract S19-Oc14309 S19-Oc08959 S19-Oc08959	QA Source ions NCP NCP ions NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5	RPD <1 15 13 RPD <1 14 23 RPD <1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	2013 NEPM Fract S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc14309 2013 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959	QA Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5 < 0.5	RPD <1 15 13 RPD <1 14 23 RPD <1 4 1 <1 <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959	QA Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1	70-130 Acceptance Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	2013 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 2013 NEPM Fract S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc14309 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959 S19-Oc08959	QA Source ions NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1	70-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Acenaphthene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959	QA Source ions NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1	70-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959	QA Source ions NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	RPD <1	70-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959	QA Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5	RPD <1	70-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene Chrysene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959	QA Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5	RPD <1	70-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Accenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Dibenz(a.h)anthracene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959 S	QA Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1	70-130 Acceptance Limits 30%	Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(bàj)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959 S	QA Source ions NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50	RPD <1	70-130 Acceptance Limits 30%	Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(g.h.i)perylene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Fluorene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959 S	QA Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5	RPD <1	7/0-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	S19-Oc08942 Lab Sample ID 1999 NEPM Fract S19-Oc14309 S19-Oc08959 S	QA Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20	Result 2 < 20 51 110 Result 2 < 50 Result 2 < 0.5 < 0.5	RPD <1	7/0-130 Acceptance Limits 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code

Duplicate										
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD				
Phenanthrene	S19-Oc08959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Pyrene	S19-Oc08959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Duplicate										
Organochlorine Pesticides				Result 1	Result 2	RPD				
Chlordanes - Total	S19-Oc08959	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
4.4'-DDD	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
4.4'-DDE	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
4.4'-DDT	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
a-BHC	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Aldrin	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
b-BHC	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
d-BHC	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Dieldrin	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Endosulfan I	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Endosulfan II	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ	
Endosulfan sulphate	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ	
Endrin	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	ļ	
Endrin aldehyde	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Endrin ketone	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
g-BHC (Lindane)	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Heptachlor	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Heptachlor epoxide	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Hexachlorobenzene	S19-Oc08959	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass		
Methoxychlor	S19-Oc08959	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass		
Duplicate								I		
Polychlorinated Biphenyls			"	Result 1	Result 2	RPD		_		
Aroclor-1016	S19-Oc08959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1221	S19-Oc08959	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Aroclor-1232	S19-Oc08959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1242	S19-Oc08959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor 1254	S19-0008959	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor 1254	S10 Oc08050		mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Total PCR*	S19-0008959		mg/kg	< 0.5	< 0.5	<1	30%	Pass		
	319-0008939	NCF	iiig/kg	< 0.5	< 0.5	<1	30 /8	F 855		
Dupicate				Result 1	Result 2	RPD		[
Phosphorus	S19-Oc08936	CP	ma/ka	1700	1700	20	30%	Pass		
Duplicate										
				Result 1	Result 2	RPD				
% Moisture	S19-Oc08937	CP	%	17	17	2.0	30%	Pass		
Duplicate										
Heavy Metals				Result 1	Result 2	RPD				
Arsenic	S19-Oc08941	CP	mg/kg	12	11	8.0	30%	Pass		
Cadmium	S19-Oc08941	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass		
Chromium	S19-Oc08941	CP	mg/kg	23	25	10	30%	Pass		
Copper	S19-Oc08941	CP	mg/kg	26	28	6.0	30%	Pass		
Lead	S19-Oc08941	CP	mg/kg	35	31	12	30%	Pass		
Mercury	S19-Oc08941	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Nickel	S19-Oc08941	CP	mg/kg	16	15	2.0	30%	Pass		
Zinc	S19-Oc08941	СР	mg/kg	68	75	9.0	30%	Pass		
Duplicate										
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD				
TRH C6-C9	S19-Oc08942	CP	mg/kg	< 20	< 20	<1	30%	Pass		

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Oc08942	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Oc08942	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Oc08942	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Oc08942	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Oc08942	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Oc08942	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	-	Result 1	Result 2	RPD			
Naphthalene	S19-Oc08942	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Oc08942	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Nitrate & Nitrite (as N)	S19-Oc08944	CP	mg/kg	56	58	5.0	30%	Pass	
Duplicate							-		
				Result 1	Result 2	RPD			
Chloride	S19-Oc08809	NCP	mg/kg	12	11	10	30%	Pass	
Sulphate (as SO4)	S19-Oc08809	NCP	mg/kg	180	190	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S19-Oc08950	СР	uS/cm	130	140	9.0	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S19-Oc08950	СР	pH Units	5.6	5.5	Pass	30%	Pass	
Resistivity*	S19-Oc08950	CP	ohm.m	380	350	9.2	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to N07 the total of the two co-eluting PAHs

Authorised By

Andrew Black	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
Emily Rosenberg	Senior Analyst-Metal (VIC)
Gabriele Cordero	Senior Analyst-Inorganic (NSW)
Gabriele Cordero	Senior Analyst-Metal (NSW)
Julie Kay	Senior Analyst-Inorganic (VIC)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

li jale

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet ideadlines and to be include to soft profits, damages for failure to meet ideadlines and to be include to a soft profits. Consequential from this regord. The occurrent to a soft profits damages conserved.

Certificate of Analysis

Environment Testing

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

> Aidan Rooney 680974-AID KEMPS CREEK 9687 Oct 04, 2019

Oct 14, 2019

Methodology:

Attention:

Project ID

Project Name

Received Date

Date Reported

Report

Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name	KEMPS CREEK
Project ID	9687
Date Sampled	Oct 04, 2019
Report	680974-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH1-0.4-0.5	19-Oc08933	Oct 04, 2019	Approximate Sample 512g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH2-0.1-0.2	19-Oc08934	Oct 04, 2019	Approximate Sample 458g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH3-0.1-0.2	19-Oc08935	Oct 04, 2019	Approximate Sample 316g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH4-0.2-0.3	19-Oc08936	Oct 04, 2019	Approximate Sample 441g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH5-0.1-0.2	19-Oc08937	Oct 04, 2019	Approximate Sample 359g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH6-0.1-0.2	19-Oc08938	Oct 04, 2019	Approximate Sample 424g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH7-0.1-0.3	19-Oc08939	Oct 04, 2019	Approximate Sample 537g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH8-0.0-0.2	19-Oc08940	Oct 04, 2019	Approximate Sample 427g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH9-0.0-0.2	19-Oc08941	Oct 04, 2019	Approximate Sample 410g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH10-0.0-0.2	19-Oc08942	Oct 04, 2019	Approximate Sample 492g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS02	19-Oc08944	Oct 04, 2019	Approximate Sample 379g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
FRAG-1	19-Oc08948	Oct 04, 2019	Approximate Sample 19g / 60x30x5mm Sample consisted of: Grey compressed fibre cement	No asbestos detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	Oct 11, 2019	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Oct 11, 2019	Indefinite

Environment Testing ABN - 50 005 085 521 B.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co	ompany Name: Idress:	Alliance Geo 10 Welder R Seven Hills NSW 2147	technical oad				Or Re Ph Fa	der N port i one: x:	o.: #:	6 1 0	80974 800 2 2 967	4 88 18 5 188	8 8				Received: Due: Priority: Contact Name:	Oct 4, 2019 5:2 Oct 14, 2019 5 Day Aidan Rooney	3 PM
Pr Pr	oject Name: oject ID:	KEMPS CRE 9687	EK														Eurofins Analytica	I Services Manager :	Andrew Black
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Metals M8	BTEX	Eurofins mgt Suite B13	Aggressivity Soil Set	Eurofins mgt Suite B20	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B19A: Total N (TKN, NOx), Total P			
Svd	pourne Laboratory	- NATA Site # 1	# 1254 & 142 8217	2/1		×	x	x	×	x	x	X	<u> </u>	X	x	×			
Bris	bane Laborator	v - NATA Site #	20794							~				~					
Pert	h Laboratory - N	NATA Site # 237	/36																
Exte	rnal Laboratory	/			-														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	BH1-0.4-0.5	Oct 04, 2019		Soil	S19-Oc08933	х					х		х	х	Х	х			
2	BH2-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08934	Х					х		X	Х	Х	X			
3	BH3-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08935	X			 		Х			X	Х	X			
4	BH4-0.2-0.3	Oct 04, 2019		Soil	S19-Oc08936	X					X		X	X	Х	X			
5	BH5-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08937	X			┟──┤		X		X	X	X	X			
6	BH6-0.1-0.2	Oct 04, 2019		Soil	S19-Oc08938	X			──┦		X			X	X	X			
/	вни-0.1-0.3	Oct 04, 2019		Soll	S19-0008939	×			┟──┤						X				
0		Oct 04, 2019		Soil	S10 000041				\vdash										
9	вн9-0.0-0.2	Oct 04, 2019		501	1519-OC08941	X					X		X	X	X	X			

Environment Testing ABN - 50 005 085 521 B.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Alliance Geotechnical Address: 10 Welder Road Seven Hills NSW 2147							Or Re Ph Fa	Order No. Report #: Phone: Fax:		6 1 0	680974 1800 288 188 02 9675 1888						Received: Due: Priority: Contact Name:	me:	Oct Oct 5 Da Aida	Oct 4, 2019 5:2 Oct 14, 2019 5 Day Aidan Rooney	:23 PM				
Pr Pr	oject Name: oject ID:	KEMPS CRE 9687	EK														E	Eurofin	s Analy	tical S	Services	Manage	r : Andr	ew Blac	:k
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Metals M8	BTEX	Eurofins mgt Suite B13	Aggressivity Soil Set	Eurofins mgt Suite B20	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B19A: Total N (TKN, NOx), Total P									
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271		X		X	X	~	× ×	X	X	X	X	X									
Syd	hey Laboratory	- NATA Site # 1 y = NATA Site #	8217 20704			^	×	×	~	×	×	×		×	~										
Per	th Laboratory - I	y = 10ATA Site # 237	<u>20134</u> '36																						
10	BH10-0.0-0.2	Oct 04, 2019		Soil	S19-Oc08942	X					x		x	X	х	X									
11	SS01	Oct 04, 2019		Soil	S19-Oc08943				х					Х		X									
12	SS02	Oct 04, 2019		Soil	S19-Oc08944	Х					Х			Х	Х	X									
13	TRIP SPIKE	Oct 04, 2019		Soil	S19-Oc08945					Х															
14	TRIP BLANK	Oct 04, 2019		Soil	S19-Oc08946					Х															
15	FRAG-1	Oct 04, 2019		Building Materials	S19-Oc08948		x																		
16	BH2-0.5-0.6	Oct 04, 2019		Soil	S19-Oc08949							х		х											
17	BH5-1.5-1.6	Oct 04, 2019		Soil	S19-Oc08950							Х		Х											
18	BH1-1.3-1.4	Oct 04, 2019		Soil	S19-Oc08951			Х			L			ļ		ļ									
19	BH4-0.5-0.6	Oct 04, 2019		Soil	S19-Oc08952			Х			L			ļ		ļ									
20	BH6-1.5-1.6	Oct 04, 2019		Soil	S19-Oc08953			Х																	

Environment Testing ABN - 50 005 085 521 B.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ad	mpany Name: dress:	Alliance Geo 10 Welder R Seven Hills NSW 2147	otechnical load				Or Re Ph Fa	der N eport : ione: ix:	lo.: #:	6 1 0	80974 800 2 2 967	l 88 18 5 188	8 8					Receive Due: Priority Contac	ed: /: :t Name:	:	Oct 4, 2019 5:23 I Oct 14, 2019 5 Day Aidan Rooney	PM
Pro	oject Name: oject ID:	KEMPS CRE 9687	EEK																			
	-						_	1			1	-					E	urofins A	Analytica	al Serv	vices Manager : A	ndrew Black
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Metals M8	BTEX	Eurofins mgt Suite B13	Aggressivity Soil Set	Eurofins mgt Suite B20	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B19A: Total N (TKN, NOx), Total P						
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	71								х	X	Х		Х						
Sydi	ney Laboratory	- NATA Site # 1	8217			X	X	X	Х	X	Х	Х		Х	Х							
Bris	bane Laborator	y - NATA Site #	20794																			
Pert	h Laboratory - I	NATA Site # 237	/36	Co.il	S40 0-0005 1				<u> </u>						<u> </u>							
21	BH7-0.3-0.7	Oct 04, 2019		Soil	S19-0008954		+															
22	BH0.0.2.0.5	Oct 04, 2019		Soil	S10 0c08955																	
23	BH10-0 5-0 7	Oct 04, 2019		Soil	S19-000950		+	x														
Test	Counts	100104, 2019	<u> </u>	0011	1019-0008937	11	1	7	1	2	11	2	8	14	11	12						
rest	Counts					1				2		2	5			12						

Internal Quality Control Review and Glossary

General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight b	pasis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration:		fibres/mL
Flowrate:		L/min
Terms		
Dry	Sample is dried by heating prior to analysis	
LOR	Limit of Reporting	
COC	Chain of Custody	
SRA	Sample Receipt Advice	
ISO	International Standards Organisation	
AS	Australian Standards	
WA DOH	Reference document for the NEPM. Government of Western Austr Sites in Western Australia (2009), including supporting document F	alia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)
NEPM	National Environment Protection (Assessment of Site Contamination	on) Measure, 2013 (as amended)
ACM	Asbestos Containing Materials. Asbestos contained within a non-a: NEPM, ACM is generally restricted to those materials that do not p	sbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the ass a 7mm x 7mm sieve.
AF	Asbestos Fines. Asbestos containing materials, including friable, w equivalent to "non-bonded / friable".	eathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/or materials that do not pass a 7mm x 7mm sieve.	severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those
Friable	Asbestos-containing materials of any size that may be broken or cr outside of the laboratory's remit to assess degree of friability.	umbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is
Trace Analysis	Analytical procedure used to detect the presence of respirable fibre	as in the matrix.

Comments

S19-Oc08934, S19-Oc08935, S19-Oc08936, S19-Oc08937, S19-Oc08938, S19-Oc08940, S19-Oc08941, S19-Oc08942, S19-Oc08944: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Asbestos Counter/Identifier:

Laxman Dias

Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.