Tuesday, 10 September 2024

Attention: Nick Mullins
Senior Development Manager
ESR Australia and New Zealand
Level 12, 135 King Street
Sydney NSW 2000

CPESC review of the Westlink Industrial Development Stage 2 Erosion and Sediment Control Plans

1.0 Introduction

ESR are developing the Westlink Industrial Development at Kemps Creek with the works undertaken in a staged approval. The development is a State Significant Development (SSD) and subject to conditions of approval under Department of Planning and Environment (DPE) Approval SSD-913102.

In accordance with the SSD Approval, ESR must prepare Detailed Erosion and Sediment Control Plans (ESCP) and drawings prior to the commencement of earthworks for the development. The ESCP must be prepared by a Certified Professional Erosion and Sediment Control (CPESC) specialist. ESR engaged Bradley Cole from Ochre Environmental Management (CPESC Number 7645, refer to **Attachment A**) to assist with the development of the ESCPs.

The role of the CPESC has been to:

- Meet with ESR and their contractors to understand the proposed stating of the earthworks and road construction.
- Calculate the required sediment basins sizes for key stages of the development.
- Develop site specific specification for the design of the basins.
- Undertake review of the ESCP.

AT&L are the lead civil designers for the SSD and have prepared the design drawings for the development and along with Bradley Cole, (CPESC) have developed the Erosion and Sediment Control Plan as part of the design drawings package.

This letter has been prepared by Bradley Cole to support the preparation of the Erosion and Sediment Control Package for the Stage 2 development of the Westlink Industrial Development at Kemps Creek and certify that the plans have incorporated the relevant design and guidelines best practice requirements for the development. The section below addressed the responses and matters raised under the initial review submission by the NSW Department of Climate Change, Energy, and the Environment and Water – Biodiversity Conservation and Science Group.

2.0 Erosion and Sediment Control Requirements

This review has been prepared with reference to the matters raised by the NSW Department of Climate Change, Energy, and the Environment and Water – Biodiversity Conservation and Science Group for the Erosioan and Sediment control plans prepared for the Stage 2 submission. (refer to **Table 1**).

Table 1 – Response to Matters Raised

B21	- Response to Matters Raised	Hayr addressed
	Requirement	How addressed
1	The Water and Stormwater Management Plan does not address the construction-phase targets	The ESCPs have been prepared in collaboration with Bradley Cole from Ochre Environmental
	at all. The ESC plans in the civil drawing set	Management (CPESC Number 7645)
	(sheet C5201) are only applicable once final	Wallagement (CFESC Number 7043)
	earthworks levels are reached and includes no	The current plans are to be updated with
	sizing of any controls.	progression of project earthworks planning and
	Sizing of any controls.	construction delivery for management of site
		activities in accordance with best practice
		documents including Managing Urban
		Stormwater: Soils and Construction – Volume
		1:Blue Book (Landcom, 2004) and with the WSUD
		design principles set out in the Technical
		Guidance for Achieving Wianamatta South Creek
		Stormwater Management Targets (Technical
		Guidance) (NSW Government, 2022).
2	Two of the plans cited in the 'CPESC	Drawing numbers 20-748-C5200 to 20-748-
	Endorsement' letter have not been submitted.	C5202, 20-748-C5201 and 20-748-C5210,
		Revision C dated 12-09-23 were reviewed as part
		of the CPESC ESCP endorsement as stated in the
		endorsement letter.
3	Provide a revised ESC Plan which addresses the rec	
		Wianamatta–South Creek stormwater management
	targets (DPE, 2022), which demonstrates achievem	-
	revised ESC Plan is to specifically address the follow	
(a)	Provide plans for each major phase of works,	The ESC plans for each of the major phases of
	including clearing and grubbing, bulk earthworks	work are to be completed in collaboration with
	(existing and final levels), civil works, and	the successful earthwork's contractor for effective
	stabilisation/practical completion	staging and construction methodology. These are
(b)	Identify the type of sediment basin and provide	generally undertaken at the detailed design stage. The basin design spreadsheet which identifies the
(D)	sizing and details for all functional components	specific elements of the basin including type etc
		and all relevant values used in the sizing are
	(e.g., forebay, level spreader, spillway, dosing	provided in Attachment B .
	system, flocculant type).	provided in Actualinient 5.
		The proposed dosing system is to be procured by
		the contractor required for implementation and
		management of the basin operation and would
		be consistent with the 2018 revision of Appendix
		B – Sediment Basin Design and Operation (IECA
		2018) to the Best Practice Erosion and Sediment
		Control Document (EICA 2008, referred to as the
		White Book).
		To specify the dosing unit and flocculant would
		be considered limiting and may imply / impose
		proprietary bias in the procurement process.
(c)	Provide sediment basin calculations	The basin design spreadsheet and all relevant
	demonstrating compliance with the DCP Table 5	values used in the sizing are provided in
	targets.	Attachment B.
		Basins have been sized for active treatment of
		80% of average annual runoff in accordance with
		Table 2 of the Wianamatta South Creek
		Stormwater Management Targets and Table 5
		requirements from the DCP.

B21	Requirement	How addressed
		The design of the Type A and B Basins along with addition site retention areas and filter controls will facilitate the management of oil, litter or waste contaminants through effective housekeeping, basin weir operation and decant systems.
		Prior to completion of works for the development, and prior to removal of sediment controls, all site surfaces must be effectively stabilised including all drainage systems. An effectively stabilised surface is defined as one that does not, or is not likely to result in visible evidence of soil loss caused by sheet, rill or gully erosion or lead to sedimentation water contamination. The determination of the stabilisation will be undertaken by the Project CPESC and submitted formally with evidence prior to the removal of controls for the development.
(d)	Provide catchments plans identifying the sub catchments for all major drainage and sediment controls for each phase of works.	Clean water channels have been identified on the site perimeter to divert clean water around the development site where practical. The catchment for the development is currently impacted through adjoining development and construction activity and is dynamic in nature. The Stage1 activities will reduce the potential catchment areas for the site and implement localised stormwater infrastructure for previous overland flows.
		The current catchment plans are presented in Attachment B.
(e)	Provide calculation tables and sizing/dimensions for all major controls during all phases of works.	The basin design spreadsheet and all relevant values used in the sizing are provided in Attachment B .
(f)	Provide a construction sequence identifying the order and timing for both the implementation and decommissioning of all controls, relative to specific site activities/hold points.	The approach to construction staging has been outlined in Section 4 of this letter. The implementation of controls relative to the site activities will be detailed on the specific ESC plans for each of the major phases of work as prepared in collaboration with the successful earthwork's contractor. All specific controls as identified on the ESC documentation for each individual catchment area will be verified by the Project CPESC prior to commencement of construction stages.
(g)	Provide details on the timing, methods and performance requirements for stabilisation of each area of site disturbance.	The ESCP design has included basin treatment controls for the development which are to be in place for the duration of the earthworks staging. The basin design has assumed worst case scenario of full disturbance in the Project design areas. The staged stabilisation of the development would be considered best practice and would be

B21	Requirement	How addressed
		recommended under the regular inspections to be undertaken by the Project CPESC and ER.
		Prior to completion of works for the development, and prior to removal of sediment controls, all site surfaces must be effectively stabilised including all drainage systems. An effectively stabilised surface is defined as one that does not, or is not likely to result in visible evidence of soil loss caused by sheet, rill or gully erosion or lead to sedimentation water contamination. The determination of the stabilisation will be undertaken by the Project CPESC and submitted formally with evidence prior to the removal of controls for the development.
(h)	Provide specific advice in relation to dispersive soil management – particularly in relation to excavated drainage controls.	Dispersive soils will be managed with Type A and Type B HES Basins designed for treatment of 80% of average annual runoff and minimisation of disturbance areas. Additional measures including the lining of drains and application of soil binder and additional soil treatment with gypsum (as required) may be implemented during the construction of the Project which is to be overseen by the Project engaged CPESC and coordinated with the ultimate final design methodologies for the development in collaboration with the earthworks contractor.
(i)	Provide details on how discharges from each basin will be managed so as not to reduce the hydrologic effectiveness of other basins.	The basin layout for the development is to be established as separate end point management controls to individual catchment areas and do not interrelate to avoid impacting the operation of other basins. Following treatment in a basin the overflow / discharge is to be continued to the external drainage areas without impacting active working locations.

3.0 Design criteria

Condition B21(b) requires the ESCP to be prepared with reference to the water sensitive urban design (WSUD) design principles set out in the Technical Guidance for achieving Wianamatta South Creek Stormwater Management Targets (Technical Guidance) (NSW Government, 2022).

Under Table 2 of the Technical Guidance, all exposed areas greater than 2,500 m² are to be provided with sediment controls that are designed, implemented and maintained to a standard that would achieve treatment of at least 80% of the average annual runoff volume of the contributing catchment (i.e. 80% hydrological effectiveness) to 50 mg/L TSS or less, and pH in the range (6.5–8.5). No release of coarse sediment is permitted for any construction or building site.

To achieve this design criteria, Type A and Type B basins have been sized and designed with reference to the 2018 revision of Appendix B – Sediment Basin Design and Operation (IECA 2018) to the Best Practice Erosion and Sediment Control Document (EICA 2008, referred to as the White Book).

4.0 Construction Staging

ESR have proposed a staged approach to the development of the SSD:

- Stage 1 Establishment of the erosion and sediment control and basins Pending
- Stage 2 Stage 2 Bulk Earthworks utilising the sediment basis– Pending
- Stage 3 Service installation internally to the development area Pending
- Stage 4 Rehabilitation and landscaping Pending
- Stage 5 Building development by external contractors Pending

3.0 Basin Sizing

The design factors for the Revised Universal Soil Loss Equation (RUSLE) and the basin sizing using the Qld_ESC_Design_Spreadsheet_V5.2 developed by **Strategic Environmental & Engineering Consulting (SEEC)** have been provided in **Attachment B**.

Additional design specification drawn from IECA 2018 are also provided in **Attachment B**.

4.0 Certification

I, Bradley Cole, certify that the Erosion and Sediment Control Plans prepared for the development have incorporated the recommendations with regard to best management practice and Type A and Type B sediment basins sizing and specifications and reflect the staging and other recommendations provided throughout the design review process.

Your Sincerely

BCL

Bradley Cole,

Director, CPESC #7645

CPESC

No. 7444

No. 7444

No. 7444

Oralling Co. 6

CPESC

No. 7444

Oralling Co. 6

Oralling

Ochre Environmental Management Pty Ltd

Ph. 0407 782 830

E brad@ochreenvironmental.com.au

EnviroCert International, Inc.

3054 Fite Circle, Suite 108, Sacramento, CA 95827 (279) 888-6911 | www.envirocert.org

Bradley Stephen Cole CPESC

Certified Professional in Erosion and Sediment Control

7645

14-Nov-2024

CERTIFICATION NO.

EXPIRES

Attachment B – RUSLE soil loss fa Industrial Estate Stage 2.	actors, basins sizing calc	culations and design spe	ecification for the Westlink

Soil Loss Characteristics

Constraint / characteristic	Value / Rating	Source
Disturbed Catchment Area	See stages	
Rainfall erosivity (R-factor)	2210	R = 164.74(1.1177)5 S0.6444
Ivaliliali Glosivity (Iv-lactor)	2210	Where S = 2-year, 6-hour storm
IFD: 2-year, 6-hour storm (s)	10	http://www.bom.gov.au/cgi- bin/hydro/has/CDIRSWebBasic
ii b. 2-year, e-near steini (3)		Location Badgerys Creek BoM Station
Rainfall zone		Blue Book Figure 4.9 [p4-16]
Runoff coefficient (Cv)	0.64	Blue Book Table F2 [pF4]
Rainfall coefficient (C10)	0.76	Blue Book Table F3
85th %ile, 5-day rainfall event	35	Blue Book Table 6.3 [6-24] Location Penrith
Soil erodibility (K-factor)	0.038	Blue Book Appendix C, Table 19 [pc-104] Based on Luddenham (lu) Landscape Group
Soil erodibility (K-factor)	0.05	Alternate factor to represent imported material
Soil texture group	Type D	Maximum values of Luddenham (lu) Landscape Group
Soil Hydrologic Group	Type C	Luddenham (lu) Landscape Group
Slope Gradient	5%	Based on 4.4% for east west gradient of natural ground.
Slope length	80	Slope length between terraces
LS-factor	1.19	Blue Book Table A1 [pA-9]
Erosion Control Practice Factor (P-factor)	1.3	Blue Book Table A2 [pA-11]
Cover Factor (C-factor)		Default factor for construction site for areas with not stabilization
Calculated Soil Loss (Uha/yr)	See staged calculation sheet	Blue Book Appendix A [pA-1]
Soil Loss Class (m3//ha/yr)	See staged calculation sheet	RUSLE Equation
Soil Loss Class		Blue Book Table 4.2 [p4-13]
Erosion hazard	Very low	Blue Book Table 4.2 [p4-13]

Rainfall Erosivity factor (R-factor)

Monthly % and annual	rainfall e	rosivity (R – facto	r) values									
	Jan	Feb	Mar	Apr	Mar	Jun	July	Aug	Sep	Oct	Nov	Dec	Year
Mean rainfall (mm)	78	112	112	48	39	57	34	37	36	59	69	55	717
%	11%	16%	16%	7%	5%	8%	5%	5%	5%	8%	10%	8%	100
R-Value	241	344	347	148	119	174	105	113	110	182	213	168	2210

1 Determined locality coordinates from SIX Maps https://maps.six.nsw.gov.au/

-33.857364 150.797268

2 2-year ARI, 6-hour storm event

10

http://www.born.gov.au/ cgi-bin/hydro/has/CDIRSWebBasic

3 Calcualte R-factor

2210

4 Mean Rainfall

http://www.bom.gov.au/nsw/observations/map.shtml

67108
BADGERYS CREEK AWS

		$ln(t) = A + B \times (ln(T))$	OF COEFFICIENTS I + C x (In(T)) ² + D x (I time in Hours and I = in)	TO EQUATIONS OF 1 $\ln(T))^3 + E \times (\ln(T))^4 + C$	THE FORM F X (In(T)) ⁵ + G x (In	(T)) ⁶	
RETURN PERIOD	Α	В	C C	D D	E	F	G
1	3.158773	-0.58931E+0	-0.31470E-1	0.86637E-2	0.18133E-3	-0.36772E-3	0.15821E-4
2	3.410940	-0.58942E+0	-0.31366E-1	0.84364E-2	0.27224E-3	-0.32428E-3	0.71588E-5
5	3.661308	-0.58964E+0	-0.31646E-1	0.76692E-2	0.59054E-3	-0.19809E-3	-0.20816E-4
10	3.782286	-0.58959E+0	-0.32377E-1	0.70300E-2	0.89622E-3	-0.10033E-3	-0.45670E-4
20	3.922462	-0.58965E+0	-0.32398E-1	0.67854E-2	0.99377E-3	-0.62495E-4	-0.52892E-4
50	4.080445	-0.58947E+0	-0.32612E-1	0.63368E-2	0.11768E-2	0.44963E-5	-0.68175E-4
100	4.185829	-0.58934E+0	-0.32845E-1	0.58773E-2	0.13312E-2	0.73806E-4	-0.83423E-4

			RETURN PER	RIOD (YEARS)			
DURATION	1	2	5	10	20	50	100
5 mins	76.8	99.0	128.	144.	166.	195.	217.
6 mins	71.8	92.6	120.	135.	156.	183.	204.
10 mins	58.7	75.7	97.6	110.	127.	149.	166.
20 mins	42.8	55.2	70.9	80.1	92.2	108.	120.
30 mins	34.8	44.8	57.5	64.9	74.7	87.5	97.2
1 hour	23.5	30.3	38.9	43.9	50.5	59.2	65.7
2 hours	15.5	19.9	25.5	28.8	33.1	38.8	43.1
3 hours	12.0	15.4	19.8	22.3	25.7	30.1	33.4
6 hours	7.75	10.0	12.8	14.4	16.6	19.4	21.6
12 hours	5.00	6.45	8.31	9.38	10.8	12.7	14.1
24 hours	3.20	4.14	5.41	6.17	7.14	8.43	9.43
48 hours	1.98	2.59	3.45	3.99	4.66	5.56	6.27
72 hours	1.45	1.91	2.58	2.99	3.52	4.23	4.78

IFAm data 304.1, 84.5, 19.1, 907, 12.90, 4.22 above 0.010
HYDROMETEOROLOGICAL ADVISORY SERVICE
(C) AUSTRALIAN GOVERNMENT, BUREAU OF METEOROLOGY
*ENSURE THE COORDINATES AND EAST EASTED STATE ASSED ON THESE AND NOT LOCATION NAME.

Rainfall Erosivity factor (R-factor) cont.

Background

R - Rainfall Erosivity factor is measure of the ability of rainfall to cause erosion

Risa product of two components: total energy (E) and maximum 30-minute intensity for each storm (130). So, the total of El for a

Correlation between the R-factor and the 2-year ARI, 6-hour storm event.

R factor can be read from the **Isoerodent maps** in Appendix B

R = 164.74(1.1177)⁵ S^{0} . Equation (2)

where Sis the 2-year ARI, 6-hour ARI rainfall event (mm)

2-year ARI, 6-hour storm event

Data is available here: http://www.bom.gov.au/cgi-bin/hydro/has/CDIRSWebBasic

New data is also available here but does not correspond to the 2-year ARI, 6-hour

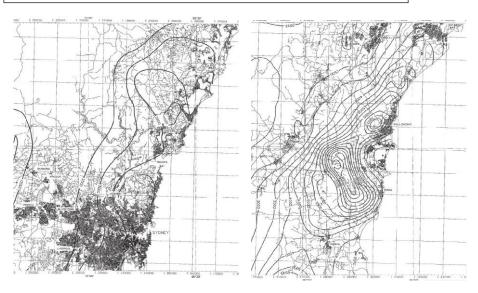


Table 6.2 Percentage of average annual El that normally occurs in the first and second half of each morith for each Rainfall Zone (figure 4.9) [Rosewell and Turner, 1992)

Zone	Já	an	F	de	M	la,	A	p,	N	lay	J	un	J	ul	Α	ug	S	ер	C	Oct	N	lov	D	ec
1	6	6	7	8	8	8	6	5	5	4	3	2	2	2	2	2	2	2	2	3	3	4	4	4
2	10	9	9	8	7	5	2	2	1	1	2	1	1	1	1	1	3	3	3	4	5	6	7	8
3	6	8	9	9	10	7	7	4	2	2	2	2	2	1	0	1	2	2	2	3	3	4	6	6
4	6	6	8	8	8	5	5	3	3	2	2	2	2	3	3	2	2	3	3	3	5	5	5	6
5	,,	3	7	13	13	10	11	6	3	2	3	2	2	2	1	1	1	3	3	3	3	2	2	2
6		10	10	9	6	5	2	2	2	1	1	1	1	1	1	1	2	2	4	3	5	5	8	7
7	9	9	7	8	4	5	3	3	2	3	2	1	2	1	2	2	2	3	4	4	4	6	7	7
8	7	8	7	8	5	6	4	3	2	2	2	1	2	1	2	2	2	2	4	4	6	6	7	7
9	8	9	8	7	6	5	3	3	2	2	1	2	1	1	1	2	3	3	5	5	5	6	6	6
1 0	7	,,	, ,	7	7	6	4	4	3	2	1	1	2	1	1	2	2	3	4	5	6	6	5	6
	10			9	10	5	3	1	1	1	1	1	1	1	2	2	1	2	2	5	6	6	6	6
12	10	9	8	7	5	4	4	2	2	1	1	2	1	1	1	2	3	4	3	4	4	6	7	9

Design Rainfall depth (mm)

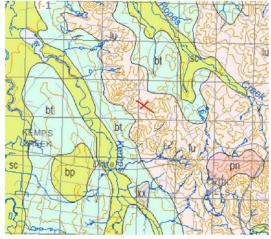

Table 6.3a (p144) has the 75th, 80th, 85th, 90th and 95th-percentile 2 and 5-day rainfall depths for 59 sites in New South Wales

Table 6.3a75th, 80th, 85th, 90th and 95thpercenfile 2 and 5-day rainfall depths For 59 sites in New South Wales

		2-day r	ainfall depth	s (mm)			5-da	y rainfall dep	ths (mm)	
Location	75 th %ile	80° %ile	85º %ile	90° %ile	95º %ile	75° %ile	80° %ile	85º %ile	90° %ile	95° %ile
North Coast										
Coffs Harbour	18.3	23.6	31.8	44.4	70.8	33.6	42.7	55.8	74.9	117.6
Dorrigo	22.1	27.9	36.4	49.0	77.0	40.3	49.3	63.7	84.8	132.0
Grafton	14.0	17.8	22.9	31.2	48.9	23.3	29.0	37.2	50.1	75.4
Lismore	16.3	20.6	26.4	36.3	57.0	28.6	35.3	45.2	60.2	95.3
Port Macquarie	18.0	22.9	29.8	41.4	65.3	32.0	40.1	51.8	70.0	106.2
Taree	15.0	19.0	24.9	35.5	56.4	25.0	31.7	41.2	55.9	90.6
Tweed Heads	23.4	29.5	37.6	50.8	78.7	39.6	48.5	62.5	82.5	126.8
Central Coast/Hunter Cessnock	13.4	16.5	21.1	28.5	45.0	20.3	24.4	31.0	42.8	63.0
	16.7	21.3	28.4	39.8	63.0	20.3	35.0	45.8	62.2	99.3
Gosford (Narara) Nelson Bay	17.5	22.3	28.9	39.4	58.9	30.4	38.1	48.3	63.5	91.5
Newcastle	13.7	17.6	23.0	31.8	48.1	24.4	30.5	38.9	51.8	76.7
Scone	12.4	15.3	19.3	25.0	37.8	19.0	22.6	27.7	35.9	51.3
Wyong	16.8	20.8	26.9	37.2	58.8	26.8	33.8	43.2	58.7	90.1
Sydney/Blue Mountains	10.0	20.0	20.5	UI.E	50.0	20.0	55.5	401	50.7	55.1
Bankstown	11.4	14.5	19.6	27.0	42.0	19.4	24.4	31.5	42.6	66.6
Blacktown	12.0	15.0	20.3	28.0	43.6	19.0	24.6	32.2	43.2	70.8
Camden	13.6	16.8	21.6	29.2	44.8	20.2	25.1	32.0	43.4	66.3
Campbelltown	12.2	15.2	19.0	26.9	42.1	19.3	23.9	30.6	43.2	63.3
Hornsby	15.7	20.6	27.4	38.1	61.0	25.9	32.8	43.3	60.0	92.5
Katoomba	16.5	20.6	26.7	37.6	60.2	28.0	35.2	45.4	63.0	99.6
Lithgow	11.4	14.0	18.3	24.2	35.3	19.5	23.6	29.4	37.8	56.4
Liverpool	12.2	15.5	20.0	28.4	43.2	19.2	24.4	32.2	43.8	70.2
Mona Vale	19.0	23.6	29.2	38.7	62.0	29.0	35.2	44.0	61.2	92.0
Mosman	15.2	19.3	25.4	35.8	57.7	26.2	32.9	43.2	59.6	91.5
Parramatta North	11.7	15.2	20.6	28.2	45.5	20.3	25.8	33.1	45.8	74.1
Penrith	14.0	18.2	23.6	31.5	49.5	21.8	27.4	35.0	47.6	74.6
Richmond	10.2	13.5	18.0	24.9	39.2	17.5	22.4	29.5	39.7	61.4
Ryde	14.7	18.3	24.9	34.3	53.5	23.4	29.5	38.8	53.6	80.5
Springwood	15.5	20.1	25.9	35.0	55.6	25.2	31.4	40.4	55.0	84.1
Sutherland	15.0	18.8	24.9	34.8	55.0	23.4	29.7	38.9	54.6	85.1
Sydney	12.7	16.6	22.4	31.6	52.1	23.3	29.7	38.8	55.2	84.3
Wallacia	14.0	17.8	23.0	31.4	48.8	22.1	27.6	36.6	48.8	76.2
Wilberforce	11.4	14.9	19.8	27.7	46.4	19.8	24.6	33.2	46.7	69.4
Illawarra/South Coast										
Albion Park	16.5	21.1	27.9	39.1	67.4	25.2	31.8	41.9	59.8	101.2
Batemans Bay	13.7	17.8	24.1	34.2	54.9	22.1	28.0	37.4	52.4	84.4
Bega	12.6	16.1	21.3	30.5	51.1	19.5	24.6	32.5	46.2	77.2
Cooma	7.6	9.8	13.0	17.8	27.2	12.5	15.8	20.0	25.8	39.1
Helensburgh	23.1	28.7	38.1	53.0	81.3	35.6	45.0	57.4	78.2	124.6
Kiama	14.7	19.1	24.9	35.5	57.2	25.5	32.2	42.1	58.3	90.7
Kangaroo Valley	16.8	21.4	29.2	41.7	70.6	26.8	34.2	45.7	67.0	115.6
Mittagong	14.7	18.3	23.4	31.8	49.1	22.9	28.0	36.2	49.0	75.2
Robertson	15.8	20.3	27.9	38.2	67.3	28.4	36.0	46.1	67.3	113.0
Wollongong	13.8	18.0	24.8	36.6	61.3	25.4	33.0	43.5	60.8	95.6
Northern Tablelands and			10.0	ac a	ac a	10.0	214	20.2	97.4	E2.0
Armidale	12.4 14.2	15.2	19.3 21.3	25.0 27.7	35.3 39.2	19.8 20.0	24.1 24.1	29.2 30.2	37.4 38.4	52.9 53.0
Gunnedah		17.3								
Tamworth	15.2	18.3	22.2	27.7	39.6	21.6	25.2	30.8	39.2	54.2
Tenterfield Central Tablelands and C	18.8	22.3	26.7	33.8	46.0	26.7	31.4	38.1	47.4	63.3
Bathurst	10.7	13.2	16.5	21.4	30.4	16.8	20.6	24.9	31.4	43.7
Cowra	12.0	14.7	18.0	22.9	32.8	18.1	21.6	26.1	32.5	44.9
Dubbo	12.7	16.0	20.2	26.1	36.0	18.8	22.8	28.4	35.6	50.7
Southern Tablelands and			EV.E	20.1	00.0	10.0	EE.U	2004	55.6	G-01.1
Albury	11.8	14.4	17.4	22.4	31.6	20.0	23.7	28.4	35.2	45.2
Goulburn	7.8	10.0	13.2	18.0	27.4	14.2	17.8	22.2	28.6	40.8
Jindabyne	11.9	14.2	17.3	22.6	33.4	17.3	20.6	24.9	32.0	46.8
Queanbeyan	12.7	15.2	18.8	24.2	34.3	18.0	21.3	25.8	33.0	45.1
Wagga	9.2	11.4	14.4	19.3	27.6	15.6	18.8	23.4	29.4	40.2
Northwestern, Southwest										
Bourke	11.7	14.6	18.3	24.8	35.6	15.3	19.0	23.9	30.9	44.5
Broken Hill	7.1	9.1	12.0	16.8	25.9	9.7	12.2	16.2	21.6	33.0
Griffith	9.5	11.7	14.0	18.5	26.2	13.8	16.4	20.6	25.4	34.6
Moree	12.6	15.8	19.3	25.1	36.8	18.0	21.9	26.8	36.3	51.4
Nyngan	12.2	15.2	19.1	25.6	37.3	16.5	20.4	25.8	33.8	47.8
-										

Soil Erosivity factor (K-factor)

Soil landscape	Common constraints	Slope range	Soil hydrologic group	Acid sulfate risk	USCS class	K- factor	Sediment type	Sediment basin wal construction (earth
					SC	0.042	Type D	В
Luddenham (Ju)	moderately expansive, low wet strength, localised	5-20	Group C		CL CL	0.024	Type F Type D	A B
	impermeable and highly plastic subsoils				CL CL	na na	Type F Type D	A A
Picton (pn)	high mass movement hazard; low permeability; low fertility; localised high expansion	>20	Group C		CL CL	na 0.034	Type D Type D	D B
Richmond (ri)	high soil erosion hazard (particularly at terrace edges) and localised flooding hazards; localised salinity	0-1	Group C		CL	0.059	Type F	A
South Creek (sc)	high flooding hazard; localised permanently high watertables; low fertility; localised salinity	0-5	Group C/D		CL	0,05	Type F	Α
Upper Castlereagh (up)	very high soil erosion hazard; dispersible, impermeable soil layers	0-5	Group C/D		SC CL	na 0,032	Type D Type F	D D
Volcanic (vo)	moderately expansive soils with low wet strength, high soil erosion and mass movement hazards on steep slopes	5-60	Group C/D		CL.	0.029	Type F	В
Warragamba (wb)	very high mass movement and soil erosion hazards; steep slopes, highly permeable soils with low fertility	>35	Group C		SM SC	0.036 0.032	Type C Type D	J B
Woodlands (wl)	soils with low fertility and low water holding capacity	0-10	Group B/D		CL CL	0.029 na	Type F Type F	C B

Table 4.2 The Soil Loss Classes (adapted from Morse and Rosewell, 1996)

Soil Loss Class	Calculated soil loss (tonnes/ha/yr)	Erosion hazard
1	0 to 150	very low
2	151 to 225	low
3	226 to 350	low-moderate
4	351 to 500	moderate
5	501 to 750	high
6	751 to 1,500	very high
7	>1,500	extremely high

Table A1 LS-factors on construction sites using the RUSLE

Slope	Slope							Slope	length (m)						
ratio	gradient · (%)	5	10	20	30	40	50	60	70	80	90	100	150	200	250	300
100:1	1	0.09	0.11	0.13	0.15	0.16	0.17	0.18	0.19	0.19	0.20	0.20	0.23	0.24	0.26	0.27
50:1	2	0.14	0.18	0.24	0.28	0.31	0.34	0.36	0.39	0.41	0.43	0.44	0.52	0.58	0.64	0.69
33.3:1	3	0.17	0.24	0.34	0.41	0.47	0.52	0.57	0.61	0.65	0.69	0.72	0.87	1.00	1.11	1.22
25:1	4	0.21	0.30	0.44	0.54	0.63	0.71	0.78	0.85	0.91	0.97	1.03	1.26	1.47	1.65	1.82
20:1	5	0.24	0.36	0.54	0.68	0.80	0.91	1.01	1.10	1.19	1.27	1.35	1.70	2.00	2.28	2.53
16.6:1	6	0.28	0.42	0.64	0.81	0.97	1.11	1.24	1.36	1.47	1.58	1.68	2.14	2.54	2.91	3.25
12.5:1	8	0.34	0.53	0.83	1.08	1.31	1.51	1.70	1.88	2.05	2.21	2.37	3.07	3.70	4.28	4.82
10:1	10	0.42	0.68	1.09	1.44	1.75	2.04	2.31	2.56	2.81	3.04	3.27	4.06	4.94	5.75	6.52
8.3:1	12	0.52	0.85	1.39	1.85	2.27	2.66	3.02	3.37	3.70	4.02	4.33	5.77	7.07	8.28	9.42
7.1:1	14	0.62	1.02	1.69	2.26	2.79	3.28	3.74	4.18	4.61	5.02	5.42	7.27	8.95	10.52	12.01
6.3:1	16	0.71	1.19	1.98	2.67	3.31	3.90	4.46	5.00	5.52	6.02	6.51	8.78	10.86	12.81	14.65
5.5:1	18	0.80	1.35	2.27	3.07	3.82	4.51	5.17	5.81	6.42	7.02	7.59	10.30	12.78		
5:1	20	0.89	1.50	2.55	3.47	4.32	5.12	5.88	6.61	7.32	8.01	8.68	11.92	14.84		
4:1	25	1.09	1.88	3.23	4.43	5.54	6.59	7.60	8.57	9.51	10.43	11.32				
3.3:1	30	1.28	2.23	3.86	5.32	6.69	7.99	9.23	10.43	11.60	12.74	13.85				
2.5:1	40	1.61	2.83	4.98	6.92	8.74	10.48	12.15	13.77							
2:1	50	1.88	3.33	5.89	8.22	10.42	12.52	14.55								

Table A2 P-factors for construction sites (Goldman et al., 1986)

Surface condition	P-factor
Compacted and smooth	1.3
Track-walked along the contour ^[6]	1.2
Track-walked up and down the slope $^{[7]}$	0.9
Punched straw ^[8]	0.9
Loose to 0.3 metres depth	0.8

Table F2. Runoff coefficients (Cv) for volumetric data in disturbed catchments (adapted from USDA, 1996)

Soil Hydrologic		Runoff						
Group	<20	21-25	26-30	31-40	41-50	51-60	61-80	potential
A	0.01	0.05	0.08	0.15	0.22	0.28	0.37	very low
В	0.10	0.19	0.25	0.34	0.42	0.48	0.57	low to moderate
С	0.25	0.35	0.42	0.51	0.58	0.63	0.70	moderate to high
D	0.39	0.50	0.56	0.64	0.69	0.74	0.79	high

Table F3 Runoff coefficients (C10) for peak flow data in disturbed catchments

Soil Hydrologic		Runoff					
Group	<20	21-40	41-60	61-80	81-100	>100	potential
A	0.20	0.37	0.55	0.64	0.68	0.75	very low
В	0.46	0.58	0.70	0.75	0.78	0.82	low to moderate
С	0.69	0.76	0.83	0.85	0.86	0.88	moderate to high
D	0.80	0.86	0.89	0.90	0.90	0.90	high

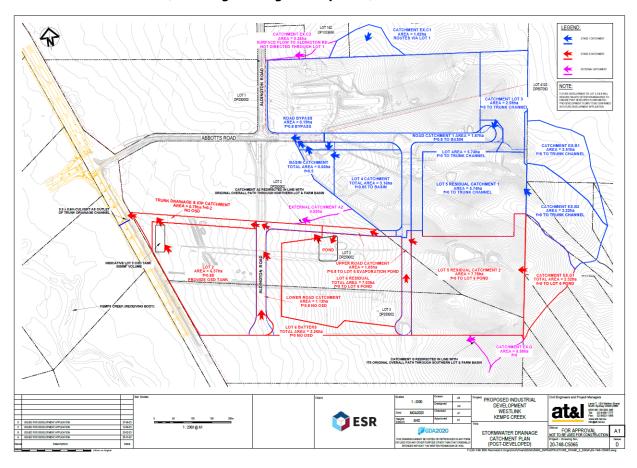
Westlink Stage 2 Basin Specifications		Lot 3&5	Lot 6
Item	Unit	Type B	Туре В
Design volume requirement	m^3	2421.4	5765
·	m²	1241.6	2956.6
Design surface area requirement	111	1241.0	2930.0
Length	m	69	99.3
Width	m	23	33.1
Surface area	m^2	693	803
Length to width ratio	ratio	3:1	3:1
Depth	m	2	2
Basin wall batter slope	ratio	2:1	2:1
X-section area	m^2	38	58.2
Basin volume	m^3	2622	5779.26
Forebay (10% of volume)	m^3	262.2	577.926
Forebay length	m	10	10
Forebay width	m	23	33.1
Forebay depth	m	1.5	1.5
Forebay spillway basin slope	ratio	3:1	3:1
X-section area	m^2	30	45.15
Forebay volume	m^3	300	451.5
Spillway crest below basin wall	m	0.45	0.45
Spillway width	m	21	30
Spillway freeboard	m	0.3	0.3
Basin lining	ea	A29 bidim	A29 bidim
Spillway lining	ea	rip rap	rip rap
Outlet, concrete culvert	dia	>450	>450

Site area		Sub-cate	hment or	Notes			
Site area	Lot 38:5	Lot 6	Lot 3	Lot 5			Notes
Total catchment area (ha)	11.64	20.42	2.59	8.96			
Disturbed catchment area (ha)	11.64	20.42	2.59	8.96			
Soil analysis (enter sediment ty	pe if know	vn. or labor	atory part	icle size d	ata)		
Sediment Type (C, F or D) if known:	D	D	D	D			If known, Type D is worst-case.
% sand (fraction 0.02 to 2.00 mm)							
% silt (fraction 0.002 to 0.02 mm)							Enter the percentage of each soil
% clay (fraction finer than 0.002 mm)							fraction. E.g. enter 10 for 10%
Dispersion percentage							E.g. enter 10 for dispersion of 10%
% of whole soil dispersible							Pq 3.15 (IECA, 2008)
Soil Texture Group	D	D	D	D			Automatic calculation from above
Rainfall data							
Rainfall R-factor (if known)	2210	2210	2210	2210			Only need to enter one or the other
IFD: 2-year, 6-hour storm (if known)	10	10	10	10			here
ii b. 2-year, o-riodi stollir (ii kriowri)	10	10	10	10			riele
RUSLE Factors							
Rainfall erosivity (# -factor)	2210	2210	2210	2210			Auto-filled from above
Soil erodibility (K'-factor)	0.038	0.038	0.038	0.038			
Slope length (m)	80	80	80	80			RUSLE LS factor calculated for a high
Slope gradient (%)	5	5	3	3			rill/interrill ratio. See Appendix E of IEC
Length/gradient (45 -factor)	1.19	1.19	0.65	0.65			(2008)
Erosion control practice (F-factor)	1.3	1.3	1.3	1.3	1.3	1.3	(2006)
Ground cover (←-factor)	1	1	1	1	1	1	
Calculations Erosion Hazard							
Soil loss (t/ha/vr)	130	130	7 Slor	e Gradien	t		
Soil Loss Class	1	1		er slope as	` _		Pg 3.4 (IECA, 2008)
Soil loss (m³/ha/vr)	100	100		ent.			Conversion to cubic metres - assume
Is a Basin Required?	Yes	Yes	N Per	.CIII.		No	Refer to Table B1 Pg B.6 (IECA, 2018)
Is a Basin Required? Sediment Basin Type	Yes	Yes	N			No	Refer to Table B1Pg B.6 (IECA, 201
Soil/Catchment Details							
Duration of soil disturbance	> 12 months	> 12 months	> 12 months	> 12 months	> 12 months	< 12 months	<70% effective ground cover (C≥ 0.0
Is the soil coarse?	No	No	No	No	No	No	< 33% finer than 0.02mm & ≤ 10% dis
Are WQOs likely to be met by Type C	No	No	No	No	No	No	Particle settlement testing is
Is automated dosing reasonable or	Yes	Yes	Yes	Yes	Yes	Yes	inflow?
Required Basin Type	A	A	N/A	N/A	N/A	N/A	Refer to Table B2 Pq B. 7 (IECA, 2018)

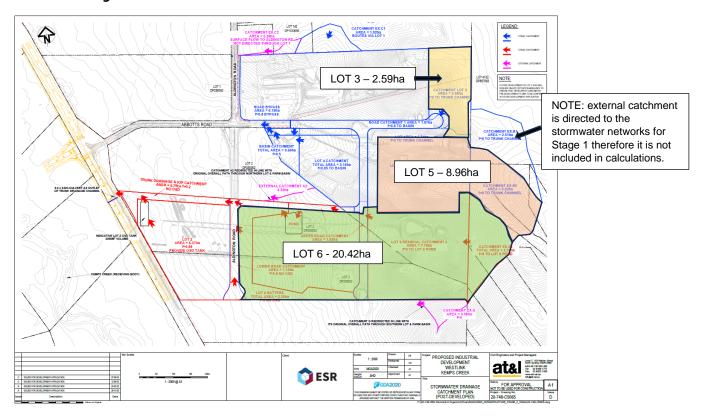
3. Flow Calcula	ation	s							
Peak flow is given by th	ne Ratio	nal For	mula:		Qy = 0	.00278	8 C 10 3	×F•×I,	_{ata} x A
where:	Q,	is peak	flowra	te (m³	sec) o	f avera	ge rec	urrenc	e interval (ARI) of "Y" yea
	C ₁₀	is the r	unoff c	oeffici	ent (din	nensio	nless)	for AF	RL of 10 years.
	F,	is a fre	quency	factor	for "Y"	'years			
	Α		catchm						
	l _{4,1} ,								RI of "Y" years
		and a	design o	luratio	n of "to	" (min	utes or	hours	1
Time of concentral	tion (t.)	is deter	mined b	y a ran	ge of f	ormula	e-see	Pg A	9 to A.14 in IECA, 2008
A simple n	nethod (to calcu	late tim	e of co	oncenti	ration i	s: to (h	rs) = 0.	.76 x (A/100) ^{1.31}
Basic to cal	culator:		Are	a (ha):	2.59				
				To=	0.19	hrs	or	11	mins
Structure Details									Notes
Name	Lot	Lot 6	Lot 3	Lot 5					
Catchment Area	11.64	20.42	2.59	8.96					hectares
First time of conc.	0.336	0.416	0.19	0.3					minutes
Second tc (if									minutes
Third to (if									minutes
Total time of conc.	0.336	0.416	0.19	0.3					minutes
Rainfall									
1-year, to	46.5	40.3	62.9	49.5					Enter the relevant rainfal
2-year, tc	53.4	47	72.2	56.8			4		intensities (in mm/hr) for
5-year, tc	75.4	66.2	102	80.1	16	7			each of the nominated
10-year, tc	90.6	79.5	122	96.2	7	-			rainfall events.
20-year, to	106	92.8	142	112					The time of concentration
50-year, to	126	111	169	134		,			(tc) determines the duration
100-year, tc	142	124	190	150	,				of the event to be used
C10 renoff	0.76	0.76	0.76	0.76					Pg A.7 (IECA, 2008)
Frequency Factors	;								
FF, 1-year	0.8	0.8	0.8	0.8					Can use 0.8 for a
FF, 2-year	0.85	0.85	0.85	0.85					Can use 0.85 for a
FF, 5-year	0.95	0.95	0.95	0.95					Can use 0.95 for a
FF, 10-year	1	1	1	1					Generally always 1
FF, 20-year	1.05	1.05	1.05	1.05					Can use 1.05 for a
FF, 50-year	1.15	1.15	1.15	1.15					Can use 1.15 for a
FF, 100-year	1.2	1.2	1.2	1.2					Can use 1.2 for a
Flow Calculations									Notes
1-year, to (m³/s)	0.915	1.412	0.275	0.75					
2-year, tc (m³/s)	1.116	1.724	0.336	0.91					
5-year, tc (m³/s)	1.762	2.713	0.53	1.44					
10-year, tc (m²/s)	2.228	3.43	0.668	1.82					
20-year, tc (m³/s)	2.737	4.204	0.816	2.23					
50-year, tc (m³/s)	3.564	5.507	1.064	2.92					
100-year, tc (m 1/s)	4.191	6.42	1.248	3.41					
									u. · •
									Version 5.

		Sub-c	atchment or	Name of Struc	ture		Notes
Basin Name	Lot 38:5	Lot 6	Lot 3	Lot 5			Must be same as site area on Worksheet 1
Catchment Area (ha)	11.64	20.42	2.59	8.96			Total catchment area – autofilled from Worksheet
Peak Flow Calculation	Q = C x I x A	/ 360					
Peak 1 year flow - Q1 (m³/s)	0.915	1,412	0.275	0.750			Peak O1flow
0.5 x Q1flow (m ³ /s)	0.458	0.706	0.138	0.375			Half Q1 flow
Settling Zone Dimensions							
Length to width ratio X: 1	3	3	3	3			3:1recommended
Batter slope (1 in X)	2	2	2	2			< 1V:5H
Option 1B	Calculates m	inimum settlin	g pond surfa	ce area (As) ai	nd depth (Ds)		
(mm)	150	150	150	150			(IECA, 2018)
(s/m)	8000	8000	8000	8000			Refer Table B17, page B.26 (IECA, 2018)
Minimum surface area - As (m²)	3660.0	5648.0	1100.0	3000.0			Ean B19
Minimum settling depth - Ds (m)	0.68	0.68	0.68	0.68			Refer to Table B17, page B.26 (IECA, 2018)
Critical settling zone length - L, (m)	81	81	81	81			Refer to Table B17, page B.26 (IECA, 2018)
Approx. width of basin - Ws (m)	34.9	43.4	19.1	31.6			software
Approx. length of basin (m)	104.8	130.2	57.4	94.9		4	software
Check Ls is less than critical	Need Large Basin, Use	Basin, Use		Basin, Use			Supernatant veocity will not resuspend settled sediment if basin length is less than Ls. Use Large
	mathad balan	method below	OK	method below			Bacin decign if longth VI c
Large Basin Design - 1B	Large basins	require a diffe	erent sizing b	pased on reduc	ing supernata	nt velocity. If	above method does not satisfy Ls requir
Large basin - Ds (m)	1.5	1.5		1,5			the supernatant velocity for large basins. Refer
Large basin width - Ws (m)	20.34	31.39		16.68			Equation B22 (IECA)
Large basin length (m)	61.03	94.18		50.03			Assumes 3:1 length to width ratio
Sediment Storage Zone (SS)							
Soil loss (t/ha/yr)	129.6	129.6	71.1	71.1			Calculated on worksheet 1
Sediment density (t / m³)	1.3	1.3	1.3	1.3			m3
Soil loss (m³/ha/yr)	99.7	99.7	54.7	54.7			Based on sediment density above
Put an X here for 30% of water zone	×	×	Х	×			Fill in one or the other - either an X or nominate th
Storage (soil) zone design (months)							number of months. Refer to Page B.40 (IECA, 201
Basin storage (soil) volume (m³)	559.0	1330.0	224.0	375.0			Refer to Page B.40 (IECA, 2018)
Summary of Type B Basin Dime	ensions						
Basin Name	Lot 38:5	Lot 6	Lot 3	Lot 5			
Adopted basin type	Option 1B - Larg	Option 1B - Large	Option 1B	Option 1B - Large			
Settling zone surface area - As (m²)	1241.6	2956.6	1100.0	834.2			
	1.5	1.5	0.68	1.50			
Depth of settling zone - Ds (m)				1			
	1862.4	4435.0	748.0	1251.3			
Depth of settling zone - Ds (m) Settling zone volume - Vs (m³) Basin storage (soil) volume (m³)	1862.4 559.0	4435.0 1330.0	748.0 224.0	1251.3 375.0			30% of V _{SS} or x months storage. See pg B.40

Table B5 – Suggested 'trial value' of the optimum low-flow decant rate, QA


Likely optimum Q _A	Locations						
4 L/s/ha	Mildura, Adelaide, Mt Gambier (D _S = 1.0 to 1.5 m)						
5 L/s/ha	Wagga, Melbourne, Bendigo, Ballarat, Hobart (Ds = 1.0 m)						
	Bourke, Dubbo, Bathurst, Goulburn (Ds = 1.5 m)						
6 L/s/ha	Bourke, Bathurst, Canberra, Perth (Ds = 1.0 m)						
	Toowoomba (based on D _S = 2.0 m)						
7 L/s/ha	Dubbo, Tamworth, Goulburn (based on D _S = 1.0 m)						
	Roma, Toowoomba (based on D _S = 1.5 m)						
8 L/s/ha	Dalby, Roma, Armidale (based on Ds = 1.0 m)						
9 L/s/ha	Darwin, Cairns, Townsville, Mackay, Rockhampton, Emerald, Caloundra, Brisbane, Toowoomba (Ds = 1.0 m), Lismore, Port Macquarie, Newcastle, Sydney, Nowra						

Pre – Disturbance Cathment Areas



Current Catchment Area (including existing development)

Catchment diagram for basin calculations

