
Performance
Whitepaper

Shopware 6.7

Performance Whitepaper

Table of contents
Introduction . 3
Load Testing . 4
Setup . 5
 Infrastructure . 5
 Shopware . 6
 Test data . 7
 Test scenarios . 8
Results . 9
 Scenario 1:
 Organic Traffic – No Caching, No API Load 9
 The scenario . 9
 The results . 9

 Scenario 2:
 Flash Sale – High Traffic with Varnish Caching 10
 The scenario . 10
 The results . 10

 Scenario 3:
 Enterprise Load – Varnish with Continuous API Imports 11
 The scenario . 11
 The results . 11

 Scenario 4:
 Frontend Optimization – Sitespeed Audit 12
 The scenario . 12
 The results . 12

Shopware in numbers . 13
 Products/SKUs . 13
 Categories . 13
 Concurrent users . 13
 Page impressions . 13
 Registered users . 13
 Orders . 13
Scaling Shopware . 14
 What is Clustering . 14
 Shopware cluster setup . 15
 Load balancer (LB) . 15
 Varnish . 15
 Appserver . 16
Database . 16
 Redis . 16
 Elasticsearch . 17
 Images . 17
 Asset Storage . 17
Key Takeaways. 18
Appendix . 19
 PHP . 19
 FPM . 18
 Redis . 19
 MySQL . 19
We're here for you! . 20

Introduction

In high-demand eCommerce environments, performance is more
than just a technical metric - it directly influences user
experience, conversion rates, and operational efficiency. With the
release of Shopware 6.7, several enhancements have been
introduced to improve scalability, reduce resource consumption,
and optimize performance under real-world conditions.
This whitepaper presents a focused comparison between
Shopware 6.6 and 6.7, offering insights into how each version
performs across different load scenarios. The benchmarking
covers key aspects, including user interactions (browsing and
purchasing), the influence of Varnish caching, and the effect of
concurrent API-heavy operations.
The test environment used was consistent, production-grade,
and designed to reflect practical usage patterns. By analyzing the
outcomes, this paper supports technical leads and system
architects in the following:
• Evaluating version-specific performance characteristics
• Understanding infrastructure considerations under load
• Assessing improvements in frontend asset optimization
• Making informed upgrade and scaling decisions
Whether you’re planning a migration to 6.7 or assessing the
platform’s performance profile, this whitepaper provides practical
data to support your technical strategy.

Load Testing

Load testing is essential to evaluate how a system behaves under
expected traffic volumes, revealing how it scales, and what its
maximum operating capacity is.
To objectively assess the performance difference between
Shopware 6.6 and 6.7, structured load testing was conducted
across multiple scenarios - Browsing-only sessions, Browse and
purchase flows, Logged-in fast-buy operations, and API-heavy
usage patterns. Through systematic testing, we can:
• Assess how Shopware 6.6 and 6.7 respond to traffic surges
• Measure system behavior under both normal operating

conditions and peak loads
• Determine the maximum sustainable throughput of

applications
• Identify and analyze performance differences with and

without caching layers
• Understand the impact of simultaneous API imports on

storefront performance
The following sections describe the results of load testing on
Shopware 6.6 and Shopware 6.7 which were performed in May
2025. The goal was to find noticeable improvements in the new
version

Setup
Infrastructure
Performance was measured on Hetzner cloud servers with the
following hardware specifications:
App Server
• 48 AMD EPYC-Milan Core CPU
• 192 GB memory
• NVME Disk: 900GB
Running a single Shopware application with a RabbitMQ server
and two Valkey servers.
Running the key-value server on the same machine reduces the
latency. This does not apply to a cluster setup.
Database Server
• 32 AMD EPYC-Milan Core CPU
• 128 GB memory
• 600 GB NVME SSD
• Running MariaDB 11.7
This setup would cost about €600 per month. It is suitable for
relatively large-scale infrastructures and is significantly larger
than a small or medium-sized business using Shopware would
need. Therefore, the results of this whitepaper indicate how
Shopware might scale in larger infrastructures and what to expect
from it.
Please note that the run tests have 4 different configs in terms of
caching and API load. For more information, please refer to our
documentation: hosting infrastructure.

Performance Tweaks

Shopware offers performance-oriented configurations that can
improve response times in specific environments and load
characteristics. For example, some Shops may have time-
restricted sales where a high number of not logged-in users are
accessing the shop at the same time. In this case, the
performance tweaks can help to improve the response times for
these users.
These optimizations can significantly enhance performance
through:
• PHP configuration adjustments
• Caching strategies
• Infrastructure optimizations
• Database tuning
• Message queue configurations
An overview of all performance-related configurations can be
found in our performance tweaks documentation.
The following settings were identified during the load tests and
are thus highlighted:
Disable App URL external check
On any Administration load, Shopware tries to request itself to
test that the configured APP_URL inside .env is correct.

Test Data

Performance tests assessed a high number of products using
data automatically generated and checked for validity and
consistency. All performance tests used a base of 0.5 million
products.

While the scope of the project did not have a specific high
number of prefilled customers or order tables in mind, it did
generate a high volume of customers and orders.

Test Setup
System performance must always be understood under certain
conditions. To get a realistic overview of the performance of
Shopware, the load test must simulate users who visit the store,
click through the products and categories, and order items.
Each run was benchmarked against Shopware 6.6 and Shopware
6.7 using identical user loads and infrastructure settings to ensure
fairness and comparability.

Test Setup Summary

Component Details

Test
Frameworks

K6 (for load tests), sitespeed.io (for frontend audits)

User Simulation Virtual Users (Vus) broken down into browsing, guest
buying, fast-buying (logged-in), and API importers

Environments Shopware 6.6 and Shopware 6.7, identical infrastructure for
both

Caching Layer Scenarios toggle Varnish on/off to test frontend cache
impact

Background
Load

Some scenarios include active API importers simulating
stock and price changes

Execution Mode Benchmark-style (no delay between actions) to stress
system throughout

Metrics
Collected

RPS, orders/sec, p95/p99 latency for backend; LCP, CLS,
JS/CSS payload, and load time for frontend

Scenario Mapping: Coverage Across Load Types
To validate the performance gains introduced in Shopware 6.7, we
designed a series of four distinct test scenarios,
each simulating a different type of operational load. These
scenarios were carefully crafted to mimic real-world
ecommerce behavior from regular browsing traffic to
enterprise-grade stress under heavy concurrency and API-driven
updates.

Load Test Scenarios Overview

Scenario Caching API Importers Max VUs Purpose

1. Organic
Traffic

❌ No ❌ No 662 Measure core
backend & storefront
performance without
caching or imports

2. Flash Sale ✅ Varnish ❌ No 1,324 Simulate high
read/buy
concurrency, test
Varnish impact

3. Enterprise
Load

✅ Varnish ✅ 2
Importers

1,324 + 2
APIs

Push backend and
frontend under
maximum load real-
world enterprise
setup

4. Frontend
Optimization
Audit

N/A N/A Headless Validate client-side
performance changes
(JS/CSS redution,
visual metrics)

User Behavior Simulation
Each scenario different user profiles to simulate realistic

trafficombinesc mixes:
Type Scenario Description User/System Behavior

Visitor Browse Only Simulates a user who
only browses the
storefront without
making a purchase

- Users navigate the
homepage, browse
categories, search
pages, and product
detail pages.
- No cart activity, no
checkout, and no API
calls involved.

Guest User Browse and
Buy

Simulates a complete
shopping journey of an
unregistered user
performing a guest
checkout.

- Guest users perform
a full shopping
experience.
- Registers as a guest
during checkout.
- Adds ~10 products
to the cart, proceeds
to checkout, places
an order, and exits.

Registered
User

LoggedIn
FastBuy

Simulates a registered
customer who logs in
and quickly places an
order with minimal
browsing.

- Authenticated users
login to their account.
- Directly visit a
product detail page,
add the product to
the cart, go to
checkout, place an
order, and exit.

Backend
Service

API Import Simulated backend
system actions to
update the catalog via
API. Typically used for
importing and updating
products in bulk.

- Uses a valid bearer
token to authenticate.
- Performs batch
product imports, price
updates, and stock
adjustments via API
calls.
- No frontend user
interaction.

Scenario 1:
Organic Traffic – No Caching,

No API Load
This scenario simulates natural customer behavior under no
caching or external API load. It reflects a moderate but steady
influx of users browsing products and occasionally making
purchases typical of an early-stage or mid-sized ecommerce site
without performance-boosting infrastructure like Varnish or
importers.
User Behavior
• 600 VUs browsing product listings and detail pages
• 50 VUs simulating guest checkouts (browsing, carting,

ordering)
• 12 VUs logging in and performing fast buys (minimal clicks to

checkout)
Infrastructure
• No Varnish (no frontend caching)
• No API importers (no backend background load)
• Max concurrent users: 662

Organic Traffic Performance
Comparison

Metric Shopware 6.6 Shopeare 6.7 Change

RPS ~940 ~940 No change

Orders/sec 0.5 0.6 +20%

p95 latency 162 ms 231 ms ↑

p99 latency 666 ms 1,000 ms ↑

Conclusion
Shopware 6.7 processes more orders under identical
uncached traffic, despite slightly higher latency. This points
to improved transactional backend handling, even in the
absence of performance-enhancing layers.

Scenario 2:
Flash Sale – High Traffic

with Varnish Caching
This scenario represents a flash sale or advertisement campaign,
where hundreds of customers hit the storefront simultaneously,
many of them completing purchases. The load is heavy and
immediate, pushing the system's caching efficiency to its limits.
User Behavior
• 1,200 VUs browsing actively
• 100 VUs guest buyers, registering during checkout
• 24 VUs logged-in returning customers performing fast buys
• All users operate in benchmark mode (no wait time between

actions)
• Conversion rate: 100% for buyer flows
Infrastructure
• Varnish enabled (frontend content cached)
• No API imports (pure frontend/backend load)
• Max concurrent users: 1,324

Comparison Table

Metric Shopware 6.6 Shopware 6.7 Change

RPS ~1,720 ~1,870 +8.7%

Orders/sec 1.9 3.96 +108%

p95 latency 408 ms 296 ms ↓

p99 latency 1,000 ms 425 ms ↓

Conclusion
Varnish makes a huge difference — and Shopware 6.7
amplifies this. Order throughput more than doubles while latency
drops by 25–60%, showing excellent frontend cache coordination
and backend responsiveness under extreme buyer activity.

Scenario 3:
Enterprise Load – Varnish with

Continuous API Imports

This is a true enterprise-grade simulation with frontend user
traffic and intense backend activity. API importers push constant
changes (product stock, price updates), while customers browse
and make purchases. This scenario mimics a live, high-volume
store with dynamic catalog updates and real-time user activity.
User Behavior
• 1,200 VUs browsing product pages
• 100 VUs buying as guests
• 24 VUs logged-in fast buyers
• 2 concurrent API Importers simulating catalog changes
• Users operate without delay between actions
Infrastructure
• Varnish enabled (frontend caching)
• API importers active (background load)
• Max concurrent users: 1,324 + API

Comparison Table

Metric Shopware 6.6 Shopware 6.7 Change

RPS ~1,280 ~1,780 +39%

Orders/sec 2.29 3.79 +65%

p95 latency 2,000 ms 321 ms ↓ ~85%

p99 latency 3,000 ms 458 ms ↓ ~85%

Conclusion
This is the most demanding scenario — and where Shopware 6.7
truly shines. Latency collapses from multi-second ranges to
sub-500ms. The combination of Varnish caching, Valkey optimization,
 Store-API cache removal, and async improvements results in a
backend that scales effortlessly under real-world pressure.

Scenario 4:
Frontend Optimization –

Sitespeed Audit

This scenario reflects a client-side performance audit using
sitespeed.io, focusing on load times, JS/CSS payload, and visual
stability. The test is run on default Storefront pages using
headless browser metrics (e.g., Largest Contentful Paint, Layout
Shift).
User Behavior
• Simulated page visits (no interactions)
• Device profile: Desktop
• Audit scope: Homepage, product page, category page

Comparison Table

Metric Shopware 6.6 Shopware 6.7 Change

Performance Score 76 78 +2 points

JS Size
(uncompressed)

127 KB 95 KB ↓ ~25%

CSS Size
(uncompressed)

344 KB 262 KB ↓ ~24%

Page Load Time 122 ms 137 ms Slight ↑

Largest Contentful
Paint

144 ms 144 ms =

Cumulative Layout
Shift

0.099 0.15 Slight ↑

Conclusion
Shopware 6.7 ships with a leaner and more modern frontend,
driven by the Meteor design system and Vite. The JS and
CSS payloads are smaller by \~25%, helping improve
perceived load time. Despite a small uptick in CLS, visual
performance remains stable, confirming a more efficient
rendering pipeline.

What Each Scenario Proves

Scenario Primary Goal What It Tests

Scenario 1 Baseline reference with
minimal infrastructure

Backend efficiency under
uncached, moderate user
traffic

Scenario 2 Performance under frontend
cache during campaign-like
spikes

Caching efficiency, order
throughput under pressure

Scenario 3 Full-stack resilience with
concurrent frontend load
and backend write activity

Stress resilience, write/read
concurrency, Varnish + API
handling

Scenario 4 Evaluate perceived
performance on default
Storefront

Frontend weight optimization
(JS/CSS size), rendering
stability (CLS), and visual
performance

Shopware in Numbers

Shopware in Numbers

Shopware in Numbers

Products/SKUs
Generally, there is no hard limitation on products or SKUs in
Shopware. However, depending on the server setup, we usually
recommend Elasticsearch for catalogs with 120,000–240,000 and
more SKUs. With Elasticsearch, we successfully assessed
Shopware with 2 million products in our load test (see
above).Even more products/SKUs have been tested on
development
machines.
Categories
Although Shopware was load-tested with only 500 categories, we
know from other tests that 5,000 categories and more are
possible.
Concurrent users
Our load test assessed 1,300 concurrent Shopware users. As read
database, app servers and (if applicable) HTTP caches can be
scaled horizontally, the value of concurrent users should be
scalable correspondingly.
Page impressions
The number of page impressions links to the number of users
(see above). In our load tests, we generated up to 72,000
page impressions (requests) per minute without HTTP cache.

Shopware in Numbers

Registered users
Shopware was tested with up to 560,000 registered customers.
The registration of Shopware was tested with 32 registrations
per second. Again, depending on the setup, this value should be
easy to exceed.
Orders
The number of existing orders barely affects the frontend
performance. Shopware 6 was tested with up to 2 million
orders. Note that the number of orders might affect the
performance of the order admin and promotion modules.
During the load tests, up to 500 concurrent users placed orders.
In the Advertisement scenario, 240 orders were placed within a
minute.

Key Takeaways

• Shopware 6.7 shows clear backend gains under high load,
with latency and throughput improving dramatically.

• Frontend is lighter and faster, thanks to Vite migration and
code cleanup.

• Caching strategies (Varnish) multiply performance benefits.
• Shopware 6.7 is well-optimized for scale on modest hardware

(\~€500/month setup)
• Backend performance: Up to 40% faster under high API load.
• Frontend performance: \~25% reduction in JS payload size.
• Infrastructure changes Redis replaced by Valkey, Store-API

cache removed, Vite integration.
• Frontend metrics: Sitespeed performance score increased

from 76 to 78.
• Comparison of Requests per Second (RPS) 6.7 consistently

handles higher throughput, especially under API load.
• Order processing speed (Orders/sec) nearly doubles in critical

scenarios with Shopware 6.7.
• Significant improvements in p95 Latency under heavy API

load reduced from 2s to just over 300ms in 6.7.

Appendix
These configurations were used for performance benchmarks.

PHP
ini
memory_limit=512M
post_max_size=32M
upload_max_filesize=32M
session.save_handler = redis
assert.active=0
date.timezone=Europe/Berlin
opcache.enable_file_override=1
opcache.interned_strings_buffer=20
opcache.preload=/var/www/html/var/cache/opcache-preload.php
opcache.preload_user=nginx
zend.detect_unicode=0
realpath_cache_ttl=3600
redis.clusters.cache_slots = 1

FPM
ini
pm.max_children = 1500
pm.start_servers = 40
pm.min_spare_servers = 300
pm.max_spare_servers = 1500
rlimit_files = 64000

Valkey
conf
appendonly no
save ""
maxmemory 7G
maxmemory-policy volatile-lfu

MariaDB
ini
sql_mode=STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,ERROR_F
OR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION
log_bin_trust_function_creators=1
binlog_cache_size=64M
key_buffer_size=0
join_buffer_size=1024M
innodb_log_file_size=20G
innodb_buffer_pool_size=100G
innodb_buffer_pool_instances=4
innodb_flush_log_at_trx_commit=2
innodb_flush_method=O_DIRECT
innodb_io_capacity=2000
innodb_io_capacity_max=4000
innodb_read_io_threads=8
innodb_write_io_threads=8
innodb_thread_concurrency=32
group_concat_max_len=320000
default-time-zone=+00:00
max_binlog_size=512M
binlog_expire_logs_seconds=600
max_connections=10000
table_open_cache=4096
table_definition_cache=4096
tmp_table_size=2G
max_heap_table_size=2G

