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Digital Catapult is a technology innovation centre that unlocks 
digital growth in the UK economy. It works with companies of all 
sizes to transform their businesses by accelerating the practical 
application of digital innovation. We bridge the gap between 
research and industry, finding the right technologies to solve 
problems, increase productivity and unearth new opportunities.

We are eager to collaborate with existing initiatives - public, private, 
open source - that share our mission to build solutions that help 
machine intelligence startups reach their potential. We want to 
hear from startups who want to access our programme or have 
ideas about other ways that we can assist.

Please contact us at  
hello@migarage.ai
www.migarage.ai

FOREWORD

Jérôme Pesenti and I were recently 
appointed to author the independent report 
for the UK government titled: ‘Growing the 
Artificial Intelligence Industry in the UK’.1 
We believe that the UK is well situated to 
take a lead role in the AI revolution and have 
identified numerous opportunities, along with 
the challenges which need to be addressed.

The report highlights recommendations 
around access to training data, computation 
facilities and skills, as well as enhancement 
of academic research and finally support  
for the demand side of AI and machine 
learning technology.

We were surprised at first that access to 
computation power is amongst the most 
significant barriers to innovation around 
Machine Learning and AI.  

From Alan Turing to DeepMind, the UK 
boasts a rich history and exciting present  
in machine learning and AI research  
and development, by academia as  
well as industry.

Even more so considering the ever 
decreasing costs and increasing availability 
of cloud computing. Nevertheless, the 
demand and cost for computation power  
for state-of-the-art machine learning models 
is rapidly increasing.

The ‘Machines for Machine Intelligence’ 
report provides original research and 
insight into this barrier. It is great to see 
Digital Catapult’s Machine Intelligence 
Garage programme looking to help startups 
address and overcome the challenge , 
and we hope to see cross fertilisation with 
other organisations such as the Alan Turing 
Institute that will be looking into similar 
challenges for the academic community.

Dame Wendy Hall, 
DBE, FRS, FREng
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EXECUTIVE SUMMARY

UK GDP could be around 10% higher in 2030 
as a result of Artificial Intelligence (AI)2, making 
AI the largest commercial opportunity for the 
British economy. According to an Accenture 
report, AI could generate the equivalent of an 
additional £630 billion by 20353. A great business 
opportunity, and one that is accentuated by the 
fact that a recently published, HMG industrial 
strategy4 has emphasised the importance of 
machine learning and AI and highlights their 
potential to disrupt many traditional industries  
by automating workflows.

That said, data now supports the fact that there 
are a great many UK Machine Intelligence startup 
companies that will miss out on this opportunity, 
simply because of the lack of access to high 
quality training data and computation power  
and in some cases expertise around it.  
So why is this happening?

Digital Catapult’s ‘Machines for Machine 
Intelligence’ report reviews the current 
computational landscape for machine intelligence 
startups, identifies areas of need and possible 
areas of intervention; and looks ahead to possible 
needs of the future. 

Based on original research carried out by Digital 
Catapult including a survey, desk research and 
interviews, the main result of the study indicates 
that more than half of the surveyed startups 
report being computation-constrained, across 
multiple technology approaches, stages and 
geographical locations. Computation-constrained 
means that progress is slowed because of the 
cost of, or lack of access to, computation power. 
While cost of cloud computing is decreasing, the

computation demands of machine learning models 
are currently increasing much faster. Naturally, 
these costs start to accumulate before technology 
proof-of-concept, before startups are funded, or 
achieve revenue. Potentially they limit what startups 
can do, their ambitions, and competitiveness. 

The report also demonstrates that startups would 
find it useful to be able to experiment with new 
hardware platforms and access relevant expertise 
and concludes with recommendations of ways 
that Digital Catapult can support the UK’s machine 
intelligence startups. By collaborating with existing 
commercial and national centres of expertise, 
Digital Catapult aims to engage startups in a 
programme of activities that will directly overcome 
computational barriers to success:

Machines
•  �Access to equipment for R&D  

and proof-of-concept
•  �Access to cloud and high-performance  

computing partners for continuous  
development, scaling, and deployment

•  �Experimentation with new hardware and 
platforms

Intelligence
•  �A repository of information, discussion and advice 

on computation, system and software topics
•  �Benchmarking and prediction activities to evaluate 

hardware options for different workloads
•  �Practical workshops on topics such as distributed 

computing, cluster management and job 
scheduling, and heterogeneous computing

Our ambition is to provide a full-suite of tailored 
assistance that will promote UK machine 
intelligence startup success. 

INTRODUCTION

We use ‘Machine Intelligence’ to cover a number 
of aspects of Artificial Intelligence including 
machine-, deep- and reinforcement-learning, 
computer vision, natural language processing, 
simulation, robotics, and symbolic AI. 

Digital Catapult has written previously about 
talent and data network effects6. Access 
to specialist computation facilities and the 
expertise to harness them is becoming an 
increasingly important factor for success of 
Machine Intelligence companies and is the  
focus of this report.

“�Developing deep learning models is a bit  
like being a software developer 40 years ago. 
You have to worry about the hardware and the 
hardware is changing quite quickly… Being at the 
forefront of deep learning also involves being at 
the forefront of what hardware can do.” 
Phil Blunsom, Oxford University and DeepMind 7

DEEP LEARNING IS  
COMPUTATIONALLY EXPENSIVE
Some Machine Intelligence tasks require 
startling amounts of computation power. 

For example:
•  �DeepMind noted that AlphaZero used ‘5,000 

first-generation Tensor Processing Units 
(TPUs) to generate self-play games and 64 
second-generation TPUs to train the neural 
networks’ to achieve ‘superhuman level of play 
in the games of chess and shogi (Japanese 
chess) as well as Go’.8 That’s around 500 
petaOP/s of compute, greater than the World’s 
top ten supercomputers combined (see 
appendix A1.1) 

•  �Baidu Research used a 11 petaFLOP/s GPU 
supercomputer of 1500 GPUs to study deep 
learning scaling9, and they remark that, ‘This 
experiment would cost over $2 million USD’10   
if performed on a cloud service		
	  		

THE NEED FOR TECHNICAL  
EXPERTISE IS RISING
As the size of neural networks increases to 
tackle new challenges this gives rise to a 
computation expertise gap as these large 
models need significant system engineering  
and code optimisation to train and deploy 
effectively and efficiently. 

All technology startups face challenges. However, Machine 
Intelligence startups may face additional challenges. These are 
normally around access to quantities of high quality training 
data, access to the computation power and systems expertise 
needed to train machine learning models on that data, and 
challenges around adoption of the technology, which requires 
cultural and business process changes.
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COMPUTATION RESOURCE  
CHOICE IS EXPANDING
Computation choice for Machine Intelligence 
workloads is starting to become much more 
complex. In recent years, deep learning on  
GPUs has driven progress and engineers  
have used a simple rule-of-thumb: buy a GPU  
with as much memory as you can afford11.  
In 2018 a number of new choices will be 
available and there will be a consequent need 
for expertise to understand the engineering, 
performance, cost, and power implications  
for specific machine intelligence workloads. 

MACHINE INTELLIGENCE  
TECHNIQUES ARE EVOLVING 
Machine Intelligence workloads are evolving, 
and it’s likely that the intelligence solutions 
of the future will look very different to the 
ones available today. New computational 
capabilities will enable new fields to flourish, 
and new research avenues will have different 
computational requirements. 

IMPLICATIONS FOR STARTUPS
Startups do not typically have the funds to 
enjoy unfettered access to substantial compute 
resource and expertise, nor do they enjoy 
priority access to new hardware.

‘Since many of the interesting machine learning 
papers now regularly require 100s or even 
1000s of CPU/GPUs for replication - what 

Introduction cont.

strategies are realistically left for startups, 
public institutions and individuals to do 
meaningful research in ML?’12

This report reviews the current computational 
landscape for startups, identifying areas of 
need, and possible areas of intervention; and  
it looks ahead to what might be the needs of  
the future. It is based on original research 
carried out by Digital Catapult including a 
survey, desk research and interviews.

The main result of the survey is that more 
than half of the surveyed startups report being 
computation-constrained, across multiple 
technology approaches, startup stages and 
geographical locations. In addition, startups 
would find it useful to be able to experiment 
with new hardware platforms and access 
relevant expertise.

This report continues by supporting  
the case for computation by describing  
recent advances in machine intelligence and 
their computational ‘cost’ (section 2); next  
is a description of Digital Catapult’s original  
research into startup computation needs 
(section 3) and ends with conclusions and 
future directions (section 4). Additional 
information on benchmarking and performance 
modelling and a hardware glossary are 
presented in the appendices.

3.1A 
A ZOOM IN ON DEEP LEARNING
What is it about Machine Intelligence that leads 
to demanding computation requirements? 
To answer, we start by placing focus on deep 
learning since that has been behind the recent 
renaissance in AI (we will return to other 
techniques later). In particular, consider many-
layered artificial neural networks, a.k.a. deep 
neural networks.

Engineering a deep neural network to solve  
a particular task requires four main 
computational elements:

•	� Carrying out data pre-processing  
and augmentation tasks

•	� Training the deep learning model
•	� Storing and adapting the trained model  

for efficient deployment
•	� Engineering the scale-out system  

for deploying the model

Of these, training is where peak computation 
is often encountered. Training a deep neural 
network involves a forward pass in which data 
is passed through the network, and a backward 
pass in which the network weights are updated. 
There can be millions of training examples 
(the more the better13), and millions of model 
parameters to update (bigger models have 
correlated with better performance14). Training 
a single model typically involves many passes 
(epochs) through the data. For an example see 
Section 3.1b.

Training a single model, once, may not break 
the bank. However, it’s obviously not guaranteed 
that the model will converge to a solution, or 
that the solution is a good one. Researchers 
conduct multiple experiments to find a network 
architecture that works and then search 
for the best solution on it (hyperparameter 
optimisation). The process restarts every time 
there is a need to implement new ideas or 
train on newly available data. This approach 
of architecture engineering and tuning is 
experimental, iterative and continues to evolve.

LITERATURE REVIEW

This section describes recent advances in machine 
intelligence, with emphasis on their computational  
‘cost’, to support the case for startups being 
computation constrained.
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This allows us to calculate that an approximate 
minimum computation requirement for training 
one model, once, for this competition is of the 
order exaFLOP (1018 floating-point operations - 
see appendix A1.2). 

How this translates to cost depends on the 
hardware, software and pricing model, but for 
illustration, see figure 3 below, which captures 
the cost of training the ResNet-15219 model 
using public cloud GPU instances. These are 
relatively modest amounts for one training 
run, perhaps. But a sweep of training hyper-
parameters would require such a training run  
to be repeated many times to find the best 
model. It’s easy to see how costs escalate  
with architecture engineering and tuning. 
 
 

3.1B  
EXAMPLE: TRAINING A DEEP  
NEURAL NETWORK FOR THE 
IMAGENET LARGE SCALE VISUAL 
RECOGNITION CHALLENGE (ILSVRC)15 

ILSVRC is an annual challenge that has 
attracted a great deal of research time and 
effort, and in which deep neural networks have 
had prodigious (now better-than-human16) 
success. The training data for the image 
recognition challenge consists of 1.28m images  
(like the ones shown in Figure 1).

Figure 2 compares notable image classifiers 
trained on ILSVRC data, plotting algorithm 
performance against (a) the computational 
demand (on the left) of processing a single 
image (the vertical dotted line indicates 1 billion 
multiply-add operations, and some models use 
more than 30 billion) and (b) model size (on 
the right - note that models can have tens of 
millions of parameters).

Literature Review cont.

Figure 1 
Example images 
and label predictions 
Figure taken 
from ‘ImageNet 
Classification with 
Deep Convolutional 
Neural Networks’ 17

Figure 3 
Screengrab from 
DAWNBench20 
showing a lowest 
cost of $1,112 
to train to 93% 
accuracy
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Figure 4 
Illustration of 
slide from a talk 
given by Priya 
Goyal, Facebook 
Research, at the 
NIPS workshop 
on Deep Learning 
At Supercomputer 
Scale on 9th 
December 2017 25

Figure 2 
Comparison of 
notable image 
classifiers trained 
on ILSVRC data. 
Reproduced 
from ‘Learning 
Transferable 
Architectures for 
Scalable Image 
Recognition’ 18

Quote from the website of the NIPS 2017 Workshop: 
Deep Learning At Supercomputer Scale 24

“�Five years ago, it took more than a month to train 
a state-of-the-art image recognition model on 
the ImageNet dataset. Earlier this year, Facebook 
demonstrated that such a model could be trained 
in an hour. However, if we could parallelize this 
training problem across the world’s fastest 
supercomputers (~100 PFlops), it would be 
possible to train the same model in under a minute.”
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In practice, huge amounts of computation 
continue to be thrown at this one problem. 
In 2012, it took ‘between five and six days 
to train on two GTX 580 3GB GPUs’21. Now, 
although more than one research group has 
trained an ILSVRC model in an hour, this 
came with significant hardware budgets: 256 
NVIDIA P100 GPUs22, and 512 Intel Xeon Phi 
Processor 725023 respectively. It’s hard to 
imagine readily renting this kind of resource, 
and to purchase it would need an investment 
of millions of dollars.

Moreover, the computation required to 
compete in the ILSVRC challenge may be 
dwarfed by real-world applications. Figure 4 
notes that training on internet-scale data or 
videos is likely to take months. Innovating in 
other domains and with other types of data is 
no less time-consuming and expensive.
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These engineering hurdles present particular 
challenges for startups, who have neither 
unlimited compute resource nor the expertise to 
build the infrastructure for Machine Intelligence 
research and deployment pipelines. 

“�You need to build systems to run very  
large, demanding jobs at scale, and to do  
this in an easy-to-use way so your researchers 
can conduct as many experiments as they 
desire. These parts are not commoditized  
and when you move into AI systems  
that require larger and larger models, the  
expertise required to make the infrastructure 
grows. It doesn’t diminish.” 
Jack Clark, OpenAI 29 

Naturally, these costs (in resource and time) 
start to accumulate before technology proof-of-
concept, before startups are funded, or achieve 
revenue. Potentially they limit what startups can 
do, their ambitions, and competitiveness. 

Literature Review cont.

3.2A  
ARCHITECTURES FOR DEEP  
LEARNING APPLICATIONS
The computational requirements of cutting-edge 
deep learning research are growing. Applications 
like voice translation and speech recognition use 
models with hundreds of millions of parameters, 
requiring tens or hundreds of exaFLOPs to train.

Since the introduction of hidden units artificial 
neural networks have doubled in size roughly 
every 2.4 years. This growth is driven by faster 
computers with larger memory and by the 
availability of larger datasets. Larger networks  
are able to achieve higher accuracy on more 
complex tasks. This trend looks set to continue  
for decades.26

 
This comes with attendant engineering 
challenges. First, if a single model takes days or 
weeks to train, the pace of innovation is slowed 
or even halted (Figure 5). Hence significant 
effort is expended on reducing training time, 
by distributing training effort across compute 
nodes and optimising algorithms.

Secondly, specialist skills are required to 
optimise the resulting models and systems for 
efficient and cost-effective deployment. For 
example, the utility of language translation or 
speech recognition that happens after a delay 
is low, but if latency can be reduced to human-
like response times, that’s extremely useful. See 
section 3.2b for examples.

“�Tremendous amounts of data are funnelled 
through our machine learning pipelines, 
and this creates engineering and efficiency 
challenges far beyond the compute nodes.” 
Facebook Research.28

Figure 5  
Slide from ‘Building 
Intelligent Systems 
with Large Scale 
Deep Learning’ talk 
given by Jeff Dean, 
Google Brain, to 
the YC AI group in 
summer 2017 27

Even so, this is only possible because the 
WaveNet voice interface is running on Google’s 
proprietary Tensor Processing Unit (TPU). 
Breakthroughs like WaveNet require such 
enormous amounts of computation – for  
both training and deployment – that Google 
designed its own specialist hardware  
(no mean feat itself).32

Machine Translation
Once the stuff of sci-fi wish-fulfilment 33,  
(near-)instant language translation is now 
reality. For example, Google switched last year 
from statistical machine translation to Neural 
Machine Translation (NMT) to take advantage 
of the better accuracy that deep learning makes 
possible. This switch needed deep learning, 
yes, but just as important was the significant 
engineering investment needed to work out 
how to train a deep neural network on the very 
large data sets that are necessary, and how to 
build a system fast and accurate enough for 
real-world use 34. The paper that Google wrote to 
describe how they overcame these challenges 
highlights how computationally expensive NMT 
models are to train and deploy. Training a basic 
NMT model takes 6 days using 96 GPUs. At 
inference, ‘low latency translation [is] difficult, 
and high volume deployment computationally 
expensive.’35 

A subsequent analysis of NMT architecture 
parameters undertaken by Google required, 
‘over 250,000 GPU hours on the standard  
WMT English to German translation task.’36

Like WaveNet, interactive production 
deployment of the translation service involves 
Google’s TPU specialist hardware.37

3.2B  
EXAMPLES OF DEPLOYED DEEP 
LEARNING APPLICATIONS
Speech Recognition
Baidu’s ‘Deep Speech 2’ automatic speech 
recognition results were exciting: it was able to 
beat human transcription performance in some 
cases, and to do so equally well for English and 
Mandarin Chinese speech (including accents 
and in noisy environments). However, training a 
single model required tens of exaFLOPs which 
would take 3-6 weeks to execute on a single 
GPU . 

By deploying optimisation techniques typically 
found in High Performance Computing (HPC) 
and distributing the training task over multiple 
GPUs, Baidu cut training down to 3-5 days, 
enabling it to iterate more quickly. Substantial 
effort then went in to optimising the trained 
model so that Baidu could deploy Deep Speech 
at low cost, low latency, and high throughput. 
In other words, to meet the requirements of 
serving interactive applications at scale.30

Speech Synthesis 
Google DeepMind first revealed its WaveNet 
speech synthesis research in 2016. At that 
time, it was far too slow to be used in real-world 
applications. One year of research advances 
and engineering effort later, a new improved 
version of WaveNet was announced31. This new 
version is 1000x faster than the original, taking 
50 milliseconds to create one second of speech 
– that’s fast enough for consumer products. 
WaveNet is now deployed in Google Assistant 
to generate much more natural US English and 
Japanese voices. 
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3.3  
HARDWARE CONSIDERATIONS
We noted in Section 3.2 the system complexity 
involved in building and deploying Machine 
Intelligence solutions. One other aspect to 
mention is hardware choice. This is becoming  
a much more meaningful question than it has 
been. Today, NVIDIA has a dominant position  
in the deep learning market with its GPU and 
CUDA platform. 

“We see NVIDIA as a major beneficiary of the 
4th Tectonic Shift in Computing, where serial 
processing (x86) architectures give way to 
massively parallel processing capabilities  
as the next wave of connected devices 
approach 10b units by 2022” 
Mark Lipacis, Jefferies & Co.38  

In fact, a simple rule of thumb for deep learning 
developers choosing hardware has been to 
choose the GPU with the most memory that  
they can afford. 

“To be honest, there isn’t that much choice.  
We do look at the memory on the cards.” 
Tobias Rijken, Kheiron Medical 

However, hardware innovation is starting to 
address increased demand (Figure 6) and 2017 
saw multiple new hardware options for Machine 
Intelligence workloads announced. These range 
from initiatives from major chip vendors such 
as Intel39 and AMD40; top tech companies like 
Google41, Tesla42 and Apple43 building their own 
chips; and startups such as the UK’s celebrated 
Graphcore developing new types of processor 
to meet the demands of Machine Intelligence 
workloads.

At the same time, commercial cloud providers 
offer access to a range of appropriate hardware 
for rent, along with software and system options, 
and engineering expertise that can assist 
startups in building and deploying scalable  
and robust solutions. 

Each of these options has implications for the 
performance, cost, energy consumption and 
engineering effort of a startup’s experiments,  
and these trade-offs are non-trivial to evaluate 
(see appendix A.2). With more unusual 
technology options such as neuromorphic46  
and quantum47 computing peeping over the 
horizon, choosing the right architecture will 
become even more complex.

3.4  
FUTURE DIRECTIONS
The application examples chosen earlier in this 
section might be grouped as perceptual tasks. 
Improving and applying these techniques to new 
domains will continue to yield useful results, 
products, and services. 

The next frontier for Machine Intelligence is 
applications that require higher-level cognitive 
functions such as planning, reasoning, 
knowledge-abstraction, and decision-making. 

Literature Review cont.

Figure 6  
Slide from the 
‘Machine Learning 
for Systems and 
Systems for Machine 
Learning’ talk given 
by Jeff Dean,  
Google Brain, at  
the NIPS workshop  
on Systems for 
Machine Learning on  
8 December 201745

More computational  
power needed.

Deep learning is transforming 
how we design computers

This distinction between processing and 
reasoning is important. Powerful deep learning 
architectures, such as ResNets, are highly capable 
visual processors, but they may not be the most 
appropriate choice for reasoning about arbitrary 
relations.48

These tasks are likely to require progress in many 
research fields (for a more detailed analysis, see 
Francois Chollet’s blog on ‘The Limitations of 
Deep Learning’ 49). From a computational point of 
view, the prolific success enjoyed by deep learning 
approaches in recent years would not have been 
possible without concurrent advances in GPU 
hardware (specifically via the data parallelism that 
GPU architecture permits). It is likely that continued 
hardware and systems innovation will allow other 
disciplines to flourish in the same way (see Box 1).

Likewise, despite this report’s focus on deep 
learning, surprisingly few commercial products and 
services rely upon it. Nor is that likely to change – 
solutions that combine multiple techniques (such 
as combinations of deep learning and rules-based 
or relational approaches) seek to combine the 
advantages of each. Flexible, heterogeneous 
computation platforms may be required for these 
‘hybrid’ models. Some of the UK Tier 2 HPC centres 
(see later) have been designed with this in mind.

With Machine Intelligence technologies still in their 
relative youth, the techniques that enjoy success 
and market prominence today may not be the same 
ones that power the products of tomorrow.

 	
“�Max Planck said, ‘Science progresses one  
funeral at a time.’ The future depends on some 
graduate student who is deeply suspicious of 
everything I have said. … My view is throw it all away 
and start again… I suspect that means  
getting rid of back-propagation.” 
Geoff Hinton, Google. 51

Graphical models are an intuitive way of 
 representing and visualising the relationships 
between many variables, combining uncertainty 
with logical structure. However, querying a 
graphical model is computationally intractable 
(‘every type of inference in graphical models 
is NP-hard or harder’52) so approximate inference 
techniques are used instead. These approximation 
algorithms themselves can be quite 
computationally intensive. A 10x faster compute 
platform therefore permits 10x faster sampling 
or iteration.

Reinforcement learning (RL) is the problem 
of getting an agent to act in the world so as 
to maximise its rewards, or in other words, to
make ‘rational decisions’. Two strategies for
approaching RL problems are trial and error (e.g. 
Q-learning) and search (e.g. evolution strategies)53. 
They involve conducting experiments over 
possible actions or model parameters. Here, 
faster compute allows faster experimentation 
and exploration of more complex scenarios.

Box 1: Examples of machine intelligence disciplines  
that could flourish with computational innovation

The UK’s breadth and depth of machine 
intelligence expertise puts it in a good position  
to lead on complex systems that combine 
learning, memory and reasoning. It needs the  
right environment to turn promising research  
into valuable products and services.

As mentioned in the introduction, we 
hypothesise that barriers around access to 
computation power and expertise around it 
slow down innovation, particularly for startups. 
Digital Catapult conducted extensive market 
research to support and elaborate on this 
hypothesis. The methodology and results of  
the study are described in the next section.
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4.1  
SURVEY RESPONDENTS
We estimate54 that there are 600 machine 
intelligence SMEs in the UK, of which around 
400 of are startups55, and around 270 
of those are at an early (angel- or seed-
investment) stage.56

In all, we reached 81 startups via 13 in-depth 
interviews, and 68 survey responses. The 
startups were located all around the UK 
(the location was unclear for 3 of them) but 
showed a strong skew towards the south-
east, in particular London. This reflects the 
actual location skew that we encounter 
(Figure 7).
 
It’s obvious that the level of computation 
required by a startup is highly dependent 
on workload. The extent to which compute 
is seen as a ‘constraint’ may depend on 
the level of funding/revenue. Therefore, we 
asked respondents to give details about 
their stage of development as well as the 
Machine Intelligence algorithms and tasks 
being developed or used, in case these 
highlighted certain use-cases over others.

MARKET RESEARCH: 
METHODOLOGY AND RESULTS

In order to better understand constraints around computation power Digital 
Catapult conducted extensive market research, with design informed by 
desk research and detailed interviews with startups representing a range of 
stages, technology and application areas. The survey was promoted through 
Digital Catapult’s five local centres (in Brighton, Sunderland, Belfast, Bradford 
and London) and on social media.

Figure 7  
Map of survey 
respondent 
locations

4.2  
COMPUTATION-CONSTRAINT
It seems reasonable to suppose that very 
early stage companies are more likely 
to be computation-constrained than late 
ones (because of lack of cash) and there is 
evidence of this, which we can see by plotting 
computation-constraint by company stage,  
as illustrated in Figure 8: 

Figure 8  
Computation-
constraint plotted  
by company stage 
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4.3  
EFFECT OF DIFFERENT MACHINE 
INTELLIGENCE ALGORITHMS
It was no surprise to find that machine learning 
is used by nearly all (93%) of the survey 
respondents. However, many respondents were 
using simulation (19%) and symbolic (26%) 
approaches as part of their solution (Figure 9).

Reinforcement learning practitioners were most 
likely to feel compute-constrained (79%) but the 
next-most constrained were users of symbolic 
approaches (78%) (Figure 10). This may reflect 
a resurgence of ‘hybrid’ approaches (all of the 
companies that used symbolic AI techniques 
also used other approaches), and/or may 
reflect related tasks such as indexing of large 
corpuses, data pre-processing and knowledge 
graph caching that startups told us they 
struggled to do efficiently.

70% of startups using image/video or  
speech/audio training data said that they 
were compute-constrained. Less obviously, 
three quarters of survey respondents working 
with behavioural data described themselves 
as compute-constrained. We speculate that 
these tasks may involve a lot of data, or they 
may need to model and store long-range 
dependencies, or do inference over  
streamed data.

Market Research: Methodology and Results cont.

Figure 9  
Approaches used by surveyed companies
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4.4  
HARDWARE USED
We saw in section 3.2b how Google is using its 
own TPUs to make low-latency deployment of 
its speech synthesis and translation products 
possible. Others, like Microsoft, are using 
FPGAs for efficient inference58. Heterogeneous 
computing, where more than one type of 
processor or core may be required to build 
efficient implementations (e.g. as in CPU and 
GPU coprocessors) is an essential offering of 
commercial cloud providers, and a potential 
advantage of UK HPC – but it can be non-trivial 
to engineer. We therefore asked startups about 
what hardware they bought, what they rented, 
and why.

Rental
We asked startups using cloud providers  
about the hardware they rented. We did not  
ask about the various other services, storage, 
and support options offered by cloud providers. 
Most companies used cloud compute, and  
40 companies used ‘specialist’ compute 
instances. Unsurprisingly, nearly all (95%)  
of those companies were using GPUs.  
Three companies were using Google’s TPU  
(for R&D, not deployment) and three used 
FPGAs (Figure 11). This reflects the relative 
maturity/availability of these options in  
the cloud. 

Figure 10 
Compute-constraint by algorithmic approach

Figure 11  
Use of specialist cloud compute instances
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Some startups have access to 
cloud ‘credits’ via cloud providers’ 
startup programmes. Machine 
Intelligence startups told us that 
they were likely to be much heavier 
users of the credits than other 
startups who in general use only 
a small proportion of the credits 
available to them (e.g. to host their 
website). Credits are typically only 
available through select Venture 
Capital and Accelerator partners. 
In fact, part of the motivation for 
a Machine Intelligence startup to 
join an accelerator may be to take 
advantage of this benefit.

These are the reasons startups told us  
they chose to rent hardware:

Availability – Poor local connectivity can  
mean that owned hardware cannot be  
accessed reliably remotely
Reliability – Owned hardware sometimes 
overheats and needs to be restarted,  
or breaks and needs to be replaced
Scalability – Cloud services allow users  
great flexibility to scale computation  
up and down as their needs change
Support – Cloud providers’ support their 
customers to resolve issues relating to 
computational infrastructure and advise  
on relevant options for their requirements
Up-to-date – Protection from hardware 
obsolescence
Overhead – Less engineering and  
management overhead than owned  
hardware – someone else deals with  
the set-up, power, noise, security, space,  
and air-conditioning requirements

Market Research: Methodology and Results continued...

PURCHASE
47 (69%) of respondents had bought their  
own hardware for R&D and/or deployment.  
Of these, 42 told us what they’d bought  
(Figure 12). Startups told us that they  
bought hardware for the following reasons: 

Price
•  �Buying can be cheaper than renting.
Data 
•  �Data upload speeds to the  

cloud could be too slow
•  �Expense of storing data in, and  

downloading data from, the cloud
•  �Control and compliance issues  

around data privacy
Choice
•  �No ability to rent gaming / desktop GPUs and 

a lag before the very latest enterprise-level 
GPU instances are available to rent59

Figure 13  68% 
 
of startups told us 
that they would  
like to be able to 
access a GPU or 
GPU cluster owned 
by Digital Catapult

Figure 12       Hardware bought
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Figure 14  
Would you like to 
be able to try newly 
available hardware 
before renting or 
purchasing it?

Figure 13  
Would you like to 
be able to access a 
GPU or GPU cluster 
owned by Digital 
Catapult?
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65% 
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able to try newly 
available hardware 
before renting or 
purchasing it  
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4.5  
FOCUS ON UK HIGH PERFORMANCE 
COMPUTING FACILITIES
National High Performance Computing (HPC) 
infrastructure in the UK consists of three 
tiers of resource, from the largest capability 
machines (Tier 1) to experimental and 
customised architectures (Tier 2) and local 
university resources (Tier 3). In 2017, the Tier 2 
infrastructure was refreshed with investment of 
a total of £20m in six new centres60, including:

•   �Peta-5 (now CSD361) facility  
(led by University of Cambridge)

•   �JADE the Joint Academic Data Science 
Endeavour62 (led by University of Oxford and 
hosted at STFC Hartree Centre)

•   Cirrus63 (led by University of Edinburgh)

Market Research: Methodology and Results cont.

It is becoming easier to port code through  
HPC support of ‘containerisation’ (see Box 2). 
HPC may offer other benefits such as efficient 
data pre-processing and expertise in optimising 
code for heterogeneous compute nodes or in 
distributing models over multiple nodes.

What is a container?
‘Containers are a solution to the problem of how 
to get software to run reliably when moved from
one computing environment to another... 
 
...Put simply, a container consists of an entire
runtime environment: an application, plus all its
dependencies, libraries and other binaries, and
configuration files needed to run it, bundled into
one package. By containerizing the application
platform and its dependencies, differences in 
OS distributions and underlying infrastructure 
are abstracted away.’65

Examples of container solutions are Docker66, 
Rkt67, Shifter68 and Singularity69 

4.6  
OTHER REQUIREMENTS
We asked startups what else they would find 
useful (Figure 16). Unsurprisingly, data was the 
most in-demand item, specifically access to 
new public (or private, sandboxed) datasets for 
training machine learning models. There was 
also great interest in contractual templates for 
data sharing. Data sharing agreements must 
be keeping many a lawyer busy at the moment, 
since each startup has to ‘reinvent the wheel’ 
when it negotiates with its customers around 
data sharing for model training. 

Establishing a template with common principles 
and options, which complies with relevant 
regulation, has the potential to save all parties 
time and reassurance. Indeed, this is a central 
recommendation of the recent independent 
report ‘Growing the artificial intelligence industry 
in the UK’ by Dame Wendy Hall and Jérôme 
Pesenti70, as well as the Touchpaper71 initiative.
A number of startups commented on the need 
for software and system expertise, both for 
training and deployment of machine learning 
models. Two common issues were the time 
consumed in setting up on new infrastructure, 
and the engineering effort required to automate 
data and experiment pipelines and ensure 
maximum utilisation of hardware. 

What is a container?
Containers are a solution to 
the problem of how to get 
software to run reliably when 
moved from one computing 
environment to another

“�The bottleneck is around software and system 
expertise – it’s not easy setting up in the cloud, 
using docker and kubernetes for the first time 
(although of course cloud providers have 
support and there is much to read).”  
Pyry Takala, True AI 

YES (63.2%)

NO (14.7%)

POTENTIALLY (22.1%)

These centres provide diverse computing 
architectures including high throughput and 
GPU computing, supported by local expertise. 
The facilities naturally prioritise academic 
users, but industrial collaboration and use is 
encouraged64. 63% of survey respondents said 
that they would be interested in being able to 
access UK HPC facilities (Figure 15).

Potential issues that were noted included:
•   �Cost
•   �Ease of managing and provisioning  

efficient access to the resource 
•   �Compatibility with commonly  

used tools and software

Figure 15 
Would you like to 
be able to access 
UK HPC facilities?

Box 2: Containers
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“�If you don’t have workflow in place, you’re not 
utilising the machine fully. It’s all very well being 
able to spin up a GPU instance and train a model, 
but if it finishes in the middle of the night and 
needs human intervention to start a new job  
that’s a waste.”  
Tobias Rijken, Kheiron Medical

Startups additionally listed the familiar ‘shopping’ 
items of the resource-constrained: office space, 
access to customers, and access to other 
functions such as marketing. A co-working 
space would have the additional benefit of 
being a physical location for sharing of relevant 
experience and best practice, supplemented  
with guidance provided online – the third-most 
sought after listed item. 

4.7  
Summary
The results of the survey support our hypothesis 
that barriers around access to computation 
power and expertise may be slowing down 
innovation for Machine Intelligence startups in 
the UK. However, no possible solution we could 
offer is ‘one-size-fits-all’, and both Machine 
Intelligence and computation solutions are rapidly 
evolving, so any intervention needs to be targeted 
and flexible. In the next section, we propose what 
these might be, and future directions.

Market Research: Methodology and Results cont.

Figure 16 
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The results of the survey  
support our hypothesis that: 
barriers around access to 
computation power and 
expertise may be slowing 
down innovation for Machine 
Intelligence startups in the UK
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5.1  
MACHINES
For R&D and proof of concept
The costs of computation can accumulate very 
quickly for early-stage Machine Intelligence 
startups, and are difficult to defer to post-
financing or revenue. Digital Catapult could 
provide access to compute that is:

•  �Not commonly available to rent  
from the commercial sector

•  �For short and meaningful experimentation 
and static/offline training 

•  �To enable proof of concept and  
reach new product milestones

For continuous development,  
deployment, and scaling
Through partnerships with commercial and 
public computational resource providers, 
Digital Catapult could assist qualifying startups 
to access these services on preferential 
terms. The services should be tailored to 
Machine Intelligence startup requirements and 
allow them to scale their development and 
deployment pipelines, with expert support. 
Service providers may value access to, and 
feedback from, this fast-growing community. 

Experimentation with new hardware
Digital Catapult could provide a hub for 
companies of all sizes to learn more about  

CONCLUSIONS AND  
FUTURE DIRECTIONS

This research identified specific areas where Digital Catapult 
could collaborate with startups and existing commercial  
and public expert partners to overcome computational 
barriers to success.

and try new hardware as it becomes available. 
Matching hardware innovators with startups 
solving interesting problems could represent 
a ‘win-win’ proposition. 

5.2  
INTELLIGENCE
Information repository 
Digital Catapult could provide an information 
repository on topics including getting up 
and running in the cloud, data security and 
compliance, and data and experiment pipeline 
management. In addition Digital Catapult 
should signpost startups to other sources  
of expertise and specialist services.

Benchmarking and performance modelling72 
Given the burgeoning costs of Machine 
Intelligence workloads, it is vital for startups 
to be able to understand the tradeoffs 
involved in using different computer 
architectures and service options. Digital 
Catapult could contribute to community 
efforts to benchmark and provide 
performance modelling tools.

Practical workshops and expertise
In collaboration with partners and 
collaborators, Digital Catapult could provide 
training on topics such as distributed training, 
cluster management and job scheduling, 

22 	 Machines for Machine Intelligence  Research Report 2018
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and heterogeneous computing; and develop 
in-house expertise to assist startups with 
common computation-related problems.

In the future, we expect that demand for  
other service innovations will emerge.  
As Machine Intelligence startups mature, 
their requirements will change. As the 
Machine Intelligence landscape evolves, the 
computational workloads will too. To keep 
up with these developments, Digital Catapult 
could conduct similar market research 
projects periodically.

Conclusions and Future Directions cont.

To conclude, we identified computation as a 
potential barrier to Machine Intelligence startups’ 
ability to realise ambitious business plans, and 
we conducted research to ascertain where 
computation-constraints were being felt and what 
possible interventions could alleviate them.  
We found that whilst the sheer cost of compute 
is a barrier for many startups, there are also 
significant challenges around systems expertise.

To conclude, we identified computation as 
a potential barrier to Machine Intelligence 
startups’ ability to realise ambitious business 
plans, and we conducted research to ascertain 
where computation-constraints were being felt 
and what possible interventions could alleviate 
them. We found that whilst the sheer cost  
of compute is a barrier for many startups,  
there are also significant challenges around 
systems expertise.
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A.1  
WORKINGS
In this appendix we briefly explain our 
assumptions and calculations relating to 
two claims we make in the report about the 
computational cost of particular Machine 
Intelligence workloads.

A1.1  
Comparing the compute budget for DeepMind’s 
AlphaZero and the world’s supercomputers
•  �TPU1: ‘The heart of the TPU is a 65,536 8-bit 

MAC matrix multiply unit that offers a peak 
throughput of 92 TeraOp/s (TOPS) and a 
large (28 MiB) software-managed on-chip 
memory’73 

•  �TPU2 (4 chips per unit) ‘180 teraflops of 
computation, 64 GB of HBM memory, 2400 
GB/s mem BW’74

•  �AlphaZero ‘Training proceeded for 700,000 
steps (mini-batches of size 4,096) starting 
from randomly initialised parameters, using 
5,000 first-generation TPUs to generate self-
play games and 64 second-generation TPUs 
to train the neural networks’75 => 5000x92 + 
64x180 = 471,520 TeraOp/s

•  �Top 10 supercomputers (November 2017) => 
389,083 TeraFLOP/s for top ten

•  �But we are not comparing the same precision 
operations, so take it with a pinch of salt. At 
the silicon core, the mixed-precision (16.32b) 
multiply-add operations becoming ubiquitous 
for machine intelligence require about 1/16th 
the silicon area and energy of the double-
precision (64b) multiply-add operations which 
dominate legacy HPC

APPENDICES

To supplement the paper we provide three appendices. 
In the first, we give an explanation of how we derived two 
computational cost claims we made earlier in the report. 
The second appendix contains a discussion around the  
need for hardware benchmarking and performance 
modelling, and highlights some existing initiatives in this 
space. The third appendix contains a hardware glossary 
(limited to the terms used in this report), along with some 
explanatory notes regarding current relevant hardware 
architectures and their uses.
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Appendices cont.

A1.2  
Calculating the operations required to train  
a single ImageNet classifier
Our assumptions:
•  �Training (forward and backwards passes) 

needs c.3 times as many operations as the 
forward pass alone (forward + backward + 
weight updates on each of the parameters)

•  �Each multiply-add operation is 2 FLOPs 
(floating-point operations)

Examples of computation for image classifiers 
trained on the 1.28m images from ImageNet:
•  �The 16-layer VGG-1676 network from Oxford 

University requires ~31 billion FLOPs per 
image for one forward pass, and was trained 
over 74 epochs. Total 8.8 exaFLOPs

•  �The 50-layer ResNet-5077 network from 
Microsoft Research requires ~8 billion FLOPs 
per image for one forward pass, and was 
trained over 120 epochs. Total 3.7 exaFLOPs

•  �The 76-layer Inception-v478 network from 
Google Brain requires ~25 billion FLOPs per 
image for one forward pass, and was trained 
over 160 epochs. Total 15.4 exaFLOPs

A.2 
BENCHMARKING AND  
PERFORMANCE MODELLING 
Startups that want to select appropriate 
computational infrastructure and to budget 
for computational expenses need to balance 
the need for fast results with cost, power and 
engineering considerations. 

Estimating the performance of hardware for a 
startup’s particular workload can be non-trivial. 
A common approach is to calculate the number 
of operations in the algorithm and compare that 

with hardware peak performance specifications 
(given in floating-point operations per 
second, FLOP/s). However, this can be an 
oversimplification, since it ignores memory and 
communication constraints which can result  
in significant degradation of performance79.  
So, FLOP/s can only get one so far. 

Similarly, one can extrapolate from the 
academic literature, where authors sometimes 
report on how long their experiments take. 
But unless this is reported alongside the exact 
hardware and software used, configuration 
details, and algorithmic choices (e.g. batch 
size) this is an exercise in false precision. 

‘�We have an idea of the performances by trying 
multiple servers on the Cloud, but the cost is 
so high that we would benefit from analytics 
on hardware.’ Survey respondent

Benchmarking and performance modelling  
are community efforts to illuminate this 
complex space:

Benchmarking 

“�Deep learning developers and researchers want 
to train neural networks as fast as possible. Right 
now we are limited by computing performance,… 
The first step in improving performance is to 
measure it…” 

Greg Diamos, senior researcher at Baidu’s Silicon 

Valley research lab80

A number of attempts have been made to 
establish reference workloads to test hardware 

so that relative performance can be assessed. 
These include Deepbench81, Deepmark82, 
DAWNBench83 and Fathom,84 and are  
focused on performance measured against 
time (or cost), but energy efficiency is of 
increasing importance:

“�The problem with GPUs is they’re very power 
intensive, ... We had to put a moratorium on 
people putting big GPU clusters in their offices. 
… [software developers need more efficient 
hardware that] doesn’t require us to build power 
stations next to the data center.” 85 

Andrew Moore, dean of Carnegie Mellon’s  

computer science school.  

More detailed discussion about benchmarking 
metrics can be found via MIT’s ‘Tutorial on 
Hardware Architectures for Deep Neural 
Networks.’86

					   
Performance Modelling 
Benchmarking initiatives are important, but 
it can be difficult to extrapolate from the 
test problems to a specific workload, since 
the workloads may be quite different or the 
performance achieved may have been due 
to very specific parameter, software and 
implementation choices. In addition, they  
may not cover all hardware options.

That is why attempts to predict hardware 
performance against any workload are being 
developed. One such open source initiative 
is called Paleo87, ‘an analytical performance 
model for exploring the space of scalable 
deep learning systems. By extracting 

computational requirements carried by neural 
network architectures and mapping them to 
the design space of software, hardware, and 
communication strategies, Paleo can effectively 
and accurately model the expected scalability 
and performance of a putative deep learning 
system.’88 
				  
To be truly useful, such tools need to work 
for algorithm descriptions in all relevant 
frameworks and for all relevant hardware,  
and this is a huge task for any such open  
source project. 

62% of survey respondents said they would  
use analytical methods to estimate the time and 
cost of using different hardware, frameworks, 
and service-providers, if they were more readily 
available. 
		
In practical terms, startups also have to estimate 
the engineering overhead relating to the ease of 
getting up and running on different architectures 
and considerations such as framework support. 
The total cost of ownership may be difficult to 
accurately calculate; similarly total cloud costs 
will depend on provider, choice of instances, 
billing-unit, data costs and pricing model (on-
demand, spot-pricing, block-buying etc).

Digital Catapult could support benchmarking 
and performance modelling initiatives by 
capitalising on its vendor-agnostic positioning 
to run experiments and contribute to open 
source libraries. It could collaborate with 
partners to develop expertise in optimising set-
up routines, code and systems, and make this 
information widely available through its website 
and workshops.

62% 
 
of survey 
respondents 
said they would 
use third-party 
benchmarks if 
they were more 
comprehensive

62% 
 
of survey 
respondents  
said they would  
use analytical 
methods to 
estimate the time 
and cost of using 
different hardware, 
frameworks, and 
service-providers,  
if they were more  
readily available 
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A.3  
HARDWARE GLOSSARY

CPU
Central Processing Unit

GPU 
Graphical Processing Unit

IPU
Intelligence Processing Unit

TPU
Tensor Processing Unit

Core
The word ‘core’ here is used to describe a 
processor capable of running a programme, 
which is the convention used by every 
computing and silicon company except the  
GPU manufacturers who use the word ‘core’ 
in their GPU marketing to refer to the (much 
larger) number of floating-point units.

FPGA
Field Programmable Gate Array. A highly 
flexible hardware device which requires its 
processing function to be configured once at 
power-up, after which it is fixed in contrast to a 
processor which executes a software program 
to determine its function dynamically as it runs.  

Floating-Point Unit	
A floating-point unit is the arithmetic execution 
part of a computer system designed specifically 
to carry out operations (such as +, -, x, /, sqrt)  
on floating-point numbers.

HPC
High Performance Computing. The traditional 
computing workloads of supercomputers. 
Examples include high energy physics, weather 
forecasting, seismology and drug discovery. 
These workloads contrast with Machine 
Intelligence particularly in their requirement  
for high precision arithmetic calculations.

FLOP
A floating-point operation is any mathematical 
operation or assignment that involves floating-
point numbers, but is typically quoted as 
twice the number of fused multiply-add (FMA) 
operations. Such FMAs are the basis of almost 
all tensor calculations performed in Machine 
Intelligence. In this usage a count of FLOPs 
is comprised of half multiplications and half 
additions. Not all FLOPs involve numbers of  
the same size (in bits) – the IEEE Standard  
754-2008 for Floating-Point Arithmetic defines  
a 64-bit ‘double’ precision common in HPC,  
a 32-bit ‘single’ precision common in graphics, 
and a 16-bit ‘half’ precision becoming common 
in Machine Intelligence.

FLOP/s	
Floating-point operations per second,  
a measure of computer performance 
(commonly but confusingly also written  
as FLOPS).

Arithmetic Precision
See FLOP

Appendices cont.

Computer systems have frequently 
complemented the CPU with special purpose 
accelerators for intensive tasks, most notably 
graphics, but also sound, video, etc. Over time 
various accelerators have appeared that have 
been applicable to AI workloads.89

The GPU, TPU and IPU are accelerators of 
Machine Intelligence workloads and work in 
concert with a CPU. Each of these accelerators 
uses the CPU as a conduit to storage and 
network resources. The CPU can of course 
operate alone, and the line between CPUs and 
coprocessors is being blurred by the integration 
of ever more potent vector units into the CPU – 
the ultimate limit on this trend will be power-
density of individual chips, which is expected 
to favour specialisation. All silicon computing 
platforms, including all processors relevant to 
Machine Intelligence, are power limited.90

 
A modern CPU, GPU, IPU or TPU contains many 
cores, each with one or more execution units 
capable of arithmetic on each element of a 
vector of numbers in parallel.

•  �The largest Xeon Phi CPU from Intel has 72 
cores, each with a 512bit wide arithmetic path 
which operate on vectors of 32 16bit floating-
point numbers91

•  �The largest Volta GPU from NVIDIA has 320 
cores, each with a 1024bit wide arithmetic 
path which can operate on vectors of 64 16bit 
floating-point numbers92

•  �The upcoming Colossus IPU from Graphcore 
has 1,216 cores each with a 64bit narrow 
arithmetic path which can operate on vectors 
of 4 16bit floating-point numbers93

•  �The second generation TPU from Google  
has 2 cores each with a 4096bit wide 
arithmetic path which operates on vectors  
of 128 32bit floating-point numbers (using 
16bit precision internally)94  

These numbers themselves do not reflect 
the performance available, firstly because all 
silicon computation is power limited and these 
different devices consume different amounts 
of power, with multiple chips often connected 
together to form a cluster. For example, 
Google’s card has 4 TPU chips in an undisclosed 
power envelope likely to be somewhat greater 
than a GPU, and Graphcore’s card has 2 IPU 
chips in the same power envelope as a single 
GPU. Secondly, as mentioned in Appendix A2, 
performance is critically dependent on the 
bandwidth available to local memory – the 
ability to feed the floating-point units with data.

So far, the most advanced application of 
FPGAs in Machine Intelligence is the Microsoft 
Brainwave in which Intel FPGAs are configured 
to form arrays of processors which can then 
run programs; these processors are called ‘soft 
DNN processing units (DPUs)95. The flexibility 
provided by FPGAs allows such soft processors 
to use different data sizes for different 
calculations, but such configurability carries 
an extreme efficiency cost of 1-2 orders of 
magnitude compared with the hardened design 
of execution units in a processor.
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FOOTNOTES
1.	� https://www.gov.uk/government/uploads/system/uploads/

attachment_data/file/652097/Growing_the_artificial_
intelligence_industry_in_the_UK.pdf

2.  �	� Consultancy UK: £232 billion AI market is UK’s largest 
economic opportunity, 4 July 2017

3.  �	� https://newsroom.accenture.com/subjects/technology/
artificial-intelligence-poised-to-double-annual-economic-
growth-rate-in-12-developed-economies-and-boost-labor-
productivity-by-up-to-40-percent-by-2035-according-to-new-
research-by-accenture.htm

4.  �	� https://www.gov.uk/government/uploads/system/uploads/
attachment_data/file/664563/industrial-strategy-white-
paper-web-ready-version.pdf
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We are eager to collaborate with existing 
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share our mission to build solutions that help 
machine intelligence startups reach their 
potential. We want to hear from startups who 
want to access our programme or have ideas 
about other ways that we can assist.
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