

Offshore Wind and CCUS Colocation Forum

Plenary #10 – March 2024

Agenda

- 1. Matters Arising Secretariat 5mins
- Project Colocate Professor John Underhill and Sam Head, University of Aberdeen – 20 mins
- 3. Project Anemone Gordon Walker, NECCUS 20 mins
- Interplay between the Forum and other bodies Adrian Topham, Chair 20 mins
- 5. T&S Taskforce Elle Lashko, Storegga 20 mins
- 6. Developer event Secretariat 5 mins
- 7. Norway visit Adrian Topham, Chair 15 mins
- 8. Next Plenary Dates Secretariat 5 mins

Matters Arising

Matters Arising

Action	Owner	Status	Action	Owner	Status
Further information on new technical innovations in the OW industry	The Crown Estate	Developer 101 event to explore	Recirculate deck on key deliverables, real-world impact and next steps of Forum workstreams	Grayling	Complete
Workshop / roundtable to present technical data used to inform Project Colocate	UoA	Complete – took place on 22.01	Update developer table with CES agreements and OW agreements/CCS license overlap maps with recent commercial agreements	CES	Clarify action – update to be discussed
Refresh and recirculate Forum communications protocol with members	Grayling	Complete – see prereading	Explore how the Forum can quantify / categorise decarbonisation contribution of colocation	TCE / Grayling	Update required – to be discussed
Project Colocate advisory group meeting	UoA / The Crown Estate	Due to take place in March 2024	2024 Forward Calendar of external conferences and events	Grayling	Complete – see prereading

Project Colocate

Update from Professor John Underhill

University Director for Energy Transition and Professor of Geoscience at University of Aberdeen

and Dr Sam Head

Research Fellow, University of Aberdeen

Project Colocate – Objectives & Real World Impacts

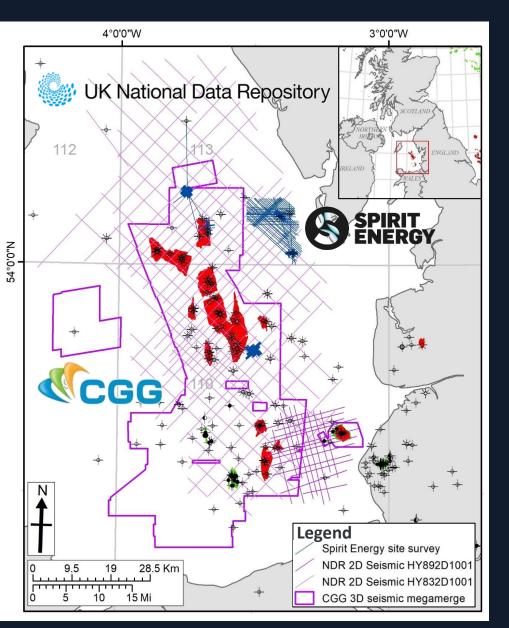
Supporting industry framing of co-location considerations, this project will:

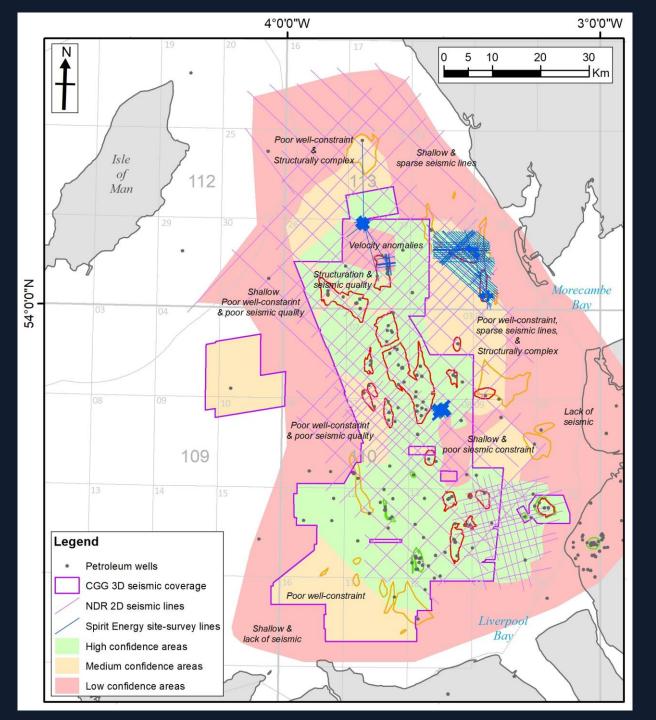
Identify geological areas where colocation is viable and which stores could have compatible monitoring with OW turbines.

Establish what monitoring is needed for these geological stores.

Examine potential benefits through common appraisal. Provide an example to developers considering future projects in similar geologies how a viable scheme could operate.

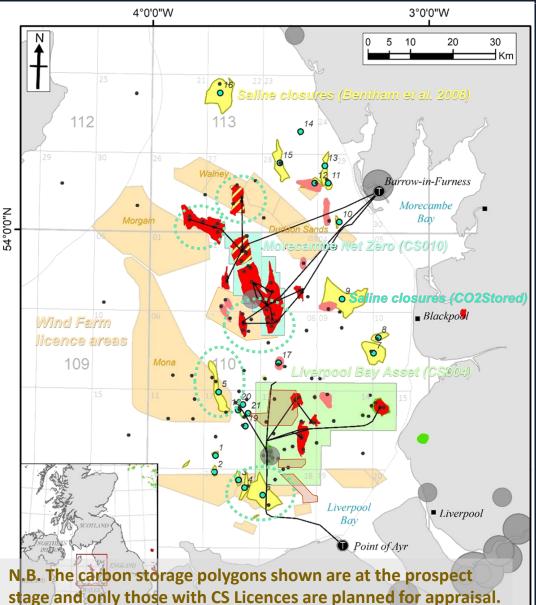
Work Programme


Phase 1 will aim to complete deliverable 1 in the first year with interim deliverables in the first six months


Deliverable 1: Define future potential areas for OW and CS within the East Irish Sea Basin. Include location, status, and integrity of legacy boreholes and other infrastructure highlighting areas of multiple potential future uses in prospective areas.

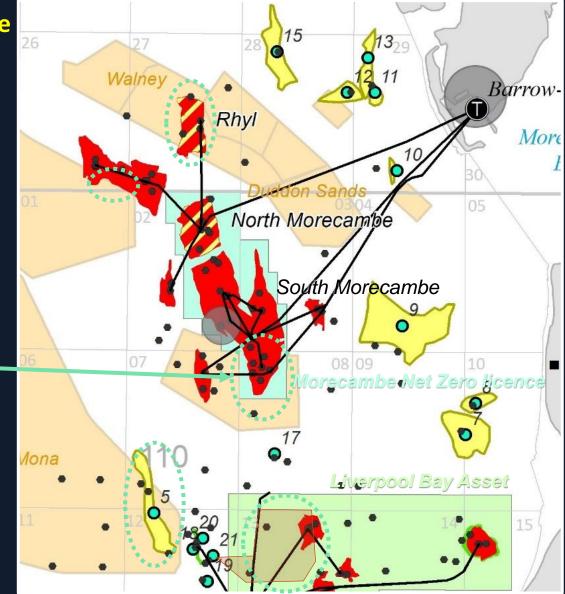
			202	23										20	24												٦
		Novemb	er	December	Janua	ary	Februa	ry	March		April		Ma	ау	Ju	ne		July	'	Augu	ist	Se	ptem	ber	00	ctobe	r
		6 13 20	27	4 11 18 25	1 8 15	22 29	9 5 12 19	26	4 11 18 25	5 1	8 15 22	2 29	6 13	20 27	3 10	17 24	1 8	15	22 29	5 12 3	19 26	2 9	9 16	23 30	7 1	14 21	28
1	Literature Review		Ρ	ublic ani	nounc			viti	NSTA (I	мм	IV)																
12	delineate areas where CS projects can coexist with other seabed use																										
1 3	produce a series of scenarios where multiple sector, potential future use is possible								Stak Me		older ngs																
4	define, evaluate, and rank specific proposals for viable colocation projects								Plenary	/ 00	CF me	eeti	ng														
5	Report writing			Plenary	°OCF r	meet	ting						6-m	iontl vera			ו										

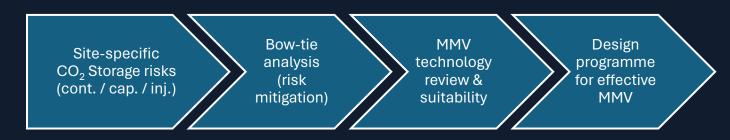
Well & Seismic Data



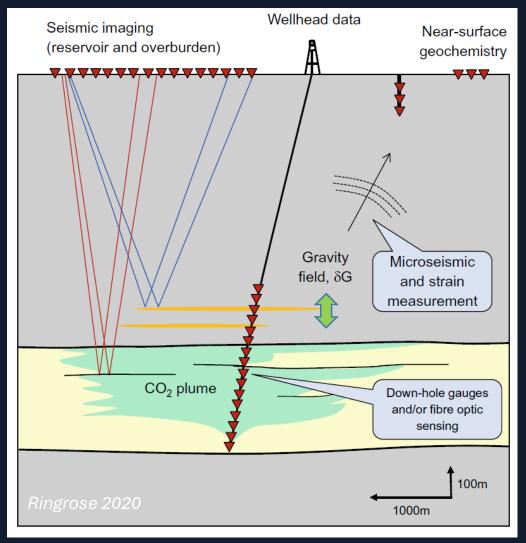
Colocation in the East Irish Sea

Identified colocation between Offshore Wind, Carbon Storage prospects, and Aggregate dredging


CCS prospect	Wind Farm	Comment	Storage capacity (Mt)	Priority (urg. & magn.)	Wells in overlap area
Rhyl	Walney extension 4	Large areal overlap, but production ongoing ~2026	186	B6	5
North Morecambe pipeline	Duddon Sands	Potential monitoring, or remediation issue	175	A3	N/A
Millom	Morgan	Small areal coverage, larger monitoring coverage?	42	B2	0
South Morecambe (MNZ)	Morecambe	Large areal coverage.	784	A1	8
Calder	Morecambe	Large areal coverage.	set	B1	4
LPBA licence area	Gwynt y Mor	Large areal coverage. Only small area (future dis ^{Cl} monitoring area?fully	134	A2	1
OC4	Gwynt y Mor	Large eneal coverage.	12	B5	1
OC6	Gwynt y Mar	Large areal coverage.	88	B4	2
0C3	A Wely Mor	Large areal coverage.	1	B7	0
0C5	Mona	Large areal coverage.	16	B3	2


Colocation in the East Irish Sea

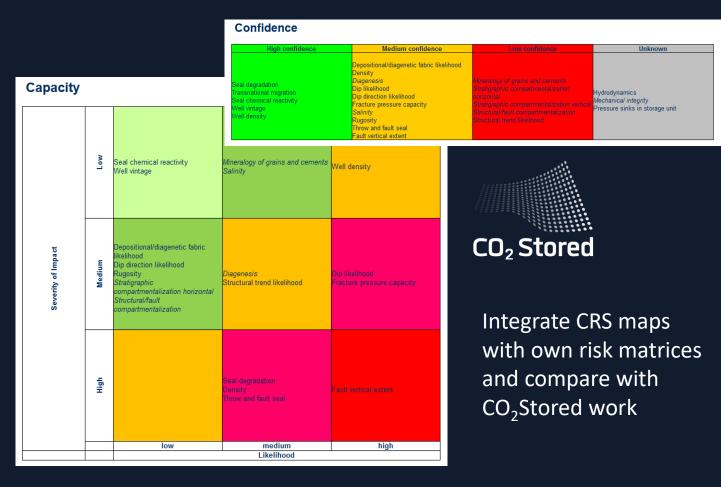
Identified colocation between Offshore Wind, Carbon Storage prospects, and Aggregate dredging

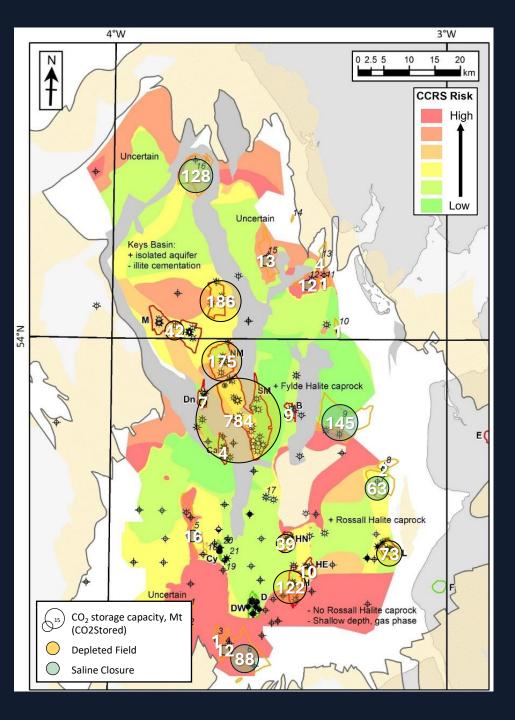

CCS prospect	Wind Farm	Comment	Storage capacity (Mt)	Priority (urg. & magn.)	Wells in overlap area
Rhyl	Walney extension 4	Large areal overlap, but production ongoing ~2026	186	B6	5
North Morecambe pipeline	Duddon Sands	Potential monitoring, or remediation issue	175	A3	N/A
Millom	Morgan	Small areal coverage, larger monitoring coverage?	42	B2	0
South Morecambe (MNZ)	Morecambe	Large areal coverage.	784	A1	8
Calder	Morecambe	Large areal coverage.	4	B1	4
LPBA licence area	Gwynt y Mor	Only small area (future monitoring area?) Large to be fully disc all yet to be fully coverage. Large areal coverage.	cussed	A2	1
OC4	Gwynt y Mor	Large Large to be fully	12	B5	1
OC6	Gwynt	- all yet a coverage.	88	B4	2
OC3	potentie	Large areal coverage.	1	B7	0
0C5	Mona	Large areal coverage.	16	B3	2

MMV: Programme Design

		monitoring tools	Containment	Conformance	comments
		Downhole P and T (including optic-fibre)			On injection wells and monitoring wells if utilised
		3D time-lapse (4D) seismic			Not applicable to all reservoirs but applicable to all overburdens
_		2D time-lapse seismic			Low cost alternative to 3D for some repeats
Core Monitoring Plan		VSP			Option if surface seismic not effective
5		Passive seismics			If geomechaical issues identified in risk assessment
Ë,		Downhole fluid sampling			Post-injection stabilisation (dissolution)
ţ		Geophysical logging			Fluid saturation
Ë					
ŝ		Multibeam echosounding			Spatial coverage to identify potential issues; bubblestream detection
ē		High resolution sonar			Spatial coverage - Seabed imaging
ō		Vehicle-mounted sonar			Hydro-acoustic bubble-stream characterisation
0	- F	Seabed fluid and gas analysis			
		Seabed CO2 flux			Semi-permanent seabed stations for temporal variation
		Water column measurements			
Ø		3D time-lapse (4D) seismic			Test and re-calibrate models; identify migration pathways.
r.		Hi-resolution seismic (p-cable)			Leakage out of Storage Complex.
Monitoring n					
5	L L	Multibeam echosounding			Hydro-acoustic bubble-stream characterisation
Σ́ς	ent	High resolution sonar			Emissions source imaging.
cy N Plan	e	Vehicle-mounted sonar			Hydro-acoustic bubble-stream characterisation
É S	0 H	Seabed fluid and gas analysis			Emission characterisation including non-CO2 precursors
D D	nea	Seabed CO2 flux			Semi-permanent seabed stations
ţ		Seawater chemistry			Emission characterisation including non-CO2 precursors
Contingency Pla	ETS				
0					

Create own but also review existing MMV programmes in the EISB (e.g. Pale Blue Dot report)


Figure 6.3 Suggested monitoring tool portfolio for an offshore CO₂ storage site


IEAGHG, 2015

MMV: Site Risk Assessment

Risk assessment to understand monitoring requirements

Not all the basin is prospective for storage (capacity, containment, injectivity) – multiple scenarios possible

Next Steps: Colocation Risks & Scenarios

Following the MMV programme design, what would be impacted by wind farm colocation?

Robertson & McAreavey (2021) identified risks (severity & likelihood) to OW and CS based on practices throughout their lifecycles, as well as possible mitigations and opportunities

Building upon those risks & mitigations, we'll develop colocation scenarios within the EISB. OW and CS coexistence, compromise, or avoidance?

			cc	us						сс	US				ccus								
		Exploration & Appraisal	Development	Operations & Maintenance	Decommissioning	Post- decommissioning			Exploration & Appraisal	Development	Operations & Maintenance	Decommissioning	Post- decommissioning			Exploration & Appraisal	Development	Operations & Maintenance	Decommissioning	Post- decommissioning			
Q	Development	High = 4 Medium = 12 Low = 1	High = 4 Medium = 12 Low = 1	High = 4 Medium = 14 Low = 1	High = 3 Medium = 7 Low = 1	High = 2 Medium = 7 Low = 1	₽	Development	High = 3 Medium = 9 Low = 5	High = 3 Medium = 9 Low = 5	High = 2 Medium = 10 Low = 7	High = 1 Medium = 5 Low = 5	High = 1 Medium = 4 Low = 5	Q	Development	High = 1 Medium = 7 Low = 9	High = 1 Medium = 7 Low = 9	High = 1 Medium = 7 Low = 11	High = o Medium = 5 Low = 6	High = o Medium = 4 Low = 6			
OFFSHORE WIND	Installation & Commissioning	High = 5 Medium = 12 Low = 1	High = 7 Medium = 14 Low = 2	High = 9 Medium = 16 Low = 1	High = 7 Medium = 9 Low = 1	High = 3 Medium = 9 Low = 1	SHORE WINI	Installation & Commissioning	High = 4 Medium = 9 Low = 5	High = 5 Medium = 12 Low = 6	High = 5 Medium = 15 Low = 6	High = 4 Medium = 8 Low = 5	High = 2 Medium = 6 Low = 5	HORE WIN	Installation & Commissioning	High = 2 Medium = 7 Low = 9	High = 2 Medium = 11 Low = 10	High = 2 Medium = 14 Low = 10	High = 1 Medium = 10 Low = 6	High = 1 Medium = 6 Low = 6			
OFF	Operations & Maintenance	High = 5 Medium = 11 Low = 2	High = 7 Medium = 13 Low = 2	High = 11 Medium = 23 Low = 3	High = 8 Medium = 14 Low = 3	High = 4 Medium = 14 Low = 3	OFFS	Operations & Maintenance	High = 4 Medium = 8 Low = 6	High = 5 Medium = 23 Low = 9	High = 5 Medium = 23 Low = 9	High = 4 Medium = 14 Low = 7	High = 2 Medium = 12 Low = 7	OFFSH	Operations & Maintenance	High = 2 Medium = 5 Low = 11	High = 2 Medium = 9 Low = 11	High = 2 Medium = 16 Low = 18 Very low = 1	High = 1 Medium = 11 Low = 12 Very low = 1	High = 1 Medium = 7 Low = 12 Very low = 1			
	Decommissioning	High = 1 Medium = 4 Low = 1	High = 2 Medium = 6 Low = 1	High = 5 Medium = 14 Low = 2	High = 4 Medium = 11 Low = 2	High = 1 Medium = 11 Low = 2		Decommissioning	High = o Medium = 1 Low = 5	High = o Medium = 4 Low = 5	High = 1 Medium = 12 Low = 8	High = 1 Medium = 10 Low = 6	High = o Medium = 8 Low = 6		Decommissioning	High = o Medium = 1 Low = 5	High = o Medium = 4 Low = 5	High = o Medium = 9 Low = 11 Very low = 1	High = o Medium = 7 Low = 9 Very low = 1	High = o Medium = 4 Low = 9 Very low = 1			
		Summary of Identific able shows risk imp			iver Project Lifecycle ct overlap stage.			Table 6.1:	Summary of Over	all Lifecycle Risk Red	luction with Good P	ractice Mitigations		Table 6.4: Summary of Overall Lifecycle Risk Reduction with Potential Future Practice Mitigations									

Robertson & McAreavey, 2021

Reference List:

CO2Stored. 2024. CO2 Stored database, © The Energy Technologies Institute LLP, NERC and The Crown Estate. All rights reserved. https://www.co2stored.co.uk/home/index

IEAGHG. 2015. Review of Offshore Monitoring for CCS Projects. 2015/02.

NSTA. 2023. Seismic Imaging within the UKCS Energy Transition Environment, Part B: Geophysical Technologies. Technical Report.

Ringrose, P. 2020. How to Store CO2 Underground: Insights from Early-Mover CCS Projects. SpringerBriefs in Earth Sciences, https://doi.org/10.1007/978-3-030-33113-9.

Robertson, S. and McAreavey, J. 2021. CCUS & Offshore Wind Overlap Study Report.

Project CoLocate

Undertaken at the Interdisciplinary Centre for Energy Transition, **University of Aberdeen** Prof. John Underhill, Principal Investigator

To inform the Offshore Wind and CCUS Colocation Forum

Two 1-year projects, funded by The Crown Estate & The Crown Estate Scotland

1. East Irish Sea

ESTATE

Dr Sam Head, Research Fellow THE CROWN

2. Outer Moray Firth

PDRA TBA

ABERDEEN

Project Anemone

Update from Gordon Walker

Project Coordinator at NECCUS

Project Anemone – Objectives

Providing developers with a best-practice guidance for simultaneous operations that will help guide future projects and provide a baseline for developers to build on.

Help wider marine stakeholders understand the risks and mitigations associated with simultaneous operations.

Project Anemone – Overview

-orum

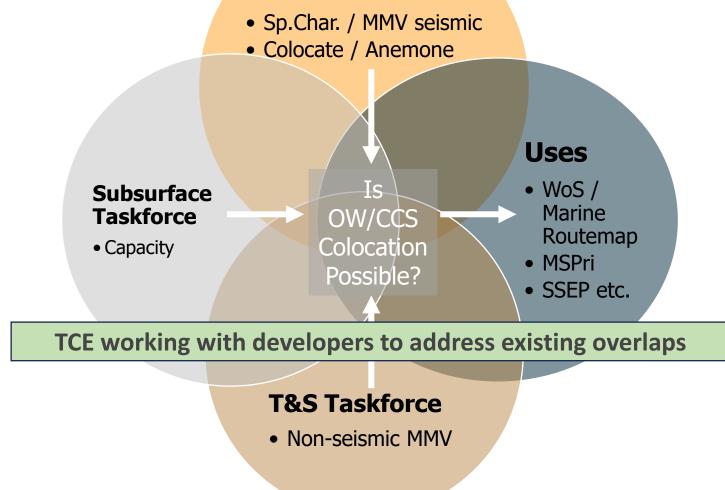
EE	Stakeholder Mapping	Identify and map stakeholders and their interactions across development, operation and decommissioning of offshore windfarms and carbon storage sites
	Operational & Remediation Studies	Work with the CCUS and wind developers to gain an understanding of their operations and requirements
A JUSTERN	Opportunities & Synergies	Identify where, when and under which conditions opportunities from co- location are likely to occur as well as any areas of conflict or collaboration
Jan J	Opportunity & Synergy Development	Building on the opportunities how can conflicts be resolved and opportunities enhanced
Offshore Colocation		

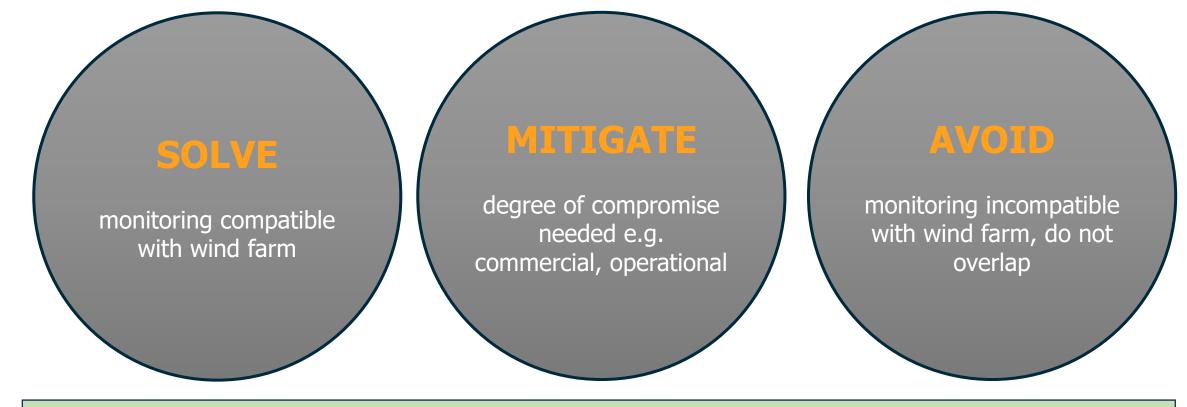
Project Anemone – Status

- Several potential partners for the project have been contacted and are interested in further involvement.
- The organisations involved are:
 - Bluefloat
 - Enquest
 - Marram Wind
 - Buchan Offshore Wind
 - Shell
 - Equinor
- This is in addition to the existing partners.
- This led to the organisation of an in-person meeting with the interested parties.
- This meeting is scheduled for March with a confirmed date to be communicated to the partners this week.

Project Anemone – Next steps

- Once the in-person meeting has been held there will be a further round of discussions with those who sign up to support the project to finalise the work packages and responsibilities.
- From this the full project plan and deliverables will be generated and distributed to relevant parties.


Interplay between the Forum and other bodies


Bodies working on colocation-related content

Colocation Forum

Is OW/CCS Colocation possible?

TCE's three-way discussions with developers and NSTA will identify solutions to existing overlaps; Forum is considering future solutions


Spatial Characterisation – Developers impacted by report

UK OW/CCS Area Overlaps at December 2023

CSL	* CS application	CCS Company	OW AfL/Lease	OW Company
	1 Endurance	BP	Hornsea4	Ørsted
	3Acorn	Storegga	Marram	Shell
(2	0)SNS Area 1b	Neptune Energy	Dogger Bank South East	RWE Renewables
(2	6)SNS Area 2b	Shell UK	Norfolk Boreas	Vattenfall
2	28SNS Area 3	Shell UK	R1 Lynn	XceCo
			R1 Inner Dowsing	
			R2 Lincs	Ørsted
			R2 Westermost Rough	
			R2 Humber Gateway	RWE
(1	7)SNS Area 6a	Perenco UK	R2 Triton Knoll	RWE
-	10EIS Area 1	Spirit Energy	R4 Morecambe	Floatation Energy
*sia	inificant overlap ar	eas / (insignificant overl	ap areas)	

Significant overlap areas / (insignificant overlap areas)

Figure 1 - Map of public domain information for Existing & Potential Offshore Energy Agreements - Northern Ireland, Wales, England

NSTA CCS T&S Taskforce: MMV Subgroup

Update from Elle Lashko

CO2 Storage Geoscientist at Storegga

MMV Subgroup – Real-world impact

Short – Medium term impact

Unlock funding opportunities for viability testing of alternative monitoring technologies that have been identified.

Long term impact

Reduce the frequency of 3D seismic monitoring needed to be undertaken during the multi-decade operational phase of a CCS store. This will:

Reduce costs and maximise viability of CCS projects, including reducing need for taxpayer subsidy and increase viability of sustainable market potential.

Enable viability testing of alternative technologies.

MMV Subgroup – Update

- Project duration ~8 months, with members from industry
- Final report submitted to the CCUS T&S Taskforce this week
- Report to be published via NSTA website in due course

Approach

MMV Subgroup – Update

5 technologies identified. Each have pros and cons that make them suited to different store types:

Time-lapse surface	Detects the change in gravitational field caused by low density CO_2 displacing higher density pore fluid in the reservoir.
gravity	Repeated measurements from same locations on the seabed. Could be beneficial in depleted fields, where the anticipated seismic signal is low.
Time-lapse surface seismic (2D)	Repeat 2D seismic lines in targeted locations to monitor critical locations. Acquisition using a conventional or short streamer vessel depending on store depth.
Time-lapse S-DAS	Emerging technology currently being developed. Permanent DAS (Distributed Acoustic Sensing) fibre-optic cable is deployed on the seabed which could, in theory, monitor both active and passive sources. Only suitable for stores <1500m depth. Relatively low technology readiness
Time-lapse VSP-	Permanent fibre installed in wells to monitor active sources (in the injection well) and passive sources (in a monitor well).
DAS	Repeat seismic can be quickly acquired close to the wellbore and is proven in the hydrocarbon industry.
Surface	Established technology in the hydrocarbon industry to monitor hydraulic fracturing and assess geomechanical stability.
microseismic	Effective in multiple store types, especially when deployed as a network.

MMV Subgroup – Update

	Store	Depth	Developm	nent Type		Seismic Signa	I	Store	Туре	Cluster store
Technology	Shallow (~1000m)	Deep (~2000m)	Subsea	Platform	Good - store	Poor - store	Good - overburden	Saline aquifer	Depleted field	options for trials
Time-lapse surface gravity										Hynet, Endurance
Time-lapse surface seismic (2D)										Endurance, Acorn
Time-lapse S-DAS										Hynet, Endurance, Viking
Time-lapse VSP- DAS										Viking, Hynet
Surface microseismic										Hynet, Endurance
Legend: Ranking of the likely technology performance in various scenarios										
	rformance possil best suite		Likely po	Dor						

Next developer Event -Monitoring 101

Developer Event – OW & CCS *Monitoring* 101

Presentations from UoA and NSTA in Plenary #8 on their approaches to seismic monitoring received a high volume of questions from Forum members. The Forum therefore agreed it would be beneficial to clearly explain the existing monitoring techniques, the challenges they present and explore how they might be resolved as the Forum's next "developer event".

A panel of OW and CCS experts

Dr Amy Bloomfield

Clarke

Development Manager,

CCUS, The Crown

Estate

Elle Lashko CO2 Storage Geoscientist, Storegga

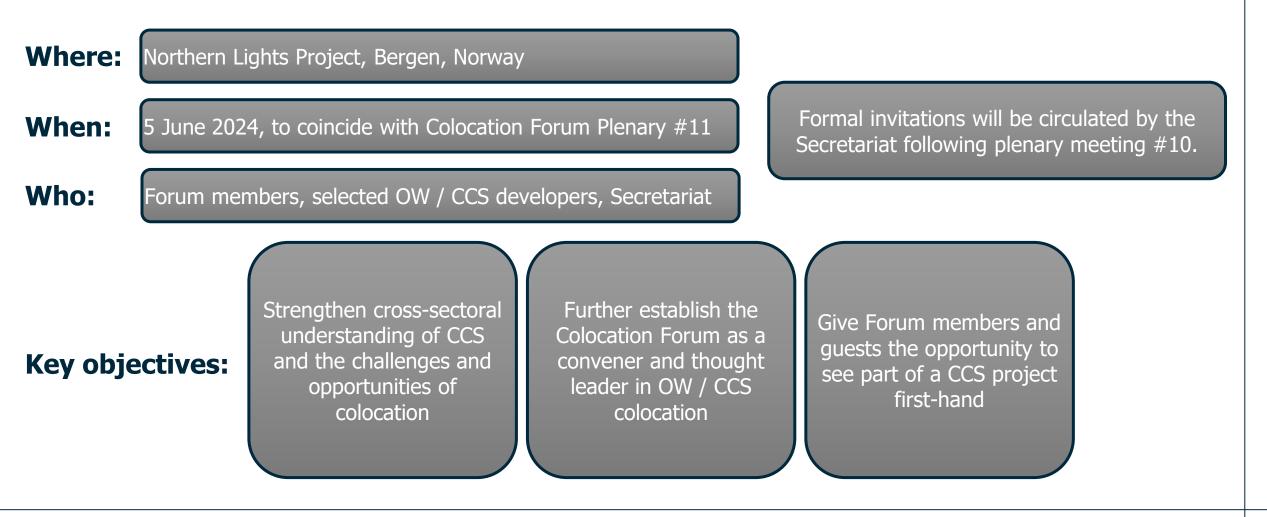
Professor Simon Michael Blair Senior Technical Hogg Ørsted Chair in Manager, The Crown Renewable Energy, Durham University

- Existing monitoring techniques within OW and CCS industries
- Challenges existing monitoring techniques present to colocation of OW and CCUS
- How challenges from existing techniques can be resolved through innovations in respective industries

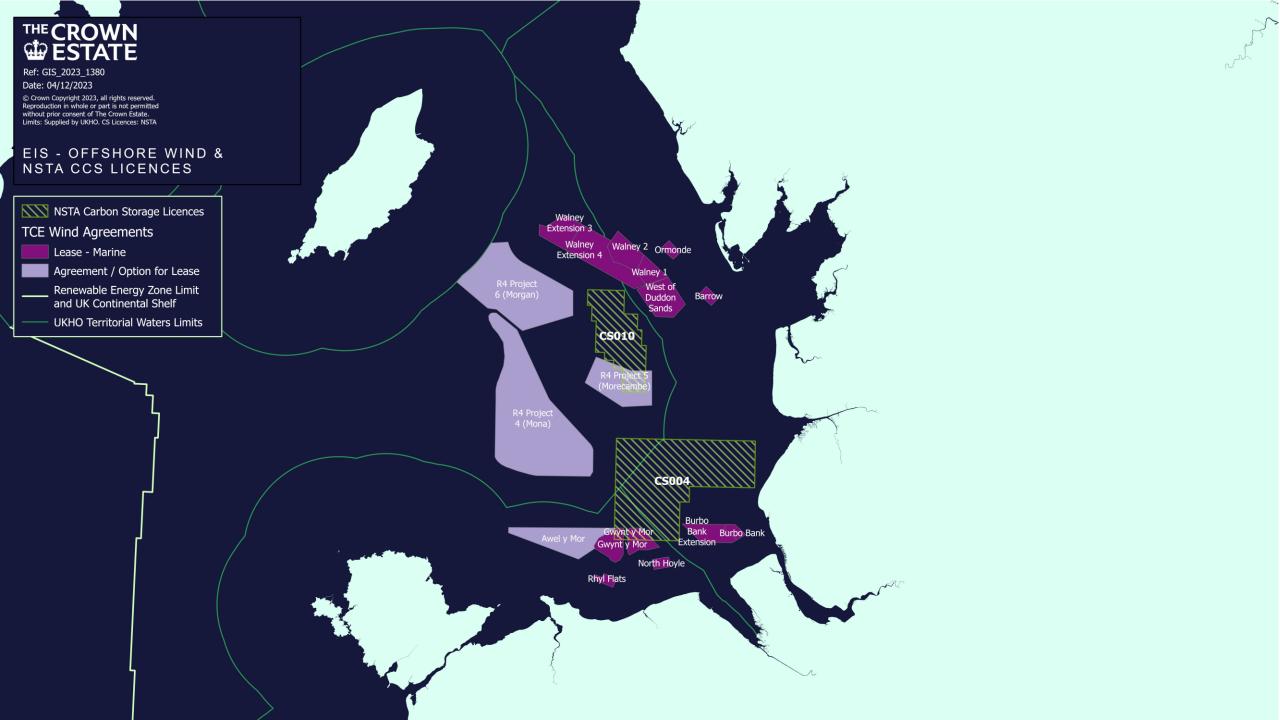
- Offshore Colocation
- Location: 1 St James's Market, London, SW1Y 4AH

Estate

- **Time:** 18:00-20:30
- **Format:** Panel event with Q&A, followed by drinks reception and canapes


Norway visit – Equinor "Northern Lights" CCS site

Equinor "Northern Lights" CCS site visit



Appendix

