

Offshore Wind and CCUS Colocation Forum

Offshore Wind & CCS Panel Event

March 2024

THE CROWN ESTATE

Dating back more than 260 years, The Crown Estate is a unique business with a diverse portfolio that stretches across England, Wales and Northern Ireland

Established by The Crown Estate Act of 1961

As an independent commercial business with accountability to Parliament.

Return our net revenue profit to the Treasury

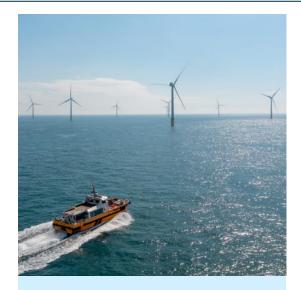
For the benefit of the nation's finances, with £3bn generated in the last 10 years.

Active owners and managers of land and seabed

We are one of the UK's largest landowners, with some of the nation's most remarkable places and spaces. We seek to leverage our scale and convening power to make a meaningful difference.

Guided by a compelling purpose

To create lasting and shared prosperity for the nation


Delivering an ambitious strategy

Guided by our purpose and informed by major trends impacting our business, we seek to create broad financial, environmental and social value for our stakeholders, customers and the nation.

Our Purpose		To create lasting and sh	nared prosperity for	r the nation	
Our distinct attributes	Trusted brand and reputation	Independence and simplicity of role	Power to convene and catalyse	Our ownership	Long term view
National Needs	Energy Security and Net Zero agendas	Economic growth & productivity	press	ving sure on in centres	Biodiversity loss
Our Strategic Objectives	Being a leader in supporting the UK towards a net zero carbon and energy-s future	Helping create ind communities and equality, econom and productivity	supporting stews ic growth nature	ng a leading role in varding the UK's iral environment and iversity	Responsibly generating value and financial returns for the country
Enabled Value		Social V	Financial Value Purpose Environtation		
Business Drivers	Safety First	Digital & Data	Susta	ainability	Customer

Our businesses

Marine

Unlocking the potential of our seabed, sea and coastline to support the nation's transition to a resilient, sustainable and decarbonised future.

- £378m annual revenue
- £5.7bn portfolio value
- 26 sectors enabled diverse activities include energy, cables, habitats, minerals, storage and coastal

Regional

Identifying and creating opportunities for thriving and resilient communities across the country to support regeneration, housing and innovation.

- £106m annual revenue
- £1.5bn portfolio value
- 17 retail and leisure destinations incl. retail parks, shopping centres, industrial and business parks.

London

Ensuring London retains its global city status by fostering a greener, more vibrant and inclusive destination for millions of visitors and businesses.

- £223m annual revenue
- £7.2bn portfolio value
- 10m sq ft the largest contiguous owner in the West End

Windsor & Rural

Supporting the sustainable transformation of land use through diversified, regenerative agricultural and environmental best practice alongside a thriving natural world.

- 6,400 h.a parkland including Windsor Great Park
- 185k acres of agricultural land and property – 70% tenanted farmland

As custodian of the marine environment, TCE leads sustainable development to protect the seabed while creating lasting value

As an island nation with high population density and valuable wind/natural resources, the seabed and coastline are critical for the economy, restoring nature and delivering net zero. Therefore, we have a vital role to play managing this space to deliver long-term value for the nation...

OUR PAN-SECTORAL VIEW

VISION: The most sustainable and attractive marine ecosystem in the world

5.

OUR OFFSHORE & ONSHORE FOOTPRINT

OUR CAPABILITIES

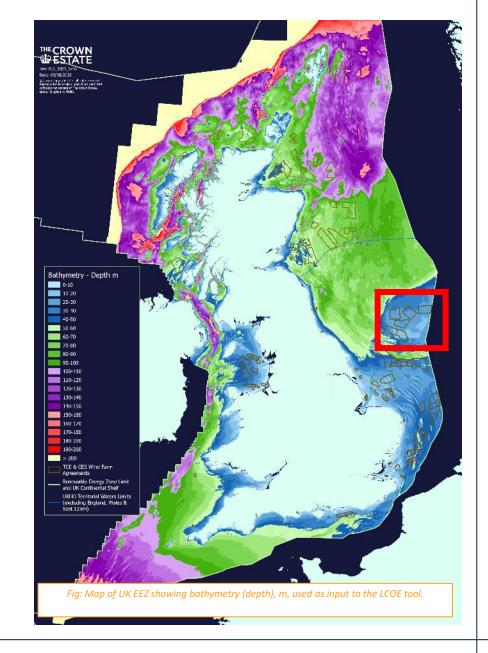
- Our deep expertise and experience (incl. multisector knowledge, data and spatial insight)
- Our ability to look across sectors (e.g. energy, minerals, nature) balancing competing and complementary demands
- Requirement and purpose to protect while delivering greatest value for the nation
- Statutory independence and our ability to take an objective long-term view
- Our power to convene and partner with others to bring the marine vision to life

Optimise broad value creation from the seabed

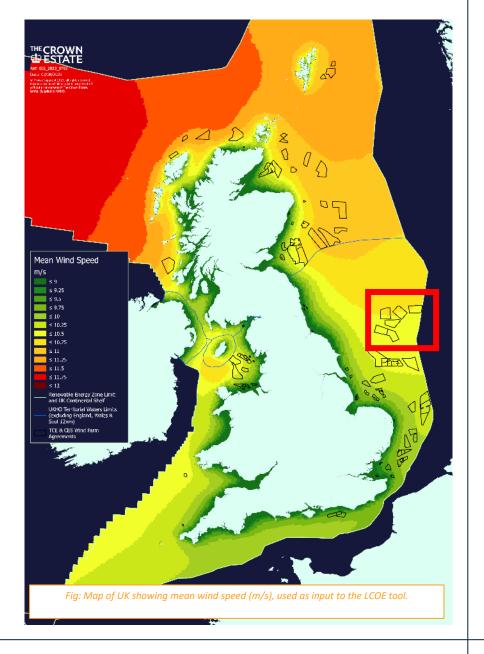
Catalyse UK towards a net zero & energy secure future

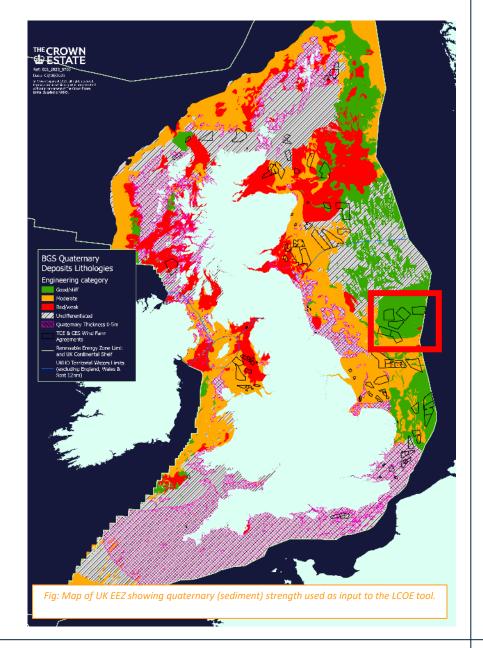
Deliver a thriving marine environment

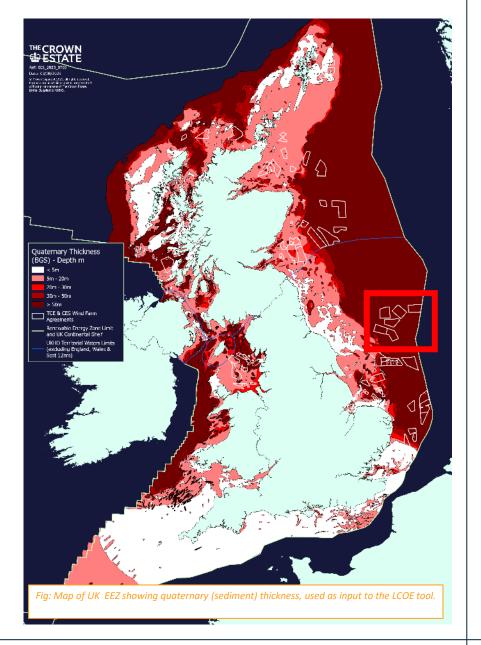
NB. The Crown Estate has complete control over activities in territorial waters. TCE has purpose-limited rights covering the continental shelf, these permit the management of certain activities but TCE's is not exhaustive.

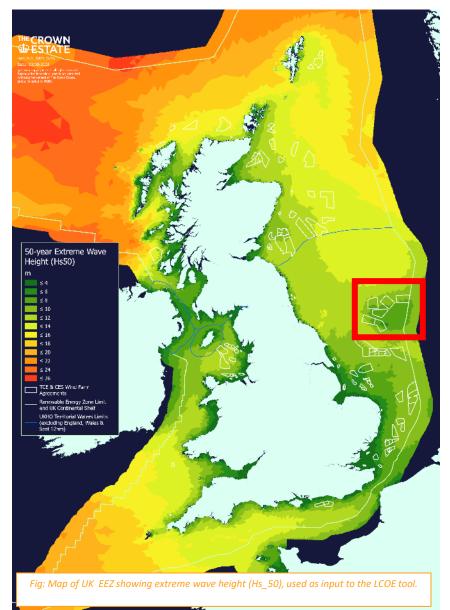

Co-location Forum Offshore Wind Siting

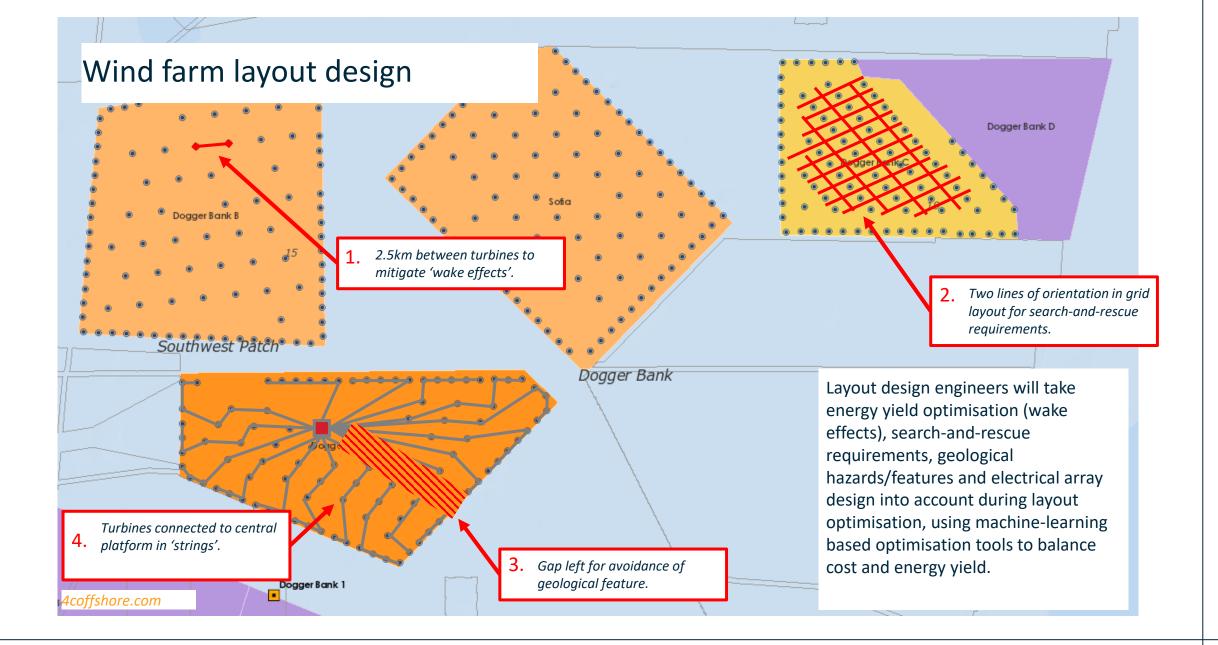
Dr Mike Blair, Senior Technical Manager, The Crown Estate




- Dogger Bank A, B, C (under construction) 3 x 1.2 GW
- Dogger Bank D up to 2.0GW
- Sofia (under construction) 1.4GW
- Dogger Bank South (East and West) 2 x 1.5GW
- It has several characteristics which make it attractive for OSW development.
 - Shallow bathymetry -> smaller sub-structures -> lower cost.


- Dogger Bank A, B, C (under construction) 3 x 1.2 GW
- Dogger Bank D up to 2.0GW
- Sofia (under construction) 1.4GW
- Dogger Bank South (East and West) 2 x 1.5GW
- It has several characteristics which make it attractive for OSW development.
 - Shallow bathymetry -> smaller sub-structures -> lower cost.
 - Mean annual wind speed around 10.5m/s -> high revenue.

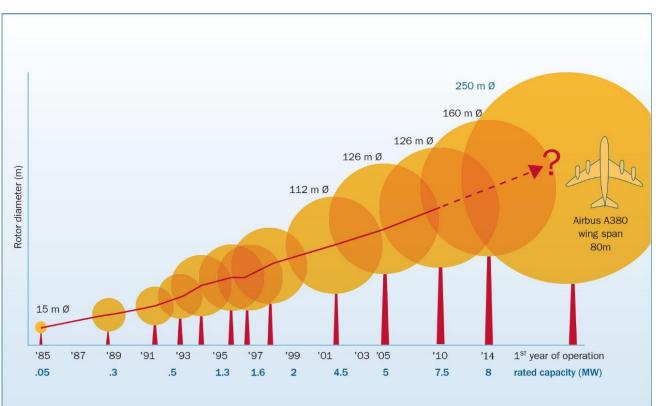

- Dogger Bank A, B, C (under construction) 3 x 1.2 GW
- Dogger Bank D up to 2.0GW
- Sofia (under construction) 1.4GW
- Dogger Bank South (East and West) 2 x 1.5GW
- It has several characteristics which make it attractive for OSW development.
 - Shallow bathymetry -> smaller sub-structures -> lower cost.
 - Mean annual wind speed around 10.5m/s -> high revenue.
 - Favourable stiff sediment -> lower embedment depth -> lower materials cost.



- Dogger Bank A, B, C (under construction) 3 x 1.2 GW
- Dogger Bank D up to 2.0GW
- Sofia (under construction) 1.4GW
- Dogger Bank South (East and West) 2 x 1.5GW
- It has several characteristics which make it attractive for OSW development.
 - Shallow bathymetry -> smaller sub-structures -> lower cost.
 - Mean annual wind speed around 10.5m/s -> high revenue.
 - Favourable stiff sediment -> lower embedment depth -> lower materials cost.
 - Deep sediment -> no need for rock drilling -> lower installation costs.

- Dogger Bank is a geological feature in the North Sea, home to six offshore wind projects awarded in TCE Leasing Round 3 and 4:
 - Dogger Bank A, B, C (under construction) 3 x 1.2 GW
 - Dogger Bank D up to 2.0GW
 - Sofia (under construction) 1.4GW
 - Dogger Bank South (East and West) 2 x 1.5GW
- It has several characteristics which make it attractive for OSW development.
 - Shallow bathymetry -> smaller sub-structures -> lower cost.
 - Mean annual wind speed around 10.5m/s -> high revenue.
 - Favourable stiff sediment -> lower embedment depth -> lower materials cost.
 - Deep sediment -> no need for rock drilling -> lower installation costs.
 - Low extreme (50-yr) wave height -> leaner structural design -> lower cost.

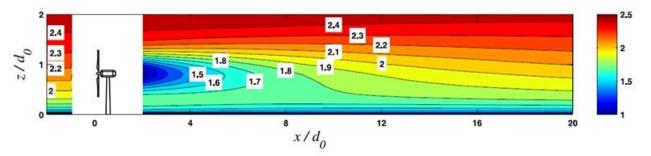
Co-location Forum Offshore Wind Technology

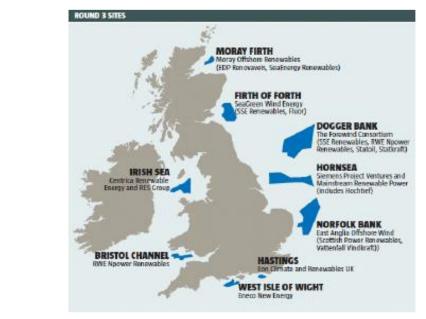

Prof Simon Hogg, Ørsted Professor of Renewable Energy, Durham University

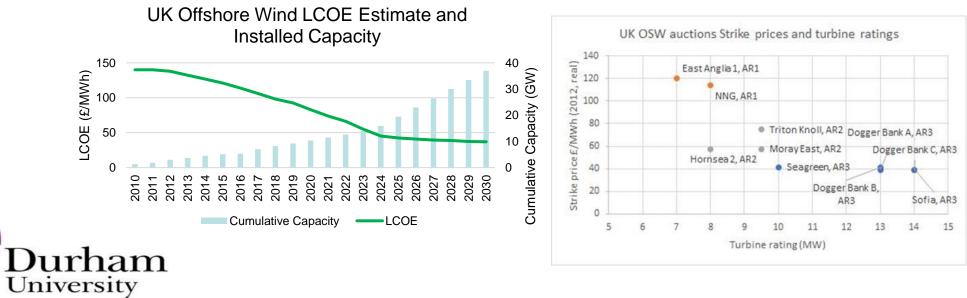
UK Installed Capacities & Turbine Size.

- Current installed onshore wind turbine (WT) capacity c **15.0 GW**, **8,986** turbines with average **26.34%** Load Factor;
- Current installed offshore wind turbine (WT) capacity c **14.7 GW**, **2,766** turbines with **40.58%** Load Factor;

London Array, Offshore Wind Farm 175 x Siemens 3.6 MW WTs, 630 MW

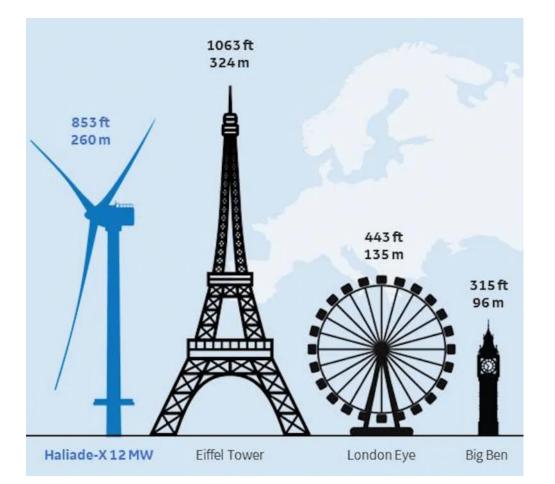

UK Round 2 Development Fully operational since 2013.


Wake Interactions.



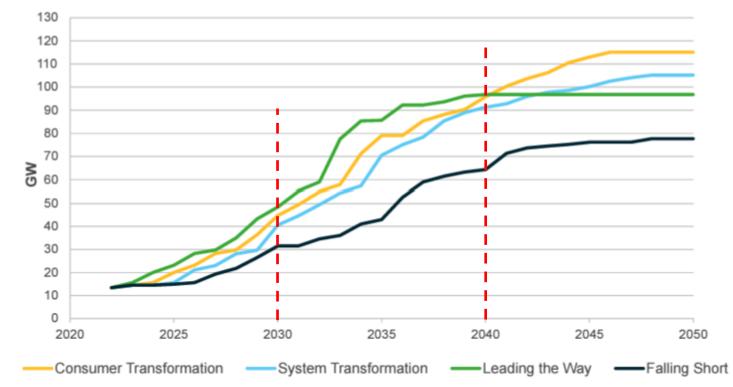
UK Round 3 Wind Farm Sites.

 \mathbf{x}


Equinor's Dogger Bank First Power Oct. 2023. GE Haliade X 13MW turbine.

(1st true commercial deployment in the world.)

How big is the GE Haliade X 13MW Turbine?



GE Renewable Energy / Facebook.

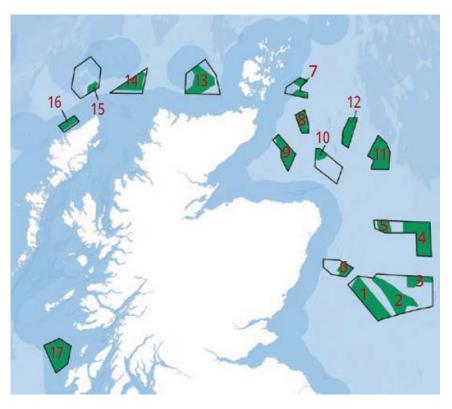
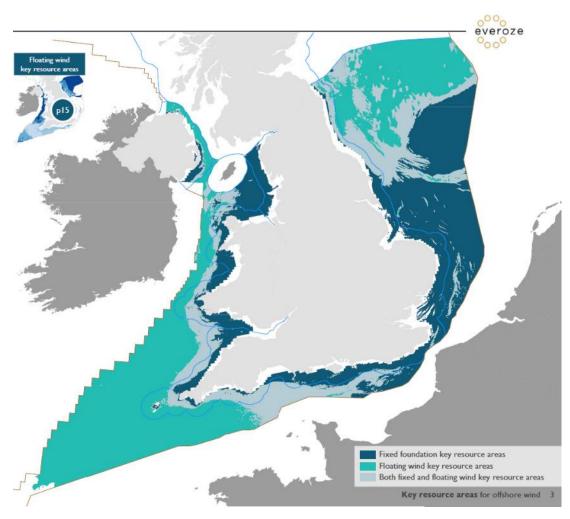

From National Grid Electricity System Operator – Future Energy Scenarios July 2023

Figure ES.11: Offshore wind capacity in GW, excluding non-networked wind

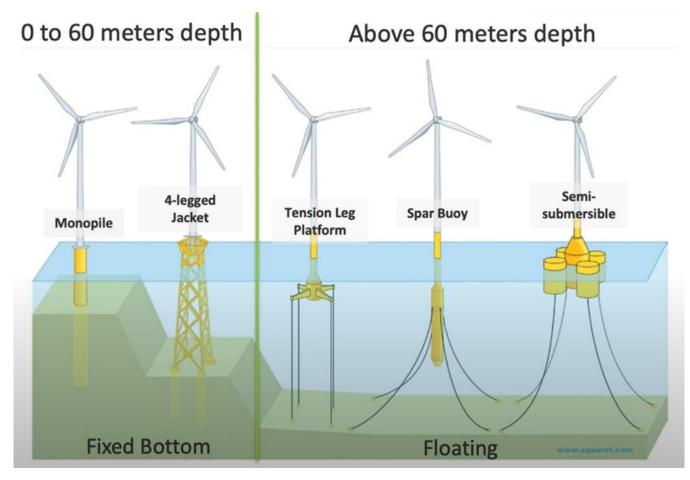
Scotwind (Crown Estate Scotland)

- Results announced January 2022.
- Lease option awards for 25GW awarded.
- 15GW is floating offshore wind.
- Developers shocked as 10GW had been expected.


Fixed-bottom						
Map no.	Project, zone	MW	Developer			
1	Morven, E1	2907	BP, EnBW			
6	Cluaran Deas Ear, E3	1008	DEME, Aspiravi, Qair			
9	Caledonia, NE4	1000	Ocean Winds			
13	West of Orkney, N1	2000	GIG, TotalEnergies, RIDG			
16	tbc, N4	840	Northland Power			
17	MachairWind, W1	2000	SPR			
TOTAL			9755MW			

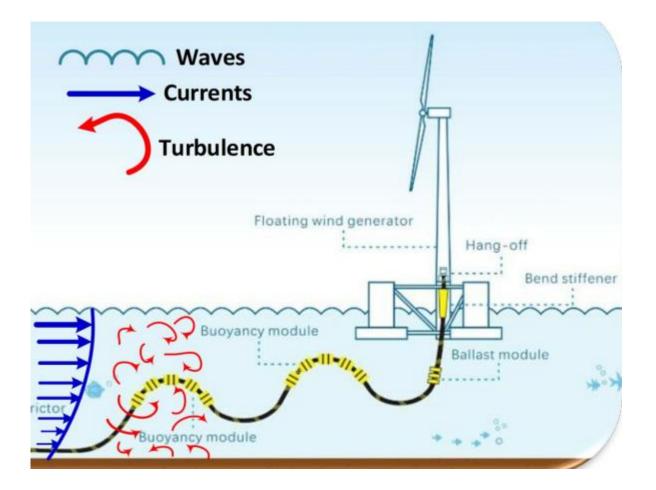
Floating			
2	tbc, E1	2610	SSE, Marubeni, CIP
3	tbc, E1	1200	Falck, BlueFloat
4	CampionWind, E2	2000	Shell, SPR
5	tbc, E2	798	Vattenfall
7	Cluaran Ear-Thuath, NE2	1008	DEME, Aspiravi, Qair
8	tbc, NE3	1000	Falck, BlueFloat and Orsted
10	tbc, NE6	500	Falck, BlueFloat
11	MarramWind, NE7	3000	Shell, SPR
12	tbc, NE8	960	BayWa r.e., Elicio, BW Ideol
14	tbc, N2	1500	Northland Power
15	tbc, N3	495	Magnora, TechnipFMC
TOTAL			15,071MW

FULL SCOTWIND TALLY



"BROAD HORIZONS: Key resource areas for offshore wind" – Crown Estate 2020

Floating Offshore Wind.



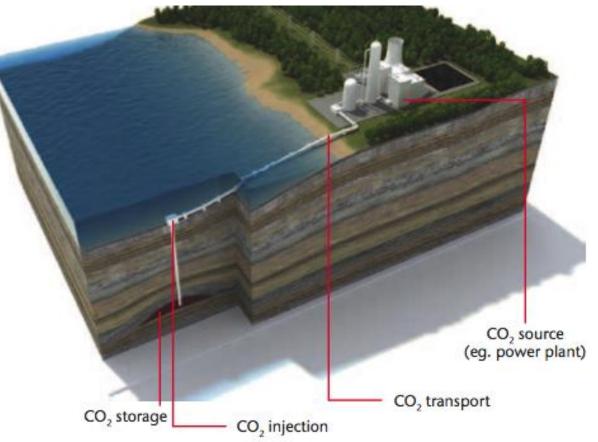
Main challenges:

- Floating platform is a big cost addition.
- Turbine Stability.
- Transmission cable reliability.

Floating Wind – Not just the Mooring Lines.

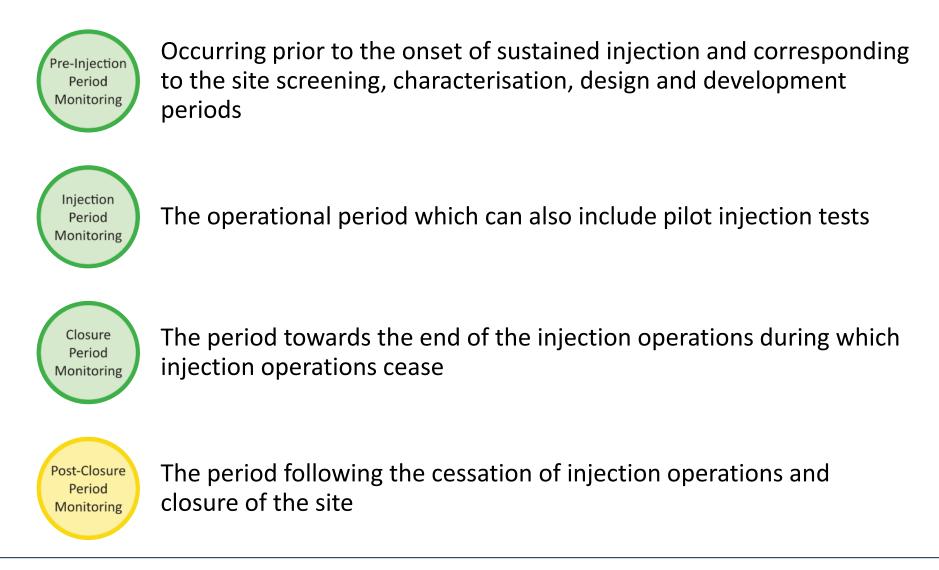
Co-location Forum Purpose of Monitoring

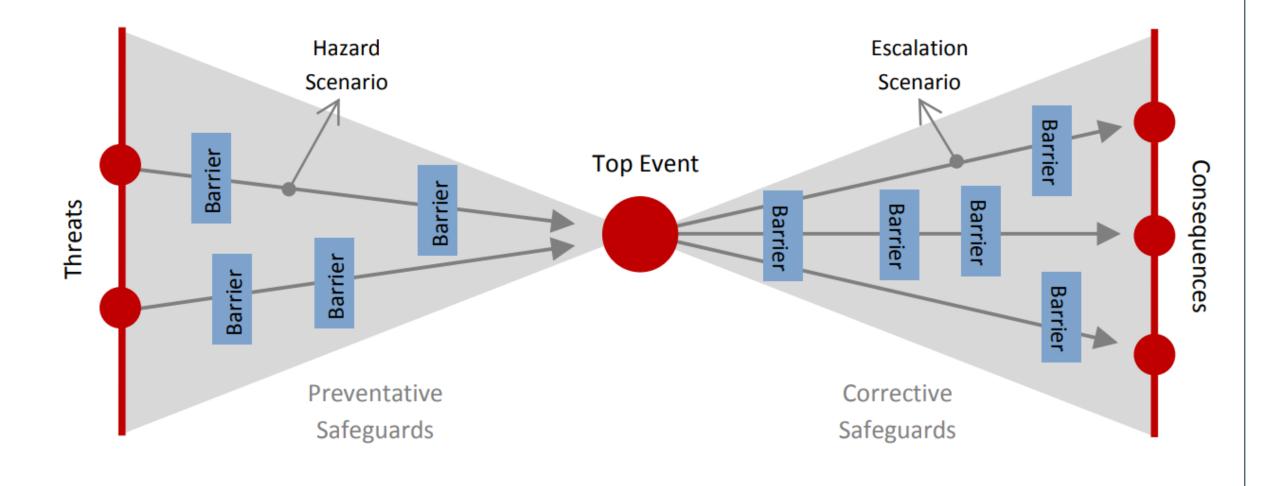
Dr Amy Bloomfield-Clarke, Development Manager, The Crown Estate



Why do we Monitor CO₂ Storage Sites?

- To manage risk and ensure safe and efficient storage of CO₂
- A Measurement Monitoring and Verification (MMV) plan enables operators and CCS developers to demonstrate containment, conformance and confidence with respect to the injected CO₂ plume and the geological integrity of the target formation
- It ensures the injected CO₂ is conforming to (doesn't deviate from) expected behaviour
- It ensures that CO₂ is contained within the "storage complex"
- It provides confidence or verifies that the entire volume of injected CO₂ is stored within the target area, or can be accounted for in the unlikely event that a loss of containment occurs


IEA / Bellona Foundation


What Techniques can be used for Monitoring, and Where?

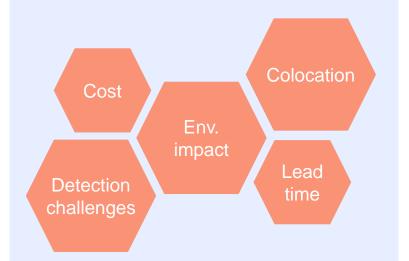
Geophysical	In-Well	Geochemical	Marine	Atmospheric	Fluid metering and fluid quality
 Monitor physical changes within the subsurface using remote- sensing techniques Can provide detailed, 3D images of injected CO2 	 Measurement of downhole changes using permanent sensors, or by running logging tools as required Provides information about changes within the well and near-well environment 	 Monitor geochemical changes within the terrestrial hydrosphere and biosphere Include direct measurement of CO2 (inherent and injected), by- products of subsurface reactions (with injected CO2) and tracers (natural and artificial) 	 Monitor marine environmental changes near, on the seabed, and in the water column above an offshore CO2 storage site. Acoustic and chemical sensors can detect, locate, attribute, and quantify emissions to the marine environment 	 Relevant to onshore projects only Monitor the atmosphere above an onshore CO2 storage site. Similar to other near-surface monitoring technologies 	 Measure the mass of injected CO2 and the impurities (if any)
Geosphere	Geosphere	Hydrosphere and Biosphere	Hydrosphere	Atmosphere	

Project Lifecycle: When do we Monitor?

How are Measurement, Monitoring and Verification Plans Created?

Co-location Forum T&S Taskforce – MMV Subgroup

Elle Lashko MSc, Carbon Storage Geoscientist, Storegga, T&S Taskforce



Project drivers and objectives

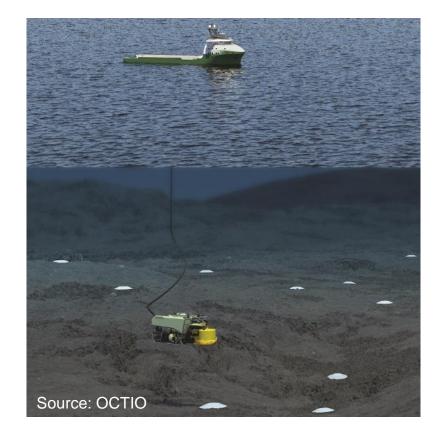
Today

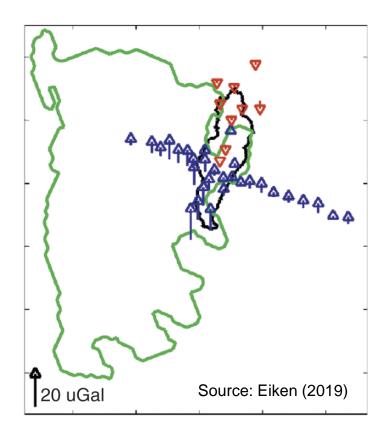
Repeat 3D (4D) seismic is routinely in core monitoring plans for CO_2 storage sites, but poses challenges:

Improved understanding of monitoring technologies that have the potential to reduce reliance on 4D seismic as a core monitoring tool, over the Track 1 and Track 2 stores.

Consider opportunities to improve resolution, reduce cost or environmental impact.

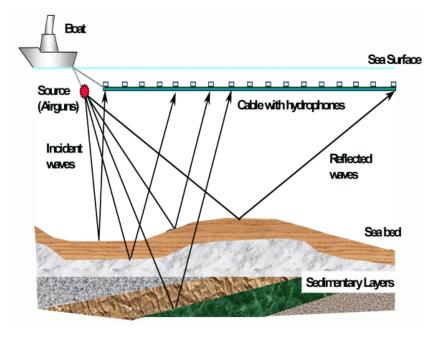
1	ഹ്ന
	=
	=


Enable viability testing of alternative technologies to reduce 4D challenges and maximise success of CCS projects.


Ambition

Recommended Technologies: Gravity

Time-lapse surface gravity Detects the change in gravitational field caused by low density CO_2 displacing higher density pore fluid in the reservoir. Repeated measurements from same locations on the seabed. Could be beneficial in depleted fields, where the anticipated seismic signal is low.



Recommended Technologies: 2D seismic

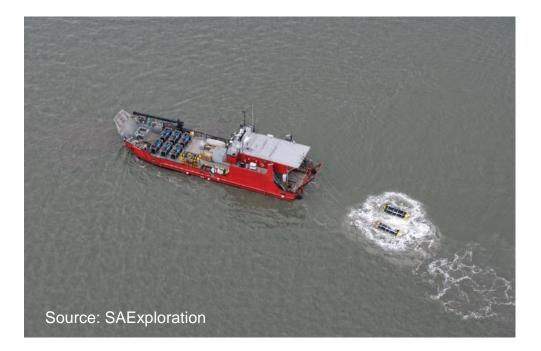
Time-lapse surface seismic (2D)

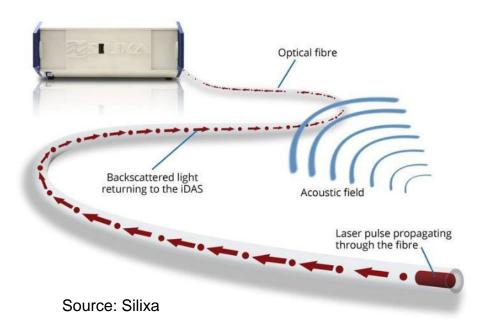
Repeat 2D seismic lines in targeted locations to monitor critical locations. Acquisition using a conventional or short streamer vessel depending on store depth.

SSIS Grid-Dip4 ime 1000 Source: OpendTect

SSIS Grid-Dip3

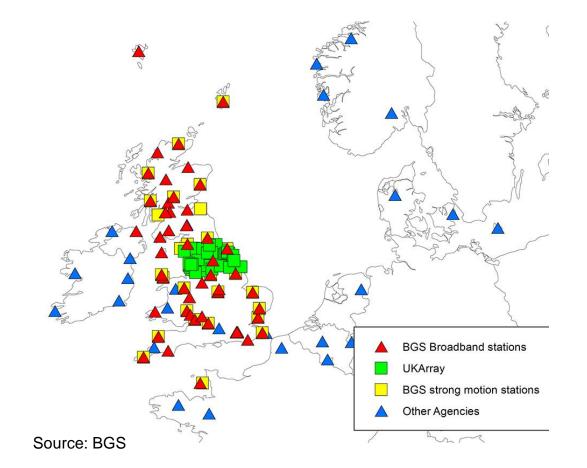
Source: slb

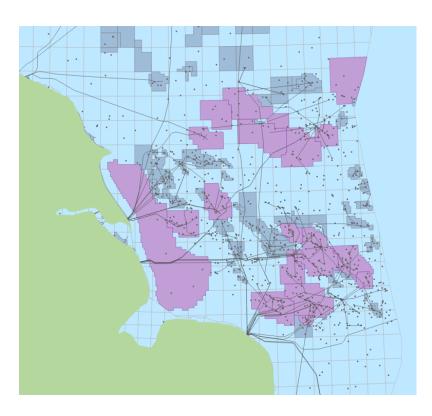

Recommended Technologies: Surface & VSP-DAS


Time-lapse S-DAS

Emerging technology being developed. Permanent DAS (Distributed Acoustic Sensing) fibre is deployed on the seabed which could, in theory, monitor both active and passive sources. Only suitable for stores <1500m depth. Relatively low technology readiness

Time-lapse VSP-DAS


Permanent fibre installed in wells to monitor active sources (in the injection well) and passive sources (in a monitor well). Repeat seismic can be quickly acquired close to the wellbore and is proven in the hydrocarbon industry.



Recommended Technologies: Microseismic

Surface microseismic Established technology in the hydrocarbon industry to monitor induced seismicity and assess geomechanical stability. Effective in multiple store types, especially when deployed as a network.

Recommended Technologies vs Store Options

	Store	Depth	Developn	nent Type		Seismic Signa	I	Store	Туре	Recommended
Technology	Shallow (~1000m)	Deep (~2000m)	Subsea	Platform	Good - store	Poor - store	Good - overburden	Saline aquifer	Depleted field	cluster store options for trials
Time-lapse surface gravity										Hynet, Endurance
Time-lapse surface seismic (2D)										Endurance, Acorn
Time-lapse S-DAS										Hynet, Endurance, Viking
Time-lapse VSP- DAS										Viking, Hynet
Surface microseismic										Hynet, Endurance

Legend: Ranking of the likely technology performance in vari	ious scenarios
--	----------------

Likely good Performance possible but not best suited	Likely poor
--	-------------

Offshore Wind and CCUS Colocation Forum

Join the Q&A on Slido #4012 215

