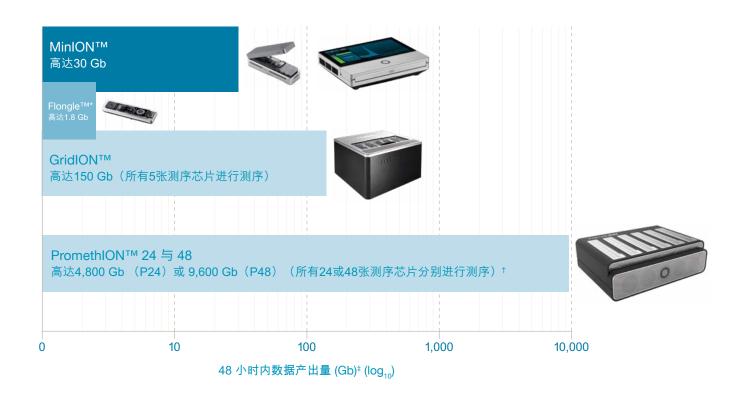


强大、实时、长读长测序, 一切尽在掌握

44 纳米孔测序技术正以前所未有的速度向前推进,预示着便携式测序有望成为监测和众多其他领域的常规应用。55


嘉纳·巴托夫斯卡 (Jana Batovska) 拉筹伯大学 (La Trobe University)

MinION ~ 5 kb扩增子运行和 碱基识别,全部完成后数据产出量为34.28Gb,我会选择用 此技术:) • • •

约翰·泰森博士 (John Tyson) 英属哥伦比亚大学 (University of British Columbia)

结合强大的实时性与出色的便携性, MinION 测序仪可实时获得Gb级的长读长数据

MinION和MinION Mk1C允许您在任何地点——从工作台到实地——对任何生物进行测序,其实时分析可提供即时且具有执行能力的结果。同样的长读长、直接RNA和DNA测序工作流可用于我们的所有产品,提供真正可扩展规模的测序。

^{*} Flongle是适用于MinION和GridION的测序芯片适配器, 旨在快速、极具性价比地分析较小型的测试和样本。最佳客户产出量为1.8Gb。

^{*}基于电流、内部测序芯片性能(理论性能高达15Tb)。

[‡]设备运行时间可能更长。48小时仅用于比较目的。

以便携式、低成本设备实现长读长、实时纳米孔测序

长读长

发现并定相(phase)分析隐藏变异——从重复区域和结构变异到新型、全长转录异构体

高产出

高达30 Gb*的数据适用于所有应用——从全基因组和转录组到高通量靶向分析

实时

即时获得具有执行力的结果——从病原体和抗微生物药物耐药性鉴定到融合转录本

*Oxford Nanopore Technologies公司最佳野外测序芯片性能(2019年10月)。

提供的所有优势

您可以怎样使用您的MinION?

从工作台到实地, MinION正 在世界各地得到广泛使用,正 为一系列应用提供新的洞察和 癌症研究 可操作的实时结果。 转录组分析 临床研究 全基因组测序 靶向测序 RNA测序 宏基因组学 表观遗传学

基础基因 组研究

Image courtesy of Dr. Sarah Stewart Johnson, Georgetown University.

微生物学

植物研究

便携式DNA/RNA测序, 任何人都可用

MinION是一款功能强大的手持测序仪,能够提供具有经济效益的,实时长读长测序数据。体积小到可以放到口袋里,数据量高达Gb,USB驱动可以在广泛的应用领域帮助研究者快速研究生物学。

Min**ION**

规格

尺寸

87g(带测序芯片103g)

高23mm | 宽105mm | 深33mm

选择您的MinION启动套装

推荐

	基础套装	增强套装	项目套装
MinION 设备	1	1	1
测序芯片	2	8	14
测序试剂盒	1	2	3
芯片清洗试剂盒	1	1	1
社区支持	含	含	含
所含培训/服务*	含	含	含

^{*} 有各项的培训和支持服务可供选择 store.nanoporetech.com/cn 了解更多信息。

使用笔记本电脑,台式 电脑或者MinIT分析 MinION测序结果(详 情见14页)

更多详情

store.nanoporetech.com/cn

全方位集成的、完全便携式测序和分析

MinION Mk1C结合了MinION实时快速可手持测序、Flongle强大的集成计算和高分辨率触摸屏的优点, 能够为DNA/RNA测序提供全方位的解决方案。

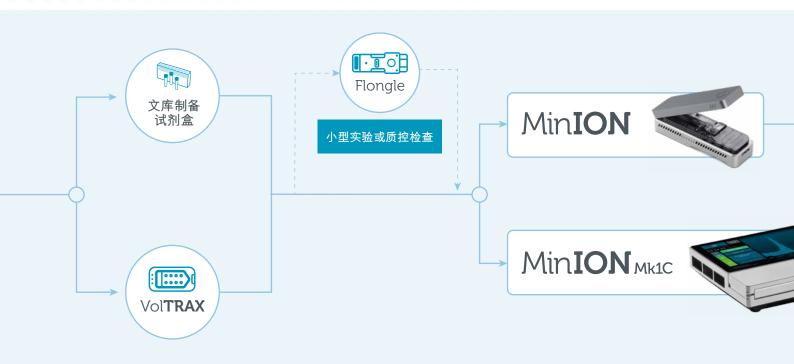
整合、功能强大的实 时计算, 含预置碱基 识别和分析软件。

数据文件被写入一个 机载的、高容量SSD **固态硬盘**: 可将数据 转移到您的自有系 统。

使用Flongle用于更小的实验和分析,或者 使用MinION测序芯片用于Gb级的数据。

MinION MK1C

规格 重量 高30mm | 宽140mm | 深114mm 420a



选择您的MinION Mk1C启动套装

	启动套装	增强套装
MinION Mk1C设备	1	1*
测序新品	6	8
测序试剂盒	1	2
芯片清洗试剂盒	1	1
软件权限和设备保证	4个月	3年
设备运输	含	含
社区支持	含	含
含技术培训	可选	可选

有各项的培训和支持服务可供选择,了解更多信息。 store.nanoporetech.com/cn

完整且精简的工作流,用于快速获得可操作的结果

制备

- · 精简的文库制备——仅需短短10分钟, 带混样建库选项
- · 根据您的需要进行扩展——Flongle, MinION, GridION Mk1和PromethION使用的化学试剂和试剂盒相同
- · 使用便携式USB供电的VolTRAX进行自动化的文库制备

测序

- · 随时随地按需测序
- · 读长取决于您的样本和实验需要
- · MinION可直接测序DNA和RNA——这意味着无扩增偏差,并保留了修饰信息
- · 使用Flongle在MinION上运行较小的测序测试和实验,或者极具性价比地检查您的样本质量

了解更多信息

nanoporetech.com/cn/products

分析

- · 实时结果,适合时间关键型应用,例如病原体鉴定
- · 由用户控制的运行时间——可在生成足够数据后停止测序、清洗、重复使用测序芯片
- · 使用MinION Mk1C、结合MinION与笔记本电脑或使用MinIT分析配件进行便携式数据分析。
- · 输出原始信号或经碱基识别的.fastq文件,用于 自定义分析流程

应用包括:

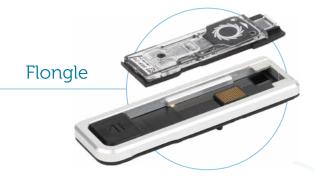
- · 快速的宏基因组物种鉴定和抗生素耐药性分析
- · 精确的高覆盖度微生物基因组组装(DNA和 RNA)
- · 通过精确定位结构变异、重复区域和定相 (phasing), 增强对大型基因组的分析(例如 癌症样本)
- ·量化和表征RNA剪接变体、异构体和融合转录本

增强您的MinION测序工作流...

制备

为纳米孔测序进行自动化的文库制备。

- · 小型USB供电设备
- · 最少的动手操作时间
- · 可重复的结果


VolTRAX

测序

调整MinION以适应较小的快速测试和分析。 Flongle可提供高达1.8 Gb的数据,适用于:

- · 较小样本(例如,目标区域和较小基因组)
- · 快速的样本鉴定或质量检查
- · 低成本定期测试

分析

用于MinION*和Flongle测序的简单、预配置的IT解决方案。

- · 执行仪器控制、碱基识别和EPI2ME实时分析工作流
- · 无需专用的笔记本电脑
- · 支持蓝牙和Wi-Fi——使用电话、平板电脑或笔记本电脑进行控制

MinIT

^{*} 无需MinION Mk1C,已包含强大的机载计算机

...通过实时数据分析来实现

EPI2ME

实时数据分析工作流可以通过 云访问,也可以使用MinION Mk1C或MinIT在本地访问。

工作流示例:

What's in My Pot? (WIMP) 对宏基因组样本中的微生物进行种级鉴定和定量

ARMA 建立在WIMP基础之上,可进行完整的抗生素耐药性分析

16S 对宏基因组样本中细菌和古生菌进行属级鉴定

自定义参考比对 (Custom Reference Alignment) 将基因 组与任何参考序列进行比对

人类结构变异 定位和识别人全基因组上的结构 变异

BR-1002(CN)-V2-01Oct2019