

How Green was the First Takapuna City Stabilised Pavement Undertaken in 1978?

A Lifetime Review says "Very Green".

Peter Rolls - McDonalds Lime Allen Browne – Hiway Stabilizers

Paving the Way for Greener Roads

Conference 2010

NZIHT

Takapuna City Council Contract 77/17 Paremoremo Road Cutts Ave to Sanders Road Constructed 1978

- Paper outlines first tendered stabilisation project undertaken for Takapuna City Council now North Shore City Council 1977/78
- Project has real benefits having had extensive post construction evaluation of insitu testing through 70's, 80's
- Evaluated late 90's for Transfund Research report
- Co-operation with NSCC and others re-opened late 2009 for insitu and laboratory testing, to provide ongoing records particularly the lime stabilised subgrade section
- This paper will draw all information together to provide a measure of performance and durability of this section initially designed for a 15 year life

- Lime Stabilisation used sparingly before 1978
- Gained momentum, Robin Dunlop's "Lime Stabilisation for New Zealand Roads" TR 1977
- Early 70's Allan Malcolm's won overseas scholarship
- Enthused that stabilisation had a place in NZ
- Buy-in from Takapuna City Council
- Coincided with the release of Robin Dunlop's manual

- Convinced Council to let a tender to trial Stabilisation
- Tender let for the upgrading of Paremoremo Road, Iona Ave and Sanders Road outside the prison. Total length approx 1180m
- Tender had 2 options comprising
- Conventional overlay, 175mm AP65 sub-base plus 125mm NRB AP40 base course
- Lime stabilised 250mm subgrade plus 125mm NRB AP40 base course

Paremoremo Road Contract

- Stabilised option selected
- Awarded to Hopper Construction Limited in 1977 for tendered price of \$117k (price range \$117k to \$138k for 10,200m2 contract area
- Became first lime subgrade stabilisation project for TCC
- Construction commenced in February 1978
- Stabilisation still integral part of North Shore City's roading program

Paremoremo Road Schedule

McDonald's Lime Limited

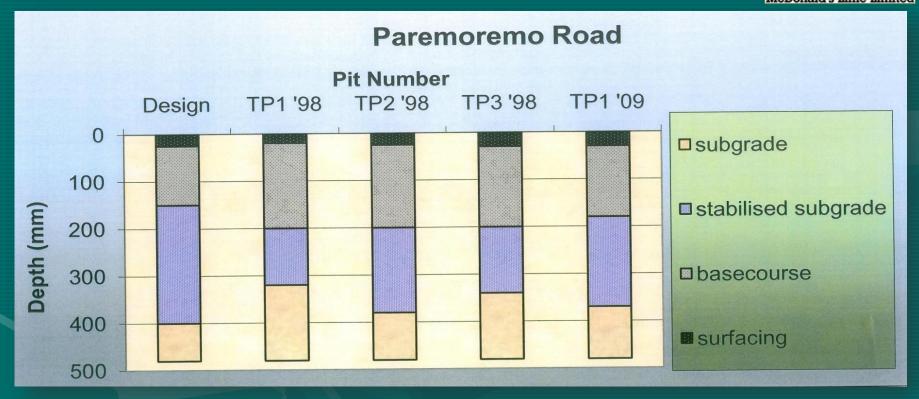
Certified Correct: Contract Supervisor						OF Malcol 2716 /19.7 District Engineer					
DEVON	1	-	1 2			1			2		
CHARGE TO: 2362			SUB TO	OTAL		\$394.	88	\$76,317	96		
12.											
1 6											
					7	Butter Crance wards and a date					
6.5.2 Pulvermix, mix & roll	_m ²	10200		10020	1.07			10,721.	40		
6.5.1 suppby & spread quickli	tonne me	⁸ 170		156.47	1.1.4,00			17,837.	58		
Alternative Rates											
6.5 Soil Treatment											
6.4 N.R.B.M4 basecourse	m ³	1420		1.420	22.50			31,950.	00		
6.2 Addit.temp.metal	_m ³	200		200	7.75			1,550.	00		

NORTH SHORE ON COUNCIL ARCHIVES BEF: TCC 46138 77/1

Paremoremo Road Subgrade

- McDonald's
- Clay subgrade stabilised February 1978
- CBR range 6 9
- Remoulded at OMC, CBR 12
- Remoulded, soaked, CBR 4
- 4% Lime, remoulded, cured, soaked, CBR 28
 Insitu test after 20 months, CBR 165
 Insitu test Dec 1983, CBR 225.

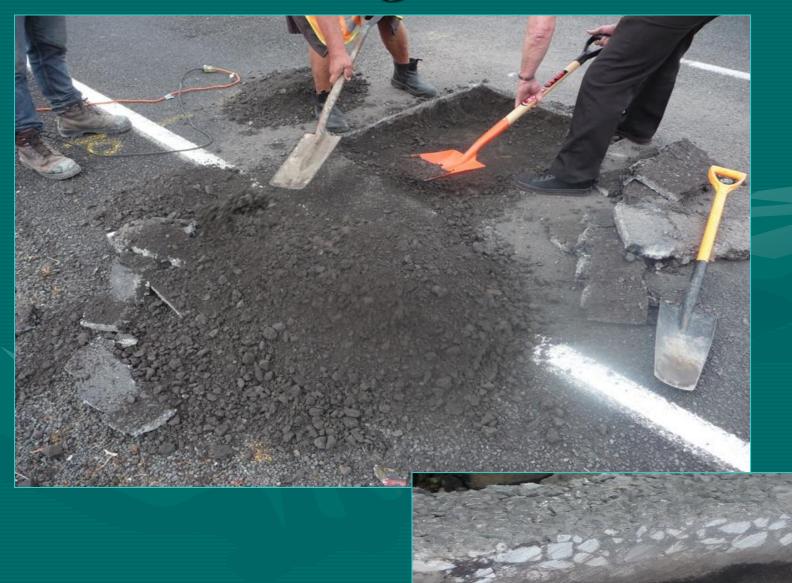
1978 Stabilising Plant



Investigation '98 & '09

	Design	TP1 '98	TP2 '98	TP3 '98	TP1 '09
Basecourse	125 mm	180 mm	175 mm	170 mm	150 mm
Stab Subgrade	250 mm	120 mm	180 mm	140 mm	190 mm
Total Cover	375 mm	300 mm	355 mm	310 mm	340 mm

McDonald's



McDonald's Lime Limited

Insitu CBR Insitu Clegg Impact Hammer Insitu Scala CBR

Two distinct layers with smooth interface. Testing couldn't prevent inter-layer shear

McDonald's

Summary of Testing

- Stabilised Subgrade:
 - Initial Design CBR = 25 +
 - Insitu CBR testing 1985 CBR = ~ 230
 - Insitu testing 1998 CBR = 90 to 150^* (inferred)
 - Insitu CBR testing 2009 CBR = 110
 - Insitu Clegg tests 2009 CBR = 85 to $315^{\#}$ (Inferred)
 - Laboratory testing 2009 $CBR = 85^+$
 - 32+ years service life still >>300 % design value
 - *Loadman portable FWD
 - # Clegg Impact Hammer Converted Value
 - + shearing of sample understated strength

Whole of Life Performance

Despite lower-spec plant - stabilised subgrade material properties >>>1978 design values

Reinforces benefit of stabilised subgrade

Despite some variable layer thickness and intra-layer stab subgrade laminations

- Currently at 4 x design loading
- No obvious distress low deflection / rut
- Only maintenance cost since '78 is reseal *Answers concerns regarding durability / permanence*

Durability of Lime Stabilised Subgrade

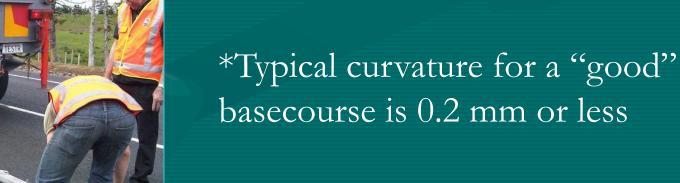
Immediate Strength Improvement - modification Cation exchange followed by flocculation / agglomeration

- Reduces size of adsorbed water layer
- Increased internal friction
- Textural change from plastic clay to friable silt/sand

Long Term Strength Improvement – stabilisation Pozzolanic reaction: Clay = pozzolan: source silica / alumina) requires residual calcium requires pH high enough to solubilize clay silica/alumina

Co-operative reaction between lime and clay.

Whole of Life Performance



Westbound Lane widened and shoulder sealed in 2003. These works didn't extent into carriageway

Benkelman Beam deflections:Within 50m;D0Test positionD0

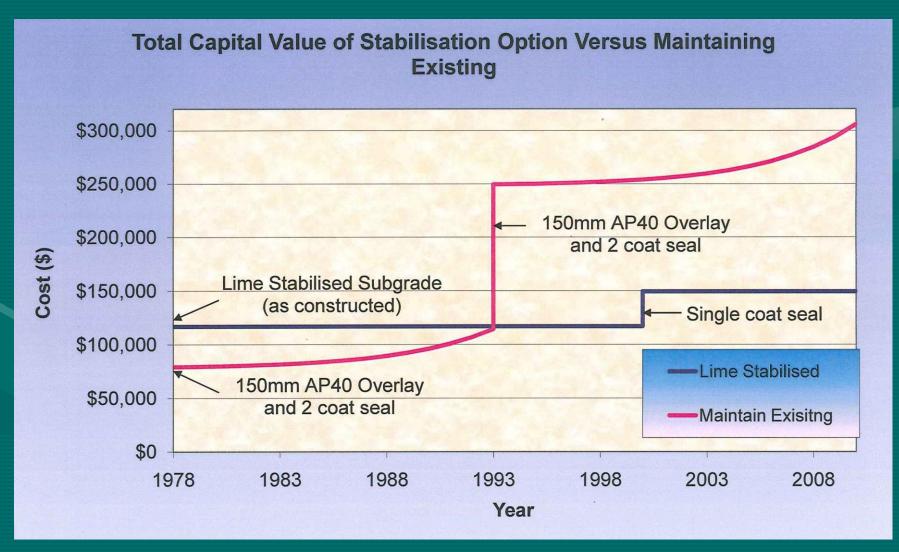
D0 = 0.56 to 1.12 mm D0 = 1.44 mmD250 - D0 = 0.65 mm

Why is Performance so Good

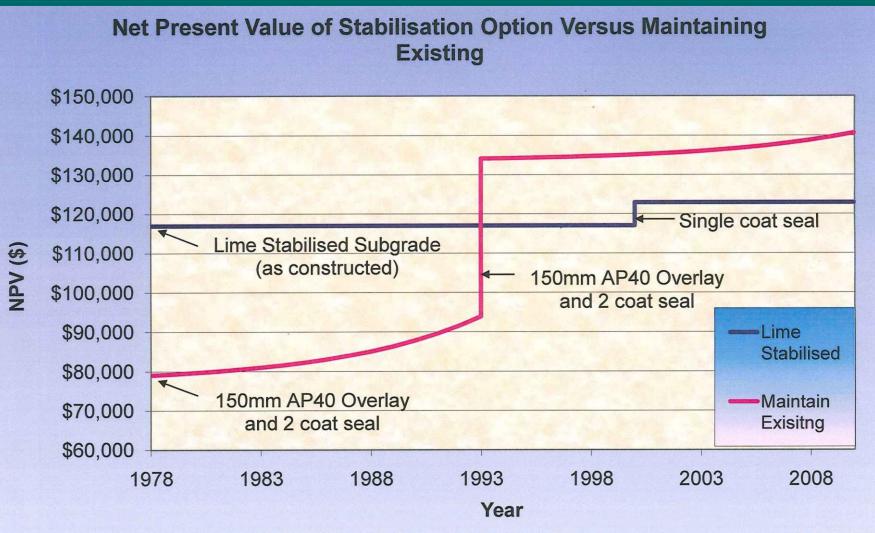
- Emulsion Cure Coat
- Inc. shear & flexural strength
- Inc. resistance to moisture / Reduced volume change potential
- Flocc. / agglomeration resists fines movement
 Fully compact materials being constructed over the top. Aggregate / Surfacing perform better
- Hard anvil and maintains shape rather than rut and 'trap water'

So.....How Green?

McDonald's


• Green Pavement = "safe, efficient, economic, environmentally friendly, meeting the needs of present-day users without compromising those of future generations." • reduce our consumption of raw materials and energy consumption by designing and building durable pavements more efficiently

• The longer a pavement lasts, the less need there is to expend materials and energy replacing it.


McDonald's Lime Limited

Whole of Life – NPV

- 1978 clear inadequacies in process control and methodology.
- Large departures from design profile
- QA... what QA?
- Yet Performed well beyond expectations
- Strength maintained and enhanced
- Emulsion seal cure coat significant benefit
- Virtually zero maintenance costs

In Summary.....

This meets criteria for a "Green" pavement
 The longer a pavement lasts, the less need there is to expend materials and energy replacing it

Robin Dunlop Quote:

"There appears a great future for lime modification of subgrades...... Its use as a bottom layer is in line with general theory of stress distribution within a flexible pavement"

Thanks to:

ΟΡΙ

The Authors would like to thanks the following for assistance in the course of preparing this paper:

North Shore City Council

Opus International Consultants

Fulton Hogan

Bartley Consultants

